Синтез и верификация многокритериальной системно-когнитивной модели университетского рейтинга гардиан и ее применение для сопоставимой оценки эффективности российских вузов с учетом направления подготовки

Применение отечественной лицензионной инновационной интеллектуальной технологии для разработки модели университетского рейтинга гардиан. Автоматизированный системно-когнитивный анализ, его программный инструментарий – интеллектуальная система "Эйдос".

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 20.05.2017
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

79

RANK-02.Engineering: materials and mineral

80

RANK-02.Engineering: mechanical

81

RANK-02.English

82

RANK-02.Geography and environmental studies

83

RANK-02.History and history of art

84

RANK-02.Law

85

RANK-02.Mathematics

86

RANK-02.Media studies, communications and librarianship

87

RANK-02.Medicine

88

RANK-02.Modern languages and linguistics

89

RANK-02.Music

90

RANK-02.Nursing and paramedical studies

91

RANK-02.Pharmacy and pharmacology

92

RANK-02.Philosophy

93

RANK-02.Physics

94

RANK-02.Politics

95

RANK-02.Psychology

96

RANK-02.Religious studies and theology

97

RANK-02.Social policy and administration

98

RANK-02.Social work

99

RANK-02.Sociology

100

RANK-02.Sports science

101

RANK-02.Tourism, transport and travel

102

RANK-03.Agriculture, forestry and food

103

RANK-03.American studies

104

RANK-03.Anatomy and physiology

105

RANK-03.Anthropology

106

RANK-03.Archaeology and Forensics

107

RANK-03.Architecture

108

RANK-03.Art and design

109

RANK-03.Biosciences

110

RANK-03.Building and town and country planning

111

RANK-03.Business and management studies

112

RANK-03.Chemistry

113

RANK-03.Classics

114

RANK-03.Computer sciences and IT

115

RANK-03.Dentistry

116

RANK-03.Drama and dance

117

RANK-03.Earth and marine sciences

118

RANK-03.Economics

119

RANK-03.Education

120

RANK-03.Engineering: chemical

121

RANK-03.Engineering: civil

122

RANK-03.Engineering: electronic and electrical

123

RANK-03.Engineering: general

124

RANK-03.Engineering: materials and mineral

125

RANK-03.Engineering: mechanical

126

RANK-03.English

127

RANK-03.Geography and environmental studies

128

RANK-03.History and history of art

129

RANK-03.Law

130

RANK-03.Mathematics

131

RANK-03.Media studies, communications and librarianship

132

RANK-03.Medicine

133

RANK-03.Modern languages and linguistics

134

RANK-03.Music

135

RANK-03.Nursing and paramedical studies

136

RANK-03.Pharmacy and pharmacology

137

RANK-03.Philosophy

138

RANK-03.Physics

139

RANK-03.Politics

140

RANK-03.Psychology

141

RANK-03.Religious studies and theology

142

RANK-03.Social policy and administration

143

RANK-03.Social work

144

RANK-03.Sociology

145

RANK-03.Sports science

146

RANK-03.Tourism, transport and travel

147

RANK-03.Veterinary science

148

RANK-04.Agriculture, forestry and food

149

RANK-04.American studies

150

RANK-04.Anatomy and physiology

151

RANK-04.Anthropology

152

RANK-04.Archaeology and Forensics

153

RANK-04.Architecture

154

RANK-04.Art and design

155

RANK-04.Biosciences

156

RANK-04.Building and town and country planning

157

RANK-04.Business and management studies

158

RANK-04.Chemistry

159

RANK-04.Classics

160

RANK-04.Computer sciences and IT

161

RANK-04.Dentistry

162

RANK-04.Drama and dance

163

RANK-04.Earth and marine sciences

164

RANK-04.Economics

165

RANK-04.Education

166

RANK-04.Engineering: chemical

167

RANK-04.Engineering: civil

168

RANK-04.Engineering: electronic and electrical

169

RANK-04.Engineering: general

170

RANK-04.Engineering: materials and mineral

171

RANK-04.Engineering: mechanical

172

RANK-04.English

173

RANK-04.Geography and environmental studies

174

RANK-04.History and history of art

175

RANK-04.Law

176

RANK-04.Mathematics

177

RANK-04.Media studies, communications and librarianship

178

RANK-04.Medicine

179

RANK-04.Modern languages and linguistics

180

RANK-04.Music

181

RANK-04.Nursing and paramedical studies

182

RANK-04.Pharmacy and pharmacology

183

RANK-04.Philosophy

184

RANK-04.Physics

185

RANK-04.Politics

186

RANK-04.Psychology

187

RANK-04.Religious studies and theology

188

RANK-04.Social policy and administration

189

RANK-04.Social work

190

RANK-04.Sociology

191

RANK-04.Sports science

192

RANK-04.Tourism, transport and travel

193

RANK-04.Veterinary science

194

RANK-05.Agriculture, forestry and food

195

RANK-05.American studies

196

RANK-05.Anatomy and physiology

197

RANK-05.Anthropology

198

RANK-05.Archaeology and Forensics

199

RANK-05.Architecture

200

RANK-05.Art and design

201

RANK-05.Biosciences

202

RANK-05.Building and town and country planning

203

RANK-05.Business and management studies

204

RANK-05.Chemistry

205

RANK-05.Classics

206

RANK-05.Computer sciences and IT

207

RANK-05.Dentistry

208

RANK-05.Drama and dance

209

RANK-05.Earth and marine sciences

210

RANK-05.Economics

211

RANK-05.Education

212

RANK-05.Engineering: chemical

213

RANK-05.Engineering: civil

214

RANK-05.Engineering: electronic and electrical

215

RANK-05.Engineering: general

216

RANK-05.Engineering: materials and mineral

217

RANK-05.Engineering: mechanical

218

RANK-05.English

219

RANK-05.Geography and environmental studies

220

RANK-05.History and history of art

221

RANK-05.Law

222

RANK-05.Mathematics

223

RANK-05.Media studies, communications and librarianship

224

RANK-05.Medicine

225

RANK-05.Modern languages and linguistics

226

RANK-05.Music

227

RANK-05.Nursing and paramedical studies

228

RANK-05.Pharmacy and pharmacology

229

RANK-05.Philosophy

230

RANK-05.Physics

231

RANK-05.Politics

232

RANK-05.Psychology

233

RANK-05.Religious studies and theology

234

RANK-05.Social policy and administration

235

RANK-05.Social work

236

RANK-05.Sociology

237

RANK-05.Sports science

238

RANK-05.Tourism, transport and travel

239

RANK-06.Agriculture, forestry and food

240

RANK-06.American studies

241

RANK-06.Anatomy and physiology

242

RANK-06.Anthropology

243

RANK-06.Archaeology and Forensics

244

RANK-06.Architecture

245

RANK-06.Art and design

246

RANK-06.Biosciences

247

RANK-06.Building and town and country planning

248

RANK-06.Business and management studies

249

RANK-06.Chemistry

250

RANK-06.Classics

251

RANK-06.Computer sciences and IT

Таблица 8 - Описательные шкалы и градации (показатели)

