Теория искусственного интеллекта

Иерархия основных видов мышления от простого к сложному. Рассмотрение основных мыслительных операций и форм. Попытки построить машины, способные к разумному поведению. История разработки кибернетических программ на основе человеческого мышления.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 18.02.2015
Размер файла 102,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Успехи механики XIX в. стимулировали еще более честолюбивые замыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж задумал, правда, так и не завершив, сложный цифровой калькулятор, который он назвал Аналитической машиной; как утверждал Бэббидж, его машина в принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 г., директор одного из испанских технических институтов Леонардо Торрес-и-Кеведо действительно из готовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также хорошо, как и человек.

*Электронный подход.

Однако только после второй мировой войны появились устройства, казалось бы, подходящие для достижения заветной цели - моделирования разумного поведения; это были электронные цифровые вычислительные машины. "Электронный мозг", как тогда восторженно называли компьютер, поразил в 1952 г. телезрителей США, точно предсказав результаты президентских выборов за несколько часов до получения окончательных данных. Этот "подвиг" компьютера лишь подтвердил вывод, к которому в то время пришли многие ученые: наступит тот день, когда автоматические вычислители, столь быстро, неутомимо и безошибочно выполняющие автоматические действия, смогут имитировать невычислительные процессы, свойственные человеческому мышлению, в том числе восприятие и обучение, распознавание образов, понимание повседневной речи и письма, принятие решений в неопределенных ситуациях, когда известны не все факты. Таким образом "заочно" формулировался своего рода "социальный заказ" для психологии, стимулируя различные отрасли науки.

Многие изобретатели компьютеров и первые программисты развлекались составляя программы для отнюдь не технических занятий, как сочинение музыки, решение головоломок и игры, на первом месте здесь оказались шашки и шахматы. Некоторые романтически настроенные программисты даже заставляли свои машины писать любовные письма.

К концу 50-х годов все эти увлечения выделились в новую более или менее самостоятельную ветвь информатики, получившую название "искусственный интеллект". Исследования в области ИИ, первоначально сосредоточенные в нескольких университетских центрах США - Массачусетском технологическом институте, Технологическом институте Карнеги в Питтсбурге, Станфордском университете, - ныне ведутся во многих других университетах и корпорациях США и других стран. В общем исследователей ИИ, работающих над созданием мыслящих машин, можно разделить на две группы. Одних интересует чистая наука и для них компьютер - лишь инструмент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления. Интересы другой группы лежат в области техники: они стремятся расширить сферу применения компьютеров и облегчить пользование ими. Многие представители второй группы мало заботятся о выяснении механизма мышления - они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц и самолетостроения.

В настоящее время, однако, обнаружилось, что как научные так и технические поиски столкнулись с несоизмеримо более серьезными трудностями, чем представлялось первым энтузиастам. На первых порах многие пионеры ИИ верили, что через какой-нибудь десяток лет машины обретут высочайшие человеческие таланты. Предполагалось, что преодолев период "электронного детства" и обучившись в библиотеках всего мира, хитроумные компьютеры, благодаря быстродействию точности и безотказной памяти постепенно превзойдут своих создателей-людей. Сейчас мало кто говорит об этом, а если и говорит, то отнюдь не считает, что подобные чудеса не за горами.

На протяжении всей своей короткой истории исследователи в области ИИ всегда находились на переднем крае информатики. Многие ныне обычные разработки, в том числе усовершенствованные системы программирования, текстовые редакторы и программы распознавания образов, в значительной мере рассматриваются на работах по ИИ. Короче говоря, теории, новые идеи, и разработки ИИ неизменно привлекают внимание тех, кто стремится расширить области применения и возможности компьютеров, сделать их более "дружелюбными" то есть более похожими на разумных помощников и активных советчиков, чем те педантичные и туповатые электронные рабы, какими они всегда были.

Несмотря на многообещающие перспективы, ни одну из разработанных до сих пор программ ИИ нельзя назвать "разумной" в обычном понимании этого слова. Это объясняется тем, что все они узко специализированы; самые сложные экспертные системы по своим возможностям скорее напоминают дрессированных или механических кукол, нежели человека с его гибким умом и широким кругозором. Даже среди исследователей ИИ теперь многие сомневаются, что большинство подобных изделий принесет существенную пользу. Немало критиков ИИ считают, что такого рода ограничения вообще непреодолимы.

К числу таких скептиков относится и Хьюберт Дрейфус, профессор философии Калифорнийского университета в Беркли. С его точки зрения, истинный разум невозможно отделить от его человеческой основы, заключенной в человеческом организме. Цифровой компьютер не человек - у компьютера нет ни тела, ни эмоций, ни потребностей. Он лишен социальной ориентации, которая приобретается жизнью в обществе, а именно она делает поведение разумным. Я не хочу сказать, что компьютеры не могут быть разумными. Но цифровые компьютеры, запрограммированные фактами и правилами из нашей, человеческой, жизни, действительно не могут стать разумными. Поэтому ИИ в том виде, как мы его представляем, невозможен".Но как говорится сколько людей-столько и мнений.

