Разработка нейроаналитического алгоритма классификации образов и исследование его на устойчивость при наличии шумов

Теоретическое обоснование использования нейронных сетей при распознавании образов. Обоснование необходимости и основные этапы, перспективы разработки устойчивых алгоритмов, которые распознавали бы образы с различным уровнем зашумленных входных образов.

Рубрика Программирование, компьютеры и кибернетика
Предмет Нейронные сети
Вид статья
Язык русский
Прислал(а) Аля
Дата добавления 26.11.2017
Размер файла 58,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа [554,8 K], добавлен 06.04.2014

  • Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.

    курсовая работа [645,2 K], добавлен 05.04.2015

  • Теоретический анализ современных методик создания программных средств по распознаванию образов, их преимущества и недостатки. Описание предметной области, обоснование выбора технологии и разработка проекта программного средства по распознаванию образов.

    дипломная работа [2,3 M], добавлен 20.05.2013

  • Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа [462,2 K], добавлен 15.01.2014

  • Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.

    курсовая работа [2,6 M], добавлен 29.04.2009

  • Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа [1019,9 K], добавлен 13.10.2017

  • Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.

    курсовая работа [249,3 K], добавлен 22.06.2011

  • Импорт и копирование растровых образов в CorelDRAW. Преобразование объектов CorelDRAW в растровые образы. Эффекты растровых образов. Применение растровых цветовых масок.

    реферат [8,0 K], добавлен 21.12.2003

  • Проблема улучшения качества отпечатков пальца с целью повышения эффективности работы алгоритмов биометрической аутентификации. Обзор алгоритмов обработки изображений отпечатков пальцев. Анализ алгоритма, основанного на использовании преобразования Габора.

    дипломная работа [4,5 M], добавлен 16.07.2014

  • Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.

    реферат [100,5 K], добавлен 18.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.