Код

Наименование

80

% SATISFIED WITH ASSESSMENT-10/10-{88.8275502, 96.6000000}

79

% SATISFIED WITH ASSESSMENT-9/10-{81.0551004, 88.8275502}

78

% SATISFIED WITH ASSESSMENT-8/10-{73.2826506, 81.0551004}

77

% SATISFIED WITH ASSESSMENT-7/10-{65.5102008, 73.2826506}

76

% SATISFIED WITH ASSESSMENT-6/10-{57.7377510, 65.5102008}

75

% SATISFIED WITH ASSESSMENT-5/10-{49.9653012, 57.7377510}

74

% SATISFIED WITH ASSESSMENT-4/10-{42.1928514, 49.9653012}

73

% SATISFIED WITH ASSESSMENT-3/10-{34.4204016, 42.1928514}

72

% SATISFIED WITH ASSESSMENT-2/10-{26.6479518, 34.4204016}

71

% SATISFIED WITH ASSESSMENT-1/10-{18.8755020, 26.6479518}

70

AVERAGE ENTRY TARIFF-10/10-{551.7000000, 598.0000000}

69

AVERAGE ENTRY TARIFF-9/10-{505.4000000, 551.7000000}

68

AVERAGE ENTRY TARIFF-8/10-{459.1000000, 505.4000000}

67

AVERAGE ENTRY TARIFF-7/10-{412.8000000, 459.1000000}

66

AVERAGE ENTRY TARIFF-6/10-{366.5000000, 412.8000000}

65

AVERAGE ENTRY TARIFF-5/10-{320.2000000, 366.5000000}

64

AVERAGE ENTRY TARIFF-4/10-{273.9000000, 320.2000000}

63

AVERAGE ENTRY TARIFF-3/10-{227.6000000, 273.9000000}

62

AVERAGE ENTRY TARIFF-2/10-{181.3000000, 227.6000000}

61

AVERAGE ENTRY TARIFF-1/10-{135.0000000, 181.3000000}

60

VALUE ADDED SCORE/10-10/10-{9.1000000, 10.0000000}

59

VALUE ADDED SCORE/10-9/10-{8.2000000, 9.1000000}

58

VALUE ADDED SCORE/10-8/10-{7.3000000, 8.2000000}

57

VALUE ADDED SCORE/10-7/10-{6.4000000, 7.3000000}

56

VALUE ADDED SCORE/10-6/10-{5.5000000, 6.4000000}

55

VALUE ADDED SCORE/10-5/10-{4.6000000, 5.5000000}

54

VALUE ADDED SCORE/10-4/10-{3.7000000, 4.6000000}

53

VALUE ADDED SCORE/10-3/10-{2.8000000, 3.7000000}

52

VALUE ADDED SCORE/10-2/10-{1.9000000, 2.8000000}

51

VALUE ADDED SCORE/10-1/10-{1.0000000, 1.9000000}

50

CAREER PROSPECTS-10/10-{91.6000000, 100.0000000}

49

CAREER PROSPECTS-9/10-{83.2000000, 91.6000000}

48

CAREER PROSPECTS-8/10-{74.8000000, 83.2000000}

47

CAREER PROSPECTS-7/10-{66.4000000, 74.8000000}

46

CAREER PROSPECTS-6/10-{58.0000000, 66.4000000}

45

CAREER PROSPECTS-5/10-{49.6000000, 58.0000000}

44

CAREER PROSPECTS-4/10-{41.2000000, 49.6000000}

43

CAREER PROSPECTS-3/10-{32.8000000, 41.2000000}

42

CAREER PROSPECTS-2/10-{24.4000000, 32.8000000}

41

CAREER PROSPECTS-1/10-{16.0000000, 24.4000000}

40

STUDENT:STAFF RATIO-10/10-{46.0900000, 50.7000000}

39

STUDENT:STAFF RATIO-9/10-{41.4800000, 46.0900000}

38

STUDENT:STAFF RATIO-8/10-{36.8700000, 41.4800000}

37

STUDENT:STAFF RATIO-7/10-{32.2600000, 36.8700000}

36

STUDENT:STAFF RATIO-6/10-{27.6500000, 32.2600000}

35

STUDENT:STAFF RATIO-5/10-{23.0400000, 27.6500000}

34

STUDENT:STAFF RATIO-4/10-{18.4300000, 23.0400000}

33

STUDENT:STAFF RATIO-3/10-{13.8200000, 18.4300000}

32

STUDENT:STAFF RATIO-2/10-{9.2100000, 13.8200000}

31

STUDENT:STAFF RATIO-1/10-{4.6000000, 9.2100000}

30

EXPENDITURE PER STUDENT (FTE)-10/10-{9.1000000, 10.0000000}

29

EXPENDITURE PER STUDENT (FTE)-9/10-{8.2000000, 9.1000000}

28

EXPENDITURE PER STUDENT (FTE)-8/10-{7.3000000, 8.2000000}

27

EXPENDITURE PER STUDENT (FTE)-7/10-{6.4000000, 7.3000000}

26

EXPENDITURE PER STUDENT (FTE)-6/10-{5.5000000, 6.4000000}

25

EXPENDITURE PER STUDENT (FTE)-5/10-{4.6000000, 5.5000000}

24

EXPENDITURE PER STUDENT (FTE)-4/10-{3.7000000, 4.6000000}

23

EXPENDITURE PER STUDENT (FTE)-3/10-{2.8000000, 3.7000000}

22

EXPENDITURE PER STUDENT (FTE)-2/10-{1.9000000, 2.8000000}

21

EXPENDITURE PER STUDENT (FTE)-1/10-{1.0000000, 1.9000000}

20

% SATISFIED OVERALL WITH COURSE-10/10-{93.7515677, 100.0000000}

19

% SATISFIED OVERALL WITH COURSE-9/10-{87.5031353, 93.7515677}

18

% SATISFIED OVERALL WITH COURSE-8/10-{81.2547030, 87.5031353}

17

% SATISFIED OVERALL WITH COURSE-7/10-{75.0062706, 81.2547030}

16

% SATISFIED OVERALL WITH COURSE-6/10-{68.7578383, 75.0062706}

15

% SATISFIED OVERALL WITH COURSE-5/10-{62.5094060, 68.7578383}

14

% SATISFIED OVERALL WITH COURSE-4/10-{56.2609736, 62.5094060}

13

% SATISFIED OVERALL WITH COURSE-3/10-{50.0125413, 56.2609736}

12

% SATISFIED OVERALL WITH COURSE-2/10-{43.7641089, 50.0125413}

11

% SATISFIED OVERALL WITH COURSE-1/10-{37.5156766, 43.7641089}

10

% SATISFIED WITH TEACHING-10/10-{95.0000000, 100.0000000}

9

% SATISFIED WITH TEACHING-9/10-{90.0000000, 95.0000000}

8

% SATISFIED WITH TEACHING-8/10-{85.0000000, 90.0000000}

7

% SATISFIED WITH TEACHING-7/10-{80.0000000, 85.0000000}

6

% SATISFIED WITH TEACHING-6/10-{75.0000000, 80.0000000}

5

% SATISFIED WITH TEACHING-5/10-{70.0000000, 75.0000000}

4

% SATISFIED WITH TEACHING-4/10-{65.0000000, 70.0000000}

3

% SATISFIED WITH TEACHING-3/10-{60.0000000, 65.0000000}

2

% SATISFIED WITH TEACHING-2/10-{55.0000000, 60.0000000}

1

% SATISFIED WITH TEACHING-1/10-{50.0000000, 55.0000000}

Таблица 9 - Обучающая выборка (фрагмент)

The object of training sample

Guardian score/100

Rank

Field of study

Name of Institution

% Satisfied with Teaching

% Satisfied overall with course

Expenditure per student (FTE)