*Кибернетический подход.

Попытки построить машины, способные к разумному поведению, в значительной мере вдохновлены идеями профессора МТИ Норберта Винера, одной из выдающихся личностей в интеллектуальной истории Америки. Помимо математики он обладал широкими познаниями в других областях, включая нейропсихологию, медицину, физику и электронику.

Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя конкретно отнести к той или иной конкретной дисциплины. Они лежат где-то на стыке наук, поэтому к ним обычно не подходят столь строго. "Если затруднения в решении какой-либо проблемы психологии имеют математический характер, пояснял он, - то десять несведущих в математике психологов продвинуться не дальше одного столь же несведущего".

Винеру и его сотруднику Джулиану Бигелоу принадлежит разработка принципа "обратной связи", который был успешно применен при разработке нового оружия с радиолокационным наведением. Принцип обратной связи заключается в использовании информации, поступающей из окружающего мира, для изменения поведения машины. В основу разработанных Винером и Бигелоу систем наведения были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных сигналов они соответственно изменяли наводку орудий, то есть - заметив попытку отклонения самолета от курса, они тотчас рассчитывали его дальнейший путь и направляли орудия так, чтобы траектории снарядов и самолетов пересеклись.

В дальнейшем Винер разработал на принципе обратной связи теории как машинного так и человеческого разума. Он доказывал, что именно благодаря обратной связи все живое приспосабливается к окружающей среде и добивается своих целей. "Все машины, претендующие на "разумность",- писал он, - должны обладать способностью преследовать определенные цели и уметь обучаться". Созданной им науке Винер дает название кибернетика, что в переводе с греческого означает рулевой.

Следует отметить, что принцип "обратной связи", введенный Винером был в какой-то степени предугадан Сеченовым в явлении "центрального торможения" в "Рефлексах головного мозга" (1863 г.) и рассматривался как механизм регуляции деятельности нервной системы, и который лег в основу многих моделей произвольного поведения в отечественной психологии.

*Нейронный подход.

К этому времени и другие ученые стали понимать, что создателям вычислительных машин есть чему поучиться у биологии. Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалох, обладавший как и Винер философским складом ума и широким кругом интересов. В 1942 г. Маккалох, участвуя в научной конференции в Нью-йорке, услышал доклад одного из сотрудников Винера о механизмах обратной связи в биологии. Высказанные в докладе идеи перекликались с собственными идеями Маккалоха относительно работы головного мозга. В течении следующего года Маккалох в соавторстве со своим 18-летним протеже, блестящим математиком Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.

Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему), проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, - рабочий инструмент одной из систем математической логики. Английский математик XIX века Джордж Буль, предложивший эту остроумную систему, показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию а нуль - ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX в. пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных "нейронов" и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта.

Теории Маккаллоха-Питтса в сочетании с книгами Винера вызвали огромный интерес к разумным машинам. В 40-60-е годы все больше кибернетиков из университетов и частных фирм запирались в лабораториях и мастерских, напряженно работая над теорией функционирования мозга и методично припаивая электронные компоненты моделей нейронов.

Из этого кибернетического, или нейромодельного, подхода к машинному разуму скоро сформировался так называемый "восходящий метод" - движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании "адаптивной сети", "самоорганизующейся системы" или "обучающейся машины" - все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с помощью обратной связи изменять свое поведение в полном соответствии с господствовавшей в те времена бихевиористской школой психологии, т.е. вести себя так же как живые организмы. Однако отнюдь не во всех случаях возможна аналогия с живыми организмами. Как однажды заметили Уоррен Маккаллох и его сотрудник Майкл Арбиб, "если по весне вам захотелось обзавестись возлюбленной, не стоит брать амебу и ждать пока она эволюционирует".

Но дело здесь не только во времени. Основной трудностью, с которой столкнулся "восходящий метод" на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов. Даже самые совершенные кибернетические модели содержали лишь несколько сотен нейронов. Столь ограниченные возможности обескуражили многих исследователей того периода.

*Появление перцептрона.

Одним из тех, кого ничуть не испугали трудности был Фрэнк Розенблат, труды которого,казалось,отвечали самым заметным устремлениям кибернетиков. В середине 1958 г. им была предложена модель электронного устройства, названного им перцептроном, которое должно было бы имитировать процессы человеческого мышления. Перцептрон должен был передавать сигналы от "глаза", составленного из фотоэлементов, в блоки электромеханических ячеек памяти, которые оценивали относительную величину электрических сигналов. Эти ячейки соединялись между собой случайным образом в соответствии с господствующей тогда теорией, согласно которой мозг воспринимает новую информацию и реагирует на нее через систему случайных связей между нейронами. Два года спустя была продемонстрирована первая действующая машина "Марк-1", которая могла научится распознавать некоторые из букв, написанных на карточках, которые подносили к его "глазам", напоминающие кинокамеры. Перцептрон Розенблата оказался наивысшим достижением "восходящего", или