Формирование признакового пространства для задач классификации сложноструктурируемых изображений на основе спектральных окон и нейросетевых структур
Использование компьютерных технологий, построенных на методологии бустинга для классификации сложноструктурируемых изображений. Классификация изображений рентгенограмм грудной клетки с пневмонией на основе кластерной структуры плоскости Кохонена.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Компьютерные технологии |
Вид | статья |
Язык | русский |
Прислал(а) | С.А. Филист |
Дата добавления | 23.10.2017 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Современные системы текстурного анализа изображений. Примеры текстурной сегментации одноканальных изображений. Использование признаков, полученных на основе гистограммы яркостей второго порядка, для классификации спектрозональных аэрофотоснимков.
реферат [573,5 K], добавлен 15.01.2017Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.
дипломная работа [6,1 M], добавлен 03.06.2022Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.
презентация [360,4 K], добавлен 11.10.2013Проблема гидроакустической классификации целей как актуальная проблема современной гидроакустики. Применение нейросетевых алгоритмов и отдельных парадигм для решения научно-технических задач. Выбор структуры нейронной сети для распознавания изображений.
реферат [284,2 K], добавлен 04.05.2012Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.
курсовая работа [890,9 K], добавлен 07.12.2013Нейрокомпьютер как система. История его создания и совершенствования, разновидности и назначение нейрочипов. Методика разработки алгоритмов и схем аналоговых нейрокомпьютеров для выполнения разных задач обработки изображений, порядок их моделирования.
дипломная работа [462,3 K], добавлен 04.06.2009Изучение современных методик компьютерной обработки биомедицинских изображений с целью улучшения изображений для их наилучшего визуального восприятия врачом-диагностом и эффективного сжатия изображений – для надежного хранения и быстрой передачи данных.
курсовая работа [2,3 M], добавлен 15.04.2019Описание и изучение техники построения плоских и трехмерных изображений чертежей машиностроительных деталей средствами компьютерной графики: втулка, гайка, штуцер. Выполнение упрощенного теоретического чертежа судна на плоскости: бок, корпус, полуширота.
курсовая работа [832,6 K], добавлен 15.08.2012Анализ проблем, возникающих при совмещении изображений в корреляционно-экстремальных навигационных системах. Использование двумерного дискретного преобразования Фурье. Нахождение корреляционной функции радиолокационного и моделируемого изображений.
дипломная работа [3,6 M], добавлен 07.07.2012Построение интерполяционных объектов и их свойства. Линейные операции над множествами по Минковскому. Вывод формулы поворота вектора. Основные числовые характеристики изображений. Усовершенствованный метод интерполяции. Исследование исходных множеств.
дипломная работа [1,8 M], добавлен 18.05.2013