Student:staff ratio

Career prospects

Value added score/10

Average Entry Tariff

% Satisfied with Assessment

Medicine-Oxford, 2012

10

41

498

606

10

20

31

50

57

70

79

Medicine-Cambridge, 2012

10

41

498

535

9

19

30

31

50

52

70

76

Medicine-Edinburgh, 2012

9

87

498

553

9

19

30

31

50

54

69

75

Medicine-Dundee, 2012

9

87

498

549

10

20

30

31

50

56

68

76

Medicine-UCL, 2012

8

87

498

652

9

19

26

31

50

59

69

76

Medicine-Imperial College, 2012

6

132

498

575

9

19

27

31

50

53

69

74

Medicine-Leicester, 2012

6

132

498

585

9

19

25

31

50

55

68

75

Medicine-Newcastle, 2012

6

132

498

598

10

20

24

31

50

55

68

75

Medicine-Peninsula Medical School, 2012

6

132

498

608

9

19

27

31

50

54

68

76

Medicine-Nottingham, 2012

6

178

498

604

9

19

23

31

50

54

69

74

Medicine-King's College London, 2012

5

178

498

578

8

18

25

31

50

56

68

74

Medicine-Warwick, 2012

5

178

498

660

8

18

28

31

50

59

74

Medicine-Leeds, 2012

4

224

498

581

8

18

26

31

50

56

68

75

Medicine-Hull York Medical School, 2012

4

224

498

574

8

18

24

32

50

58

68

75

Medicine-Manchester, 2012

4

224

498

593

6

15

28

31

50

59

68

73

Medicine-Sheffield, 2012

4

224

498

628

9

19

23

31

50

54

68

75

Medicine-Aberdeen, 2012

4

269

498

513

9

19

24

31

50

56

67

77

Medicine-Brighton Sussex Medical School, 2012

4

269

498

530

8

18

24

32

50

57

75

Medicine-Queen Mary, 2012

4

269

498

613

7

17

24

31

50

58

68

74

Medicine-St George's Medical School, 2012

4

315

498

634

8

19

26

32

50

56

68

75

Medicine-Southampton, 2012

4

315

498

631

8

18

24

31

50

57

68

74

Medicine-St Andrews, 2012

4

361

498

633

10

20

22

32

50

51

68

76

Medicine-Glasgow, 2012

3

361

498

560

6

15

25

31

50

55

69

72

Medicine-UEA, 2012

3

361

498

653

8

18

23

31

50

59

67

75

Medicine-Birmingham, 2012

3

361

498

523

9

18

23

32

50

53

69

72

Medicine-Queen's, Belfast, 2012

3

406

498

611

8

18

24

32

50

53

68

75

Medicine-Liverpool, 2012

2

406

498

587

6

15

24

31

50

54

68

72

Medicine-Bristol, 2012

2

406

498

531

8

15

26

32

50

54

68

71

Medicine-Keele, 2012

1

452

498

576

7

14

23

32

50

57

67

72

Medicine-Cardiff, 2012

1

452

498

537

6

14

23

32

50

58

68

71

Dentistry-King's College London, 2012

10

24

481

578

9

18

28

31

50

57

68

77

Dentistry-Glasgow, 2012

8

70

481

560

10

20

23

32

50

56

68

78

Dentistry-Cardiff, 2012

8

115

481

537

9

20

28

31

50

51

68

75

Dentistry-Queen's, Belfast, 2012

7

115

481

611

10

20

29

31

50

55

67

76

Dentistry-Birmingham, 2012

7

161

481

523

10

18

25

31

50

56

68

76

Dentistry-Bristol, 2012

6

207

481

531

9

20

26

32

50

55

68

78

Dentistry-Dundee, 2012

5

252

481

549

8

19

24

31

50

57

68

75

Dentistry-Sheffield, 2012

4

252

481

628

9

19

23

31

50

56

68

76

Dentistry-Liverpool, 2012

3

298

481

587

8

17

27

31

50

57

68

76

Dentistry-Manchester, 2012

3

344

481

593

9

18

25

31

50

57

68

75

Dentistry-Newcastle, 2012

2

389

481

598

8

19

21

32

50

56

68

76

Dentistry-Queen Mary, 2012

1

389

481

613

7

17

24

31

50

57

68

76

Dentistry-Leeds, 2012

1

435

481

581

9

19

29

32

50

56

68

73

Veterinary science-Cambridge, 2012

10

56

512

535

9

19

28

31

49

53

69

77

Veterinary science-Edinburgh, 2012

8

147

512

553

9

18

29

31

50

59

68

74

Veterinary science-Liverpool, 2012

6

193

512

587

9

20

23

31

50

54

68

74

Veterinary science-Glasgow, 2012

5

284

512

560

9

20

23

31

50

58

68

75

Veterinary science-Nottingham, 2012

5

330

512

604

24

31

68

Veterinary science-Royal Veterinary College, 2012

5

421

512

625

8

17

28

31

49

56

68

73

Veterinary science-Bristol, 2012

1

467

512

531

9

19

23

32

49

53

67

74

Anatomy and physiology-Oxford, 2012

10

13

470

606

10

17

30

32

56

69

75

Anatomy and physiology-Glamorgan, 2012

10

13

470

559

9

19

24

32

50

60

65

78

Anatomy and physiology-Cardiff, 2012

10

59

470

537

9

20

30

32

50

55

67

75

Anatomy and physiology-Plymouth, 2012

9

59

470

609

10

19

28

31

48

58

65

79

Anatomy and physiology-Brunel, 2012

8

59

470

532

10

20

23

32

48

59

65

76

Anatomy and physiology-Liverpool, 2012

8

59

470

587

9

19

29

32

48

54

66

77

Anatomy and physiology-Sussex, 2012

8

59

470

643

9

20

26

32

59

66

76

Anatomy and physiology-Newcastle, 2012

7

104

470

598

9

20

24

32

48

55

67

76

Anatomy and physiology-Aston, 2012

7

104

470

518

8

18

26

33

50

52

66

78

Anatomy and physiology-Bristol, 2012

7

150

470

531

9

19

27

32

47

54

67

76

Anatomy and physiology-Nottingham, 2012

6

150

470

604

10

19

27

33

54

67

77

Anatomy and physiology-Birmingham, 2012

6

150

470

523

9

18

32

47

57

67

75

Anatomy and physiology-Sheffield Hallam, 2012

5

150

470

629

10

19

23

33

48

55

66

77

Anatomy and physiology-Manchester, 2012

5

196

470

593

9

19

25

32

48

54

67

75

Anatomy and physiology-Glasgow Caledonian, 2012

5

196

470

561

9

19

24

33

48

57

66

76

Anatomy and physiology-Edinburgh, 2012

5

196

470

553

9

19

29

33

45

55

67

74

Anatomy and physiology-Robert Gordon, 2012

5

241

470

616

9

20

23

34

48

57

67

76

Anatomy and physiology-De Montfort, 2012

5

241

470

547

8

19

25

33

50

55

64

76

Anatomy and physiology-Hertfordshire, 2012

5

241

470

570

8

19

23

33

49

57

63

77

Anatomy and physiology-UEA, 2012

5

241

470

653

10

20

49

53

65

75

Anatomy and physiology-Queen's, Belfast, 2012

4

287

470

611

9

19

29

32

46

57

65

74

Anatomy and physiology-Aberdeen, 2012

4

287

470

513

8

20

24

33

47

56

64

78

Anatomy and physiology-Bradford, 2012

4

287

470

528

8

20

24

33

49

53

65

76

Anatomy and physiology-Birmingham City, 2012

2

287

470

524

9

15

23

34

48

58

65

75

Anatomy and physiology-Leeds, 2012

2

333

470

581

8

19

25

35

45

56

67

76

Anatomy and physiology-Northampton, 2012

2

333

470

601

9

17

23

33

63

77

Anatomy and physiology-Anglia Ruskin, 2012

2

333

470

516

8

20

25

36

46

58

64

78

Anatomy and physiology-Manchester Met, 2012

2

378

470

594

8

17

22

33

48

53

65

75

Anatomy and physiology-City, 2012

1

378

470

542

8

17

24

33

50

51

66

74

Anatomy and physiology-Cumbria, 2012

1

378

470

546

7

18

23

34

50

52

64

76

Anatomy and physiology-St Mary's UC, Twickenham, 2012

1

378

470

636

10

20

22

35

47

56

62

77

Anatomy and physiology-King's College London, 2012

1

424

470

578

8

19

27

36

46

53

67

75

Anatomy and physiology-Ulster, 2012

1

424

470

654

7

15

23

33

45

58

65

75

Nursing and paramedical studies-Edinburgh, 2012

10

44

501

553

10

20

29

32

58

66

78

Nursing and paramedical studies-Glasgow, 2012

10

44

501

560

10

20

27

33

56

66

80

Nursing and paramedical studies-UEA, 2012

9

44

501

653

9

18

30

33

50

58

65

76

Nursing and paramedical studies-Leeds, 2012

7

44

501

581

8

17

30

33

50

53

65

77

Nursing and paramedical studies-Staffordshire, 2012

7

44

501

637

9

20

27

33

50

58

63

78

Nursing and paramedical studies-Portsmouth, 2012

7

90

501

610

8

18

28

32

50

54

65

76

Nursing and paramedical studies-City, 2012

7

90

501

542

8

18

30

33

49

55

64

77

Nursing and paramedical studies-Keele, 2012

7

90

501

576

10

20

26

33

49

57

64

78

Nursing and paramedical studies-Southampton, 2012

7

90

501

631

8

18

28

33

49

59

66

75

Nursing and paramedical studies-Birmingham, 2012

7

90

501

523

9

19

32

49

54

66

76

Nursing and paramedical studies-Bedfordshire, 2012

7

90

501

522

9

18

24

33

60

63

77

Nursing and paramedical studies-Liverpool, 2012

7

90

501

587

8

17

29

32

50

52

65

76

Nursing and paramedical studies-Oxford Brookes, 2012

7

90

501

607

9

19

24

33

50

55

64

78

Nursing and paramedical studies-Nottingham, 2012

7

135

501

604

8

18

27

33

49

59

65

76

Nursing and paramedical studies-Surrey, 2012

7

135

501

642

8

19

28

35

50

58

65

77

Nursing and paramedical studies-Manchester, 2012

7

135

501

593

9

18

27

33

50

55

65

76

Nursing and paramedical studies-Brighton, 2012

6

135

501

529

8

17

24

33

49

58

65

77

Nursing and paramedical studies-Thames Valley, 2012

6

135

501

646

8

16

28

33

50

60

62

77

Nursing and paramedical studies-Middlesex, 2012

6

135

501

597

8

17

29

33

50

56

63

77

Nursing and paramedical studies-Edge Hill, 2012

6

135

501

552

9

19

23

33

49

54

63

79

Nursing and paramedical studies-Bangor, 2012

6

135

501

519

8

18

26

33

50

52

64

77

Nursing and paramedical studies-Coventry, 2012

6

135

501

545

9

19

23

33

49

58

64

77

Nursing and paramedical studies-Northampton, 2012

6

181

501

601

8

18

24

33

49

59

63

76

Полностью обучающая выборка в статье не может быть приведена, т.к. файл исходных данных содержит 2559 строк.

Этим завершается 2-й этап АСК-анализа, который называется «Формализация предметной области» и создаются все необходимые и достаточные предпосылки для выполнения следующего этапа, т.е. синтеза и верификации (измерения достоверности) модели.

3.5 Синтез и верификация многокритериальной системно-когнитивной модели университетского рейтинга Гардиан, учитывающей направления подготовки

Синтез и верификация многокритериальной системно-когнитивной модели университетского рейтинга Гардиан, учитывающей направления подготовки, представляет собой задачу, требующую довольно значительных вычислительных ресурсов. Решение этой задачи на компьютере с процессором i7 и 16 Гб оперативной памяти с размещение задачи на SSD, потребовало около 13 часов счета (рисунок 9).

Рисунок 9. Экранная форма с отображением стадии синтеза и верификациимоделей и прогнозом времени исполнения

Такая большая длительность расчетов обусловлена тем, что для измерения достоверности 10 моделей была использована вся обучающая выборка, включающая 2559 примеров.

