Создание самообучающихся алгоритмов прохождения компьютерных игр на основе платформы OpenAI
Построение и обучение нейронных сетей, которые смогут обучиться для успешного прохождения компьютерных игр. Эволюционный и генетический алгоритмы обучения нейронной сети. Сравнительный анализ самообучающихся алгоритмов на основе платформы OpenAI.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Фундаментальная информатика и информационные технологии |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | Д.А. Тарасенко |
Дата добавления | 01.09.2017 |
Размер файла | 621,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
лабораторная работа [36,1 K], добавлен 05.10.2010Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования.
реферат [187,4 K], добавлен 21.01.2014Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Изучение методов разработки систем управления на основе аппарата нечеткой логики и нейронных сетей. Емкость с двумя клапанами с целью установки заданного уровня жидкости и построение нескольких типов регуляторов. Проведение сравнительного анализа.
курсовая работа [322,5 K], добавлен 14.03.2009Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.
курсовая работа [1020,6 K], добавлен 30.11.2016Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Классификация компьютерных сетей по территориальной распространенности. История создания и преимущества использования локальной вычислительной сети. Появление технологии Ethernet, классы сетей и их топология. Монтаж сети на основе кабеля "витая пара".
дипломная работа [4,5 M], добавлен 03.06.2014