Исследование алгоритмов обучения нейро-нечеткой системы управления биотехнологическим процессом

Сравнительный анализ алгоритмов обучения нейро-нечеткой системы с функциями принадлежности с применением метода обратного распространения ошибки и гибридного метода. Решение задачи управления биотехнологическими процессами микробиологических производств.

Рубрика Программирование, компьютеры и кибернетика
Предмет Программирование
Вид статья
Язык русский
Прислал(а) Аля
Дата добавления 26.05.2017
Размер файла 95,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.

    курсовая работа [249,3 K], добавлен 22.06.2011

  • Изучение методов разработки систем управления на основе аппарата нечеткой логики и нейронных сетей. Емкость с двумя клапанами с целью установки заданного уровня жидкости и построение нескольких типов регуляторов. Проведение сравнительного анализа.

    курсовая работа [322,5 K], добавлен 14.03.2009

  • Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.

    реферат [654,2 K], добавлен 09.06.2014

  • Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.

    курсовая работа [1019,5 K], добавлен 05.05.2015

  • Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.

    лабораторная работа [2,3 M], добавлен 25.03.2014

  • Обучение нейросимулятора определению видовой принадлежности грибов по их заданным внешним признакам с применением алгоритма обратного распространения ошибки. Зависимость погрешностей обучения и обобщения от числа нейронов внутреннего слоя персептрона.

    презентация [728,2 K], добавлен 14.08.2013

  • Искусственные нейросетевые системы как перспективное направление в области разработки искусственного интеллекта. Назначение нейро-нечётких сетей. Гибридная сеть ANFIS. Устройство и принцип работы нейро-нечётких сетей, применение в экономике и бизнесе.

    контрольная работа [102,5 K], добавлен 21.06.2012

  • Понятие и суть нечеткой логики и генетических алгоритмов. Характеристика программных пакетов для работы с системами искусственного интеллекта в среде Matlab R2009b. Реализация аппроксимации функции с применением аппарата нечеткого логического вывода.

    курсовая работа [2,3 M], добавлен 23.06.2012

  • Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.

    дипломная работа [2,2 M], добавлен 07.06.2012

  • Критерии и основные стратегии планирования процессора. Разработка моделей алгоритмов SPT (Shortest-processing-task-first) и RR (Round-Robin). Сравнительный анализ выбранных алгоритмов при различных условиях и различном количестве обрабатываемых данных.

    курсовая работа [179,3 K], добавлен 21.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.