Математические аспекты формирования системно-когнитивных моделей описаны в ряде работ автора [3] и здесь их подробно освещать нет необходимости. Отметим лишь, что для преобразования матрицы абсолютных частот в другие модели используются формулы преобразования, приведенные в таблице 10:

Таблица 10 - Частные критерии знаний, используемые в настоящее время в АСК-анализе и системе «Эйдос-Х++»

Наименование модели знанийи частный критерий

Выражение для частного критерия

через относительные частоты

через абсолютные частоты

INF1, частный критерий: количество знаний по А.Харкевичу, 1-й вариант расчета относительных частот: Nj - суммарное количество признаков по j-му классу. Относительная частота того, что если у объекта j-го класса обнаружен признак, то это i-й признак

INF2, частный критерий: количество знаний по А.Харкевичу, 2-й вариант расчета относительных частот: Nj - суммарное количество объектов по j-му классу. Относительная частота того, что если предъявлен объект j-го класса, то у него будет обнаружен i-й признак.

INF3, частный критерий: Хи-квадрат: разности между фактическими и теоретически ожидаемыми абсолютными частотами

---

INF4, частный критерий: ROI - Return On Investment, 1-й вариант расчета относительных частот: Nj - суммарное количество признаков по j-му классу

INF5, частный критерий: ROI - Return On Investment, 2-й вариант расчета относительных частот: Nj - суммарное количество объектов по j-му классу

INF6, частный критерий: разность условной и безусловной относительных частот, 1-й вариант расчета относительных частот: Nj - суммарное количество признаков по j-му классу

INF7, частный критерий: разность условной и безусловной относительных частот, 2-й вариант расчета относительных частот: Nj - суммарное количество объектов по j-му классу

Обозначения:

i - значение прошлого параметра;

j - значение будущего параметра;

Nij - количество встреч j-го значения будущего параметра при i-м значении прошлого параметра;

M - суммарное число значений всех прошлых параметров;

W - суммарное число значений всех будущих параметров.

Ni - количество встреч i-м значения прошлого параметра по всей выборке;

Nj - количество встреч j-го значения будущего параметра по всей выборке;

N - количество встреч j-го значения будущего параметра при i-м значении прошлого параметра по всей выборке.

Iij - частный критерий знаний: количество знаний в факте наблюдения i-го значения прошлого параметра о том, что объект перейдет в состояние, соответствующее j-му значению будущего параметра;

Ш - нормировочный коэффициент (Е.В.Луценко, 1979, впервые опубликовано в 1993 году [15]), преобразующий количество информации в формуле А.Харкевича в биты и обеспечивающий для нее соблюдение принципа соответствия с формулой Р.Хартли;

Pi - безусловная относительная частота встречи i-го значения прошлого параметра в обучающей выборке;

Pij - условная относительная частота встречи i-го значения прошлого параметра при j-м значении будущего параметра.

В результате сформированы 10 моделей: 3 статистических и 7 системно-когнитивных моделей (моделей знаний). Фрагменты трех из них приведены ниже (таблицы 11, 12, 13):

Таблица 11 - Матрица абсолютных частот, модель ABS (фрагмент)

