Разработка нейроаналитического алгоритма классификации образов и исследование его на устойчивость при наличии шумов
Теоретическое обоснование использования нейронных сетей при распознавании образов. Обоснование необходимости и основные этапы, перспективы разработки устойчивых алгоритмов, которые распознавали бы образы с различным уровнем зашумленных входных образов.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Нейронные сети |
Вид | статья |
Язык | русский |
Прислал(а) | Аля |
Дата добавления | 26.11.2017 |
Размер файла | 58,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.
дипломная работа [554,8 K], добавлен 06.04.2014Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.
курсовая работа [645,2 K], добавлен 05.04.2015Теоретический анализ современных методик создания программных средств по распознаванию образов, их преимущества и недостатки. Описание предметной области, обоснование выбора технологии и разработка проекта программного средства по распознаванию образов.
дипломная работа [2,3 M], добавлен 20.05.2013Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.
курсовая работа [462,2 K], добавлен 15.01.2014Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.
курсовая работа [2,6 M], добавлен 29.04.2009Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа [1019,9 K], добавлен 13.10.2017Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Импорт и копирование растровых образов в CorelDRAW. Преобразование объектов CorelDRAW в растровые образы. Эффекты растровых образов. Применение растровых цветовых масок.
реферат [8,0 K], добавлен 21.12.2003Проблема улучшения качества отпечатков пальца с целью повышения эффективности работы алгоритмов биометрической аутентификации. Обзор алгоритмов обработки изображений отпечатков пальцев. Анализ алгоритма, основанного на использовании преобразования Габора.
дипломная работа [4,5 M], добавлен 16.07.2014Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.
реферат [100,5 K], добавлен 18.01.2014