Формирование ассоциативных темпоральных правил в базах данных временных рядов на основе темпоральных сетевых моделей
Рассматривается подход к формированию ассоциативных темпоральных правил в базах знаний временных рядов, основанный на использовании нового класса темпоральных сетевых моделей (ТМПС). Рассматривается логико-алгебраический алгоритм к обучению ТМПС.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Сетевые модели данных |
Вид | статья |
Язык | русский |
Прислал(а) | С.М. Ковалев |
Дата добавления | 19.01.2018 |
Размер файла | 293,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Характеристика основных средств обеспечения гибкости моделей в системе КОМПАС-3D. Разработка параметрического эскиза операции, настройка опций в программе. Особенности метода создания ассоциативных чертежей по твердотельным параметрическим моделям.
лабораторная работа [376,7 K], добавлен 25.06.2013Изучение основных средств обеспечения гибкости моделей в системе КОМПАС-3D. Изучение метода создания ассоциативных чертежей по твердотельным параметрическим моделям. Характеристика видов параметризации. Понятие вида чертежа. Управление состоянием видов.
презентация [1,6 M], добавлен 25.06.2013"Наивная" модель прогнозирования. Прогнозирование методом среднего и скользящего среднего. Метод опорных векторов, деревьев решений, ассоциативных правил, системы рассуждений на основе аналогичных случаев, декомпозиции временного ряда и кластеризации.
курсовая работа [2,6 M], добавлен 02.12.2014Классификация задач Data Mining. Задача кластеризации и поиска ассоциативных правил. Определению класса объекта по его свойствам и характеристикам. Нахождение частых зависимостей между объектами или событиями. Оперативно-аналитическая обработка данных.
контрольная работа [26,1 K], добавлен 13.01.2013APRIORI - масштабируемый алгоритм поиска ассоциативных правил. Создание официального информационного портала для студенческого совета УлГУ "Династия". Принципы построение и создания хранилища данных. Перенос информационного портала на сервер ulsu.ru.
курсовая работа [1,5 M], добавлен 21.12.2015Фрагментарная обработка больших объектов в мультимедийных базах данных (прямой доступ к отдельным фрагментам хранимого объекта). Двухуровневое разбиение полей большого размера. Древовидное представление данных. Части объекта, определяемые поддеревом.
презентация [93,4 K], добавлен 11.10.2013Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Формализованное описание закона Pearson Type V. Характеристика методов получения выборки с распределением Pearson Type V. Исследование временных рядов с шумом заданным Rayleigh. Экспериментальное исследование средней трудоемкости Pirson Type V и Rayleigh.
курсовая работа [4,5 M], добавлен 20.06.2010Средства обеспечения гибкости моделей. Анимация и планирование детали. Настройка глобальных привязок. Параметризация в эскизах. Характеристика особенностей проецирования объектов. Создание ассоциативного чертежа. Использование переменных и выражений.
методичка [2,6 M], добавлен 25.06.2013Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа [728,4 K], добавлен 10.07.2017