Код

Наименование показателя

1/10-{25.90, 33.31}

2/10-{33.31, 40.72}

3/10-{40.72, 48.13}

4/10-{48.13, 55.54}

5/10-{55.54, 62.95}

6/10-{62.95, 70.36}

7/10-{70.36, 77.77}

8/10-{77.77, 85.18}

9/10-{85.18, 92.59}

10/10-{92.59, 100.00}

1

% SATISFIED WITH TEACHING-1/10-{50.0000000, 55.0000000}

2

2

1

0

2

0

1

0

0

0

2

% SATISFIED WITH TEACHING-2/10-{55.0000000, 60.0000000}

4

8

0

1

1

0

1

0

0

0

3

% SATISFIED WITH TEACHING-3/10-{60.0000000, 65.0000000}

3

8

7

5

2

4

2

2

1

0

4

% SATISFIED WITH TEACHING-4/10-{65.0000000, 70.0000000}

7

23

17

18

9

4

6

3

1

0

5

% SATISFIED WITH TEACHING-5/10-{70.0000000, 75.0000000}

6

22

31

43

30

29

9

5

0

0

6

% SATISFIED WITH TEACHING-6/10-{75.0000000, 80.0000000}

17

29

63

72

79

43

22

12

5

3

7

% SATISFIED WITH TEACHING-7/10-{80.0000000, 85.0000000}

15

22

65

93

108

89

53

43

20

12

8

% SATISFIED WITH TEACHING-8/10-{85.0000000, 90.0000000}

6

21

55

96

121

121

101

41

30

27

9

% SATISFIED WITH TEACHING-9/10-{90.0000000, 95.0000000}

6

9

25

54

87

104

97

71

38

35

10

% SATISFIED WITH TEACHING-10/10-{95.0000000, 100.0000000}

1

2

3

12

23

18

39

23

21

32

11

% SATISFIED OVERALL WITH COURSE-1/10-{37.5156766, 43.7641089}

3

3

2

1

0

0

0

1

1

0

12

% SATISFIED OVERALL WITH COURSE-2/10-{43.7641089, 50.0125413}

3

5

1

1

2

1

0

0

1

0

13

% SATISFIED OVERALL WITH COURSE-3/10-{50.0125413, 56.2609736}

4

7

5

4

6

2

2

1

0

0

14

% SATISFIED OVERALL WITH COURSE-4/10-{56.2609736, 62.5094060}

6

16

17

11

13

6

5

3

0

0

15

% SATISFIED OVERALL WITH COURSE-5/10-{62.5094060, 68.7578383}

9

20

20

31

21

19

5

6

0

0

16

% SATISFIED OVERALL WITH COURSE-6/10-{68.7578383, 75.0062706}

9

23

41

45

45

33

19

11

4

0

17

% SATISFIED OVERALL WITH COURSE-7/10-{75.0062706, 81.2547030}

16

28

65

81

96

73

45

16

9

2

18

% SATISFIED OVERALL WITH COURSE-8/10-{81.2547030, 87.5031353}

8

26

66

109

118

110

80

42

25

12

19

% SATISFIED OVERALL WITH COURSE-9/10-{87.5031353, 93.7515677}

5

15

40

84

118

114

111

73

43

44

20

% SATISFIED OVERALL WITH COURSE-10/10-{93.7515677, 100.0000000}

4

3

10

27

43

54

64

47

33

51

21

EXPENDITURE PER STUDENT (FTE)-1/10-{1.0000000, 1.9000000}

2

4

3

0

1

0

0

0

0

0

22

EXPENDITURE PER STUDENT (FTE)-2/10-{1.9000000, 2.8000000}

9

28

44

33

23

13

9

0

0

0

23

EXPENDITURE PER STUDENT (FTE)-3/10-{2.8000000, 3.7000000}

31

48

84

114

102

64

20

13

5

2

24

EXPENDITURE PER STUDENT (FTE)-4/10-{3.7000000, 4.6000000}

17

35

63

111

121

86

51

21

2

2

25

EXPENDITURE PER STUDENT (FTE)-5/10-{4.6000000, 5.5000000}

6

15

38

47

67

63

58

19

7

4

26

EXPENDITURE PER STUDENT (FTE)-6/10-{5.5000000, 6.4000000}

0

9

18

35

54

59

42

28

14

6

27

EXPENDITURE PER STUDENT (FTE)-7/10-{6.4000000, 7.3000000}

2

6

8

28

39

52

47

29

14

8

28

EXPENDITURE PER STUDENT (FTE)-8/10-{7.3000000, 8.2000000}

0

5

13

14

35

40

48

32

19

15

29

EXPENDITURE PER STUDENT (FTE)-9/10-{8.2000000, 9.1000000}

1

0

0

12

22

25

33

35

23

11

30

EXPENDITURE PER STUDENT (FTE)-10/10-{9.1000000, 10.0000000}

0

0

1

3

4

9

24

23

31

56

31

STUDENT:STAFF RATIO-1/10-{4.6000000, 9.2100000}

1

2

4

11

16

13

17

17

18

20

32

STUDENT:STAFF RATIO-2/10-{9.2100000, 13.8200000}

7

7

9

29

44

62

73

69

46

50

33

STUDENT:STAFF RATIO-3/10-{13.8200000, 18.4300000}

7

24

53

101

160

150

131

69

43

37

34

STUDENT:STAFF RATIO-4/10-{18.4300000, 23.0400000}

15

36

90

144

167

122

93

33

12

6

35

STUDENT:STAFF RATIO-5/10-{23.0400000, 27.6500000}

22

34

74

79

59

47

16

11

2

2

36

STUDENT:STAFF RATIO-6/10-{27.6500000, 32.2600000}

8

24

20

23

19

8

1

1

1

0

37

STUDENT:STAFF RATIO-7/10-{32.2600000, 36.8700000}

4

12

10

6

2

4

1

0

0

0

38

STUDENT:STAFF RATIO-8/10-{36.8700000, 41.4800000}

2

5

9

3

1

0

0

0

0

0

39

STUDENT:STAFF RATIO-9/10-{41.4800000, 46.0900000}

2

3

2

0

0

1

0

0

0

0

40

STUDENT:STAFF RATIO-10/10-{46.0900000, 50.7000000}

0

1

0

0

0

0

0

0

0

0

41

CAREER PROSPECTS-1/10-{16.0000000, 24.4000000}

2

5

5

5

2

0

0

0

0

0

42

CAREER PROSPECTS-2/10-{24.4000000, 32.8000000}

5

14

18

21

21

4

0

0

0

1

43

CAREER PROSPECTS-3/10-{32.8000000, 41.2000000}

12

15

41

61

57

21

14

0

1

1

44

CAREER PROSPECTS-4/10-{41.2000000, 49.6000000}

6

32

36

65

58

36

31

7

3

0

45

CAREER PROSPECTS-5/10-{49.6000000, 58.0000000}

8

19

32

66

67

89

51

19

5

1

46

CAREER PROSPECTS-6/10-{58.0000000, 66.4000000}

3

7

24

40

65

51

55

21

14

8

47

CAREER PROSPECTS-7/10-{66.4000000, 74.8000000}

1

3

10

30

28

55

47

45

27

14

48

CAREER PROSPECTS-8/10-{74.8000000, 83.2000000}

0

3

11

10

26

30

42

36

21

29

49

CAREER PROSPECTS-9/10-{83.2000000, 91.6000000}

2

1

1

4

14

10

19

19

14

19

50

CAREER PROSPECTS-10/10-{91.6000000, 100.0000000}

6

3

9

20

14

16

16

10

7

9

51

VALUE ADDED SCORE/10-1/10-{1.0000000, 1.9000000}

15

21

20

24

12

3

2

2

1

0

Таблица 11 - Матрица условных и безусловных процентных распределений , модель PRC2 (фрагмент)

Код

Наименование показателя

1/10-{25.90, 33.31}

2/10-{33.31, 40.72}

3/10-{40.72, 48.13}

4/10-{48.13, 55.54}

5/10-{55.54, 62.95}

6/10-{62.95, 70.36}

7/10-{70.36, 77.77}

8/10-{77.77, 85.18}

9/10-{85.18, 92.59}

10/10-{92.59, 100.00}

1

% SATISFIED WITH TEACHING-1/10-{50.0000000, 55.0000000}

3

1

0

0

0

0

0

0

0

0

2

% SATISFIED WITH TEACHING-2/10-{55.0000000, 60.0000000}

6

5

0

0

0

0

0

0

0

0

3

% SATISFIED WITH TEACHING-3/10-{60.0000000, 65.0000000}

4

5

3

1

0

1

1

1

1

0

4

% SATISFIED WITH TEACHING-4/10-{65.0000000, 70.0000000}

10

15

6

5

2

1

2

1

1

0

5

% SATISFIED WITH TEACHING-5/10-{70.0000000, 75.0000000}

9

15

11

11

6

7

3

2

0

0

6

% SATISFIED WITH TEACHING-6/10-{75.0000000, 80.0000000}

25

19

23

18

17

10

7

6

4

3

7

% SATISFIED WITH TEACHING-7/10-{80.0000000, 85.0000000}

22

15

24

23

23

21

16

21

16

10

8

% SATISFIED WITH TEACHING-8/10-{85.0000000, 90.0000000}

9

14

20

24

26

29

30

20

24

23

9

% SATISFIED WITH TEACHING-9/10-{90.0000000, 95.0000000}

9

6

9

14

18

25

29

35

31

30

10

% SATISFIED WITH TEACHING-10/10-{95.0000000, 100.0000000}

1

1

1

3

5

4

12

11

17

28

11

% SATISFIED OVERALL WITH COURSE-1/10-{37.5156766, 43.7641089}

4

2

1

0

0

0

0

0

1

0

12

% SATISFIED OVERALL WITH COURSE-2/10-{43.7641089, 50.0125413}

4

3

0

0

0

0

0

0

1

0

13

% SATISFIED OVERALL WITH COURSE-3/10-{50.0125413, 56.2609736}

6

5

2

1

1

0

1

0

0

0

14

% SATISFIED OVERALL WITH COURSE-4/10-{56.2609736, 62.5094060}

9

11

6

3

3

1

1

1

0

0

15

% SATISFIED OVERALL WITH COURSE-5/10-{62.5094060, 68.7578383}

13

13

7

8

4

5

1

3

0

0

16

% SATISFIED OVERALL WITH COURSE-6/10-{68.7578383, 75.0062706}

13

15

15

11

10

8

6

5

3

0

17

% SATISFIED OVERALL WITH COURSE-7/10-{75.0062706, 81.2547030}

23

19

24

20

20

18

13

8

7

2

18

% SATISFIED OVERALL WITH COURSE-8/10-{81.2547030, 87.5031353}

12

17

24

27

25

27

24

21

20

10

19

% SATISFIED OVERALL WITH COURSE-9/10-{87.5031353, 93.7515677}

7

10

15

21

25

27

33

36

35

38

20

% SATISFIED OVERALL WITH COURSE-10/10-{93.7515677, 100.0000000}

6

2

4

7

9

13

19

23

27

44

21

EXPENDITURE PER STUDENT (FTE)-1/10-{1.0000000, 1.9000000}

3

3

1

0

0

0

0

0

0

0

22

EXPENDITURE PER STUDENT (FTE)-2/10-{1.9000000, 2.8000000}

13

19

16

8

5

3

3

0

0

0

23

EXPENDITURE PER STUDENT (FTE)-3/10-{2.8000000, 3.7000000}

45

32

31

29

22

15

6

6

4

2

24

EXPENDITURE PER STUDENT (FTE)-4/10-{3.7000000, 4.6000000}

25

23

23

28

26

21

15

10

2

2

25

EXPENDITURE PER STUDENT (FTE)-5/10-{4.6000000, 5.5000000}

9

10

14

12

14

15

17

9

6

3

26

EXPENDITURE PER STUDENT (FTE)-6/10-{5.5000000, 6.4000000}

0

6

7

9

11

14

13

14

11

5

27

EXPENDITURE PER STUDENT (FTE)-7/10-{6.4000000, 7.3000000}

3

4

3

7

8

13

14

14

11

7

28

EXPENDITURE PER STUDENT (FTE)-8/10-{7.3000000, 8.2000000}

0

3

5

4

7

10

14

16

15

13

29

EXPENDITURE PER STUDENT (FTE)-9/10-{8.2000000, 9.1000000}

1

0

0

3

5

6

10

17

19

9

30

EXPENDITURE PER STUDENT (FTE)-10/10-{9.1000000, 10.0000000}

0

0

0

1

1

2

7

11

25

48

31

STUDENT:STAFF RATIO-1/10-{4.6000000, 9.2100000}

1

1

1

3

3

3

5

8

15

17

32

STUDENT:STAFF RATIO-2/10-{9.2100000, 13.8200000}

10

5

3

7

9

15

22

34

37

43

33

STUDENT:STAFF RATIO-3/10-{13.8200000, 18.4300000}

10

16

19

25

34

36

39

34

35

32

34

STUDENT:STAFF RATIO-4/10-{18.4300000, 23.0400000}

22

24

33

36

35

29

28

16

10

5

35

STUDENT:STAFF RATIO-5/10-{23.0400000, 27.6500000}

32

23

27

20

12

11

5

5

2

2

36

STUDENT:STAFF RATIO-6/10-{27.6500000, 32.2600000}

12

16

7

6

4

2

0

0

1

0

37

STUDENT:STAFF RATIO-7/10-{32.2600000, 36.8700000}

6

8

4

2

0

1

0

0

0

0

38

STUDENT:STAFF RATIO-8/10-{36.8700000, 41.4800000}

3

3

3

1

0

0

0

0

0

0

39

STUDENT:STAFF RATIO-9/10-{41.4800000, 46.0900000}

3

2

1

0

0

0

0

0

0

0

40

STUDENT:STAFF RATIO-10/10-{46.0900000, 50.7000000}

0

1

0

0

0

0

0

0

0

0

41

CAREER PROSPECTS-1/10-{16.0000000, 24.4000000}

3

3

2

1

0

0

0

0

0

0

42

CAREER PROSPECTS-2/10-{24.4000000, 32.8000000}

7

9

7

5

4

1

0

0

0

1

43

CAREER PROSPECTS-3/10-{32.8000000, 41.2000000}

17

10

15

15

12

5

4

0

1

1

44

CAREER PROSPECTS-4/10-{41.2000000, 49.6000000}

9

21

13

16

12

9

9

3

2

0

45

CAREER PROSPECTS-5/10-{49.6000000, 58.0000000}

12

13

12

17

14

21

15

9

4

1

46

CAREER PROSPECTS-6/10-{58.0000000, 66.4000000}

4

5

9

10

14

12

16

10

11

7

47

CAREER PROSPECTS-7/10-{66.4000000, 74.8000000}

1

2

4

8

6

13

14

22

22

12

48

CAREER PROSPECTS-8/10-{74.8000000, 83.2000000}

0

2

4

3

5

7

13

18

17

25

49

CAREER PROSPECTS-9/10-{83.2000000, 91.6000000}

3

1

0

1

3

2

6

9

11

16

50

CAREER PROSPECTS-10/10-{91.6000000, 100.0000000}

9

2

3

5

3

4

5

5

6

8

51

VALUE ADDED SCORE/10-1/10-{1.0000000, 1.9000000}

22

14

7

6

3

1

1

1

1

0

52

VALUE ADDED SCORE/10-2/10-{1.9000000, 2.8000000}

14

13

10

10

7

6

4

1

0

3

53

VALUE ADDED SCORE/10-3/10-{2.8000000, 3.7000000}

13

15

17

15

11

8

7

3

3

3

54

VALUE ADDED SCORE/10-4/10-{3.7000000, 4.6000000}

6

17

19

16

12

13

10

11

11

3

55

VALUE ADDED SCORE/10-5/10-{4.6000000, 5.5000000}

6

7

8

10

12

13

14

8

7

9

56

VALUE ADDED SCORE/10-6/10-{5.5000000, 6.4000000}

10

11

8

8

14

13

11

14

11

9

57

VALUE ADDED SCORE/10-7/10-{6.4000000, 7.3000000}

7

6

8

10

15

16

19

24

25

28

58

VALUE ADDED SCORE/10-8/10-{7.3000000, 8.2000000}

6

6

8

9

10

12

18

18

24

25

59

VALUE ADDED SCORE/10-9/10-{8.2000000, 9.1000000}

1

2

3

7

7

7

9

12

10

11

60

VALUE ADDED SCORE/10-10/10-{9.1000000, 10.0000000}

0

1

1

1

3

4

4

3

4

6

61

AVERAGE ENTRY TARIFF-1/10-{135.0000000, 181.3000000}

4

5

4

2

0

1

1

0

0

0

62

AVERAGE ENTRY TARIFF-2/10-{181.3000000, 227.6000000}

30

29

21

10

9

5

4

1

2

1

63

AVERAGE ENTRY TARIFF-3/10-{227.6000000, 273.9000000}

38

37

35

35

26

18

13

5

7

1

64

AVERAGE ENTRY TARIFF-4/10-{273.9000000, 320.2000000}

10

19

25

27

29

25

12

10

10

2

65

AVERAGE ENTRY TARIFF-5/10-{320.2000000, 366.5000000}

6

3

7

12

15

16

19

15

14

9

66

AVERAGE ENTRY TARIFF-6/10-{366.5000000, 412.8000000}

3

2

4

6

10

17

23

19

20

13

67

AVERAGE ENTRY TARIFF-7/10-{412.8000000, 459.1000000}

4

2

1

3

6

12

21

24

22

19

68

AVERAGE ENTRY TARIFF-8/10-{459.1000000, 505.4000000}

4

2

1

3

2

3

6

16

15

14

69

AVERAGE ENTRY TARIFF-9/10-{505.4000000, 551.7000000}

0

0

1

0

1

1

1

5

7

25

Таблица 12 - Матрица информативностей в модели модель INF1, мера информации по А.Харкевичу в миллибитах (фрагмент)

Код

Наименование показателя

1/10-{25.90, 33.31}

2/10-{33.31, 40.72}

3/10-{40.72, 48.13}

4/10-{48.13, 55.54}

5/10-{55.54, 62.95}

6/10-{62.95, 70.36}

7/10-{70.36, 77.77}

8/10-{77.77, 85.18}

9/10-{85.18, 92.59}

10/10-{92.59, 100.00}

1

% SATISFIED WITH TEACHING-1/10-{50.0000000, 55.0000000}

1876

1219

140

252

-55

2

% SATISFIED WITH TEACHING-2/10-{55.0000000, 60.0000000}

1930

1850

-718

-850

-579

3

% SATISFIED WITH TEACHING-3/10-{60.0000000, 65.0000000}

1009

1168

556

-59

-954

-272

-683

-254

-394

4

% SATISFIED WITH TEACHING-4/10-{65.0000000, 70.0000000}

922

1256

503

216

-493

-1064

-560

-709

-1186

5

% SATISFIED WITH TEACHING-5/10-{70.0000000, 75.0000000}

221

646

431

369

-63

14

-795

-856

6

% SATISFIED WITH TEACHING-6/10-{75.0000000, 80.0000000}

523

310

456

233

178

-224

-616

-692

-984

-1349

7

% SATISFIED WITH TEACHING-7/10-{80.0000000, 85.0000000}

77

-262

140

104

97

41

-225

29

-170

-536

8

% SATISFIED WITH TEACHING-8/10-{85.0000000, 90.0000000}

-832

-446

-144

-15

47

151

167

-156

22

-5

9

% SATISFIED WITH TEACHING-9/10-{90.0000000, 95.0000000}

-696

-1016

-665

-359

-93

161

269

438

355

347

10

% SATISFIED WITH TEACHING-10/10-{95.0000000, 100.0000000}

-1267

-1348

-1510

-690

-279

-379

432

420

782

1194

11

% SATISFIED OVERALL WITH COURSE-1/10-{37.5156766, 43.7641089}

1949

1291

453

-460

108

546

12

% SATISFIED OVERALL WITH COURSE-2/10-{43.7641089, 50.0125413}

1748

1516

-326

-661

-215

-688

345

13

% SATISFIED OVERALL WITH COURSE-3/10-{50.0125413, 56.2609736}

1325

1134

353

-168

38

-772

-606

-755

14

% SATISFIED OVERALL WITH COURSE-4/10-{56.2609736, 62.5094060}

905

1065

614

-83

-75

-615

-601

-598

15

% SATISFIED OVERALL WITH COURSE-5/10-{62.5094060, 68.7578383}

800

808

307

337

-119

-97

-1043

-463

16

% SATISFIED OVERALL WITH COURSE-6/10-{68.7578383, 75.0062706}

331

455

436

179

47

-106

-400

-427

-832

17

% SATISFIED OVERALL WITH COURSE-7/10-{75.0062706, 81.2547030}

287

96

297

145

155

32

-205

-638

-679

-1872

18

% SATISFIED OVERALL WITH COURSE-8/10-{81.2547030, 87.5031353}

-561

-236

39

123

57

103

4

-104

-98

-649

19

% SATISFIED OVERALL WITH COURSE-9/10-{87.5031353, 93.7515677}

-1021

-763

-446

-163

-11

65

209

288

285

365

20

% SATISFIED OVERALL WITH COURSE-10/10-{93.7515677, 100.0000000}

-661

-1558

-1055

-563

-306

-12

296

467

611

1034

21

EXPENDITURE PER STUDENT (FTE)-1/10-{1.0000000, 1.9000000}

1690

1610

870

-512

22

EXPENDITURE PER STUDENT (FTE)-2/10-{1.9000000, 2.8000000}

639

927

803

228

-204

-575

-715

23

EXPENDITURE PER STUDENT (FTE)-3/10-{2.8000000, 3.7000000}

743

450

416

335

111

-173

-976

-906

-1264

-1967

24

EXPENDITURE PER STUDENT (FTE)-4/10-{3.7000000, 4.6000000}

199

143

132

269

210

30

-239

-550

-2071

-2011

25

EXPENDITURE PER STUDENT (FTE)-5/10-{4.6000000, 5.5000000}

-292

-187

87

-70

94

147

244

-257

-651

-1057

26

EXPENDITURE PER STUDENT (FTE)-6/10-{5.5000000, 6.4000000}

-445

-368

-149

81

260

143

234

94

-552

27

EXPENDITURE PER STUDENT (FTE)-7/10-{6.4000000, 7.3000000}

-933

-675

-936

-227

-83

262

344

370

201

-205

28

EXPENDITURE PER STUDENT (FTE)-8/10-{7.3000000, 8.2000000}

-783

-488

-761

-129

87

405

496

500

363

29

EXPENDITURE PER STUDENT (FTE)-9/10-{8.2000000, 9.1000000}

-1208

-631

-257

-46

352

830

918

364

30

EXPENDITURE PER STUDENT (FTE)-10/10-{9.1000000, 10.0000000}

-2308

-1727

-1619

-838

145

538

1225

1778

31

STUDENT:STAFF RATIO-1/10-{4.6000000, 9.2100000}

-951

-1031

-954

-446

-265

-334

56

485

971

1119

32

STUDENT:STAFF RATIO-2/10-{9.2100000, 13.8200000}

-331

-989

-1280

-640

-424

-34

269

650

751

881

33

STUDENT:STAFF RATIO-3/10-{13.8200000, 18.4300000}

-891

-522

-362

-160

92

143

197

91

135

70

34

STUDENT:STAFF RATIO-4/10-{18.4300000, 23.0400000}

-192

-120

143

199

191

35

-25

-460

-865

-1382

35

STUDENT:STAFF RATIO-5/10-{23.0400000, 27.6500000}

736

441

588

307

-67

-152

-884

-767

-1750

-1689

36

STUDENT:STAFF RATIO-6/10-{27.6500000, 32.2600000}

886

1144

491

273

-18

-634

-2200

-1772

-1334

37

STUDENT:STAFF RATIO-7/10-{32.2600000, 36.8700000}

1134

1392

739

-21

-1068

-386

-1375

38

STUDENT:STAFF RATIO-8/10-{36.8700000, 41.4800000}

1113

1219

1208

-43

-1089

39

STUDENT:STAFF RATIO-9/10-{41.4800000, 46.0900000}

1876

1556

718

-221

40

STUDENT:STAFF RATIO-10/10-{46.0900000, 50.7000000}

2374

41

CAREER PROSPECTS-1/10-{16.0000000, 24.4000000}

1156

1261

761

426

-469

42

CAREER PROSPECTS-2/10-{24.4000000, 32.8000000}

681

881

589

383

252

-1025

-1087

43

CAREER PROSPECTS-3/10-{32.8000000, 41.2000000}

596

125

462

458

270

-457

-629

-1961

-1901

44

CAREER PROSPECTS-4/10-{41.2000000, 49.6000000}

-153

584

182

339

113

-180

-138

-949

-1217

45

CAREER PROSPECTS-5/10-{49.6000000, 58.0000000}

-133

-70

-137

132

13

354

56

-338

-1012

-2293

46

CAREER PROSPECTS-6/10-{58.0000000, 66.4000000}

-772

-724

-197

-107

166

69

298

-76

25

-381

47

CAREER PROSPECTS-7/10-{66.4000000, 74.8000000}

-1602

-1344

-842

-261

-450

217

252

645

657

170

48

CAREER PROSPECTS-8/10-{74.8000000, 83.2000000}

-1158

-576

-991

-326

-102

345

645

634

963

49

CAREER PROSPECTS-9/10-{83.2000000, 91.6000000}

-253

-1488

-1989

-1169

-256

-432

269

698

882

1196

50

CAREER PROSPECTS-10/10-{91.6000000, 100.0000000}

608

-628

-213

118

-311

-95

71

108

249

519

51

VALUE ADDED SCORE/10-1/10-{1.0000000, 1.9000000}

1451

1073

532

349

-360

-1410

-1582

-1153

-1293

52

VALUE ADDED SCORE/10-2/10-{1.9000000, 2.8000000}

637

557

337

320

-45

-87

-379

-1291

-793

53

VALUE ADDED SCORE/10-3/10-{2.8000000, 3.7000000}

222

310

423

310

59

-166

-314

-912

-940

-1120

54

VALUE ADDED SCORE/10-4/10-{3.7000000, 4.6000000}

-648

221

331

182

-59

1

-219

-116

-153

-1075

55

VALUE ADDED SCORE/10-5/10-{4.6000000, 5.5000000}

-481

-376

-182

-56

136

167

200

-201

-391

-145

56

VALUE ADDED SCORE/10-6/10-{5.5000000, 6.4000000}

-63

-32

-267

-264

195

104

-52

196

28

-192

57

VALUE ADDED SCORE/10-7/10-{6.4000000, 7.3000000}

-595

-762

-557

-355

3

35

163

365

439

551

58

VALUE ADDED SCORE/10-8/10-{7.3000000, 8.2000000}

-630

-612

-331

-340

-184

-29

273

275

562

594

59

VALUE ADDED SCORE/10-9/10-{8.2000000, 9.1000000}

-1300

-1043

-628

-17

-11

-44

180

423

283

410

60

VALUE ADDED SCORE/10-10/10-{9.1000000, 10.0000000}

-1130

-1053

-624

-26

264

373

96

382

723

61

AVERAGE ENTRY TARIFF-1/10-{135.0000000, 181.3000000}

894

943

818

316

-1068

-200

-797

62

AVERAGE ENTRY TARIFF-2/10-{181.3000000, 227.6000000}

978

936

651

42

-70

-504

-776

-1569

-1131

-1986

63

AVERAGE ENTRY TARIFF-3/10-{227.6000000, 273.9000000}

444

426

374

360

121

-216

-471

-1198

-1025

-2697

64

AVERAGE ENTRY TARIFF-4/10-{273.9000000, 320.2000000}

-576

-49

185

196

290

161

-477

-585

-614

-2046

65

AVERAGE ENTRY TARIFF-5/10-{320.2000000, 366.5000000}

-668

-1326

-528

-73

127

173

289

86

51

-252

66

AVERAGE ENTRY TARIFF-6/10-{366.5000000, 412.8000000}

-1171

-1491

-988

-594

-183

259

528

357

447

81

67

AVERAGE ENTRY TARIFF-7/10-{412.8000000, 459.1000000}

-690

-1348

-2186

-1028

-484

100

569

695

654

544

68

AVERAGE ENTRY TARIFF-8/10-{459.1000000, 505.4000000}

-134

-792

-1053

-545

-676

-371

133

913

917

834

69

AVERAGE ENTRY TARIFF-9/10-{505.4000000, 551.7000000}

-1002

-1914

-1130

-448

-1197

652

923

1958

70

AVERAGE ENTRY TARIFF-10/10-{551.7000000, 598.0000000}

374

2494

71

% SATISFIED WITH ASSESSMENT-1/10-{18.8755020, 26.6479518}

2454

1796

Достоверность этих моделей различна (рисунок 10):

Рисунок 10. Экранная форма отчета по достоверности моделей

Для количественной оценки достоверности моделей применена метрика, предложенная автором и по смыслу сходная с известным F-критерием (рисунок 11):

Рисунок 11. Экранная форма пояснения по достоверности моделей

Обращает на себя внимание, что системно-когнитивные модели (INF1 - INF7) имеют значительно более высокую среднюю достоверность, чем статистические. Такая картина по опыту автора наблюдается в подавляющем большинстве приложений. В этом и состоит обоснование целесообразности применения системно-когнитивных (интеллектуальных) моделей.

3.6 Наглядное отображение подматриц системно-когнитивных моделей университетского рейтинга Гардиан в виде когнитивных функций

Применительно к задаче, рассматриваемой в данной работе, когнитивная функция показывает в наглядной графической форме, какое количество информации содержится в различных значениях показателей вузов о том, что у них будет определенный рейтинг по напылению подготовки и общий рейтинг Гардиан.

Когнитивным функциям посвящено много работ автора См., например: http://www.twirpx.com/file/775236/ , но наиболее новой и обобщающей из них является работа [9]. Поэтому здесь не будем останавливаться на описании того, что представляют собой когнитивные функции в АСК-анализе.

Отметим, что при построении средневзвешенных трендов применены математические методы, предложенные и описанные в работах [10, 11, 12], в частности применен метод взвешенных наименьших квадратов, модифицированный путем использования в качестве весовых коэффициентов количества информации в наблюдениях.

На рисунке 12 приведены визуализации некоторых когнитивных функций данного приложения для модели INF1:

Рисунок 12. Визуализация когнитивных функций зависимостей рейтинга Гардиан от значений показателей в системно-когнитивной модели INF1

Из приведенных когнитивных функций видно, что увеличение или уменьшение значений показателей вузов влияет на рейтинг Гардиан по направлению подготовки и общий рейтинг Гардиан, примерно пропорционально или обратно пропорционально. Отметим, что об этом можно говорить потому, что в системно-когнитивных моделях используются интервальные числовые и порядковые измерительные шкалы.

Это подтверждает разумность и корректность построения университетского рейтинга Гардиан его разработчиками.

3.7 Интегральный критерий и решение задачи оценки рейтинга вуза в системно-когнитивной модели университетского рейтинга Гардиан

Из модели INF1 мы видим, какое количество информации содержится в том или ином значении каждого показателя о том, что вуз с этим значением показателя имеет тот или иной рейтинг по направлению подготовки и общий рейтинг Гардиан.

Но если нам известно не одно, а несколько значений показателей вузов, то как посчитать их общий вклад в сходство с теми или иными классами? Для этого в системе «Эйдос» используется 2 аддитивных интегральных критерия: «Сумма знаний» и «Семантический резонанс знаний».

Интегральный критерий «Семантический резонанс знаний» представляет собой суммарное количество знаний, содержащееся в системе факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.

Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний, представленных в help режима 3.3:

В выражении круглыми скобками обозначено скалярное произведение. В координатной форме это выражение имеет вид:

,

где: M - количество градаций описательных шкал (признаков);

- вектор состояния j-го класса;

- вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив-локатор), т.е.:

В текущей версии системы «Эйдос-Х++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта с интенсивностью n, т.е. представлен n раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» - один раз).

Интегральный критерий «Семантический резонанс знаний» представляет собой нормированное суммарное количество знаний, содержащееся в системе факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.

Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний, представленных в help режима 3.3 и имеет вид:

где:

M - количество градаций описательных шкал (признаков);

- средняя информативность по вектору класса;

- среднее по вектору объекта;

- среднеквадратичное отклонение частных критериев знаний вектора класса;

- среднеквадратичное отклонение по вектору распознаваемого объекта.

- вектор состояния j-го класса;

- вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив-локатор), т.е.:

В текущей версии системы «Эйдос-Х++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта с интенсивностью n, т.е. представлен n раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» - один раз).

Приведенное выражение для интегрального критерия «Семантический резонанс знаний» получается непосредственно из выражения для критерия «Сумма знаний» после замены координат перемножаемых векторов их стандартизированными значениями:

Свое наименование интегральный критерий сходства «Семантический резонанс знаний» получил потому, что по своей математической форме является корреляцией двух векторов: состояния j-го класса и состояния распознаваемого объекта.

Пример решения задачи идентификации для вузов рейтинга Гардиан по направлению подготовки и общего рейтинга Гардиан приведен на рисунке 12:

Рисунок 12. Экранная форма с результатами идентификации рейтингаГардиан по направлению подготовки и общего рейтинга Гардиан

3.8 Исследование многокритериальной системно-когнитивной модели университетского рейтинга Гардиан, учитывающей направления подготовки

3.8.1 Автоматизированный количественный SWOT-анализ университетского рейтинга Гардиан

В системе «Эйдос» реализован Автоматизированный количественный SWOT-анализ [13]. Его можно применить для исследования того, какие значения показателей способствуют, а какие препятствуют присвоению вузу тех или иных рейтингов Гардиан.

Например, высокому общему рейтингу Гардиан способствуют и препятствуют значения показателей, приведенные на SWOT-диаграмме (рисунок 13), соответствующей SWOT-матрице (рисунок 14) и нелокальном нейроне (рисунок 15):

Рисунок 13. SWOT-диаграмма высокого рейтинга Гардиан

Рисунок 14. SWOT-матрица высокого рейтинга Гардиан

Рисунок 15. Нелокальный нейрон высокого рейтинга Гардиан

3.8.2 Информационные портреты классов и значений показателей университетского рейтинга Гардиан

Информационный портрет класса - это список факторов, ранжированных в порядке убывания силы их влияния на переход объекта управления в состояние, соответствующее данному классу. Информационный портрет класса отражает систему его детерминации. Генерация информационного портрета класса представляет собой решение обратной задачи прогнозирования, т.к. при прогнозировании по системе факторов определяется спектр наиболее вероятных будущих состояний объекта управления, в которые он может перейти под влиянием данной системы факторов, а в информационном портрете мы наоборот, по заданному будущему состоянию объекта управления определяем систему факторов, детерминирующих это состояние, т.е. вызывающих переход объекта управления в это состояние. В начале информационного портрета класса идут факторы, оказывающие положительное влияние на переход объекта управления в заданное состояние, затем факторы, не оказывающие на это существенного влияния, и далее - факторы, препятствующие переходу объекта управления в это состояние (в порядке возрастания силы препятствования). Информационные портреты классов могут быть от отфильтрованы по диапазону факторов, т.е. мы можем отобразить влияние на переход объекта управления в данное состояние не всех отраженных в модели факторов, а только тех, коды которых попадают в определенный диапазон, например, относящиеся к определенным описательным шкалам.

Пример информационного портрета класса приведен на рисунке 16:

Рисунок 16. Экранная форма с информационным портретом класса: «Наивысший общий рейтинг Гардиан»

Информационный (семантический) портрет фактора - это список классов, ранжированный в порядке убывания силы влияния данного фактора на переход объекта управления в состояния, соответствующие данным классам. Информационный портрет фактора называется также его семантическим портретом, т.к. в соответствии с концепцией смысла системно-когнитивного анализа, являющейся обобщением концепции смысла Шенка-Абельсона, смысл фактора состоит в том, какие будущие состояния объекта управления он детерминирует. Сначала в этом списке идут состояния объекта управления, на переход в которые данный фактор оказывает наибольшее влияние, затем состояния, на которые данный фактор не оказывает существенного влияния, и далее состояния - переходу в которые данный фактор препятствует. Информационные портреты факторов могут быть от отфильтрованы по диапазону классов, т.е. мы можем отобразить влияние данного фактора на переход объекта управления не во все возможные будущие состояния, а только в состояния, коды которых попадают в определенный диапазон, например, относящиеся к определенным классификационным шкалам.

Пример информационного портрета значения фактора (показателя) приведен на рисунке 17:

Рисунок 17. Экранная форма с информационным портретом значения показателя с установленным фильтром по наименованиям вузов

3.8.3 Кластерно-конструктивный анализ университетского рейтинга Гардиан

Кластерно-конструктивный анализ - это новый математический метод анализа знаний, реализованный в АСК-анализе и системе «Эйдос» [14], обеспечивающий:

- выявление классов, наиболее сходных по системе их детерминации и объединение их в кластеры;

- выявление кластеров классов, наиболее сильно отличающиеся по системе их детерминации и построение из них полюсов конструктов классов, при этом остальные кластеры включаются в конструкты в качестве промежуточных между полюсами;

- выявление факторов, наиболее сходных по детерминируемым ими классам и объединение их в кластеры;

- выявление кластеров факторов, наиболее сильно отличающиеся по детерминируемым ими классам и построение из них полюсов конструктов факторов, при этом остальные кластеры включаются в конструкты в качестве промежуточных между полюсами.

Состояния объекта управления, соответствующие классам, включенным в один кластер, могут быть достигнуты одновременно, т.е. являются совместимыми (коалиционными) по детерминирующим их факторам. Состояния объекта управления, соответствующие классам, образующим полюса конструкта, не могут быть достигнуты одновременно, т.е. являются противоположными по детерминирующим их факторам (антагонистическими).

Факторы, включенные в один кластер, оказывают сходное влияние на поведение объекта управления и могут, при необходимости, быть использованы для замены друг друга. Факторы, образующие полюса конструкта, оказывают противоположное влияние на поведение объекта управления.

Кластерно-конструктивный анализ классов позволяет сравнить их по сходству системы детерминации и отобразить эту информацию в наглядной графической форме семантической сети классов.

Кластерно-конструктивный анализ факторов позволяет сравнить факторы по сходству их влияния на переход объекта в будущие состояния и отобразить эту информацию в наглядной графической форме семантической сети факторов.

Примеры когнитивных диаграмм, отражающих некоторые результаты кластерно-конструктивного анализа модели университетского рейтинга Гардиан, приведены на рисунках 18, 19, 20:

Рисунок 18. Пример конструкта класса университетского рейтинга Гардиан

Рисунок 19. Пример конструкта класса университетского рейтинга Гардиан

Рисунок 20. Пример конструкта значения показателя университетского рейтинга Гардиан

Как видно из приведенных когнитивных диаграмм, все классы и значения показателей являются взаимозависимыми, что исключает применение факторного анализа, как метода моделирования линейных систем.


Подобные документы

  • Базовые основы разработки программного обеспечения: его классический жизненный цикл, макетирование, стратегии конструирования, модели качества процессов разработки. Применение параллельных алгоритмов и CASE-системы, критерии оценки их эффективности.

    курсовая работа [179,5 K], добавлен 07.04.2015

  • Информатика как единство науки и технологии, этапы ее развития и инструментарий. Классификация видов информационных технологий и их применение. Модели информационных процессов и структура программных продуктов. Объектно-ориентированное проектирование.

    курс лекций [1,6 M], добавлен 12.12.2011

  • Применение вычислительной техники в учебном процессе. Разработка математической модели. Выбор программного обеспечения. Определение требований к техническим средствам. Формы представления входных, выходных данных. Расчет технико-экономических показателей.

    курсовая работа [1,3 M], добавлен 25.12.2013

  • Распределенная обработка данных. Двухуровневые модели распределения основных функций. Применение модели сервера приложений и баз данных. Основные пути распараллеливания запросов. Общая характеристика программных средств подготовки табличных документов.

    отчет по практике [52,6 K], добавлен 30.09.2009

  • Создание математической модели системы массового обслуживания на примере банка. Разработка имитационной модели на языке программирования С++. Блок-схема программы, перевод модели на язык программирования. Верификация и валидация имитационной модели.

    курсовая работа [630,5 K], добавлен 01.06.2015

  • Особенности создания интеллектуальной справочной системы по логике, ее технико-экономическое обоснование. Онтология, содержательная декомпозиция, исходные тексты базы знаний, ее верификация и отладка. Тестирование интеллектуальной справочной системы.

    курсовая работа [3,4 M], добавлен 14.07.2012

  • Разработка самообучающейся интеллектуальной информационной системы для анализа кредитоспособности заемщика и оценки кредитных рисков на основе подхода иммунокомпьютинга. Применение процедур кластеризации, классификации и формирования оценок рисков.

    курсовая работа [822,3 K], добавлен 09.06.2012

  • Предварительный анализ заданного временного ряда на предмет наличия тренда. Обоснование наличия сезонности по графическому представлению одноименных элементов ряда разных лет. Применение модели для прогноза. Выбор типа остатков и корректировка модели.

    контрольная работа [218,8 K], добавлен 12.09.2011

  • Сравнительный анализ технологий тестирования. Разработка программного модуля "Интеллектуальная обучающая система для широкого перечня курсов". Обоснование необходимости и важности этапа отладки в процессе разработки данного программного обеспечения.

    дипломная работа [101,2 K], добавлен 17.06.2011

  • Проектирование и анализ логической модели программного обеспечения "Автоматизированный учет радиоточек передающего центра". Ее преобразование в физическую модель при помощи базы данных MS Access. Расчет экономической эффективности разработки ПО.

    дипломная работа [3,1 M], добавлен 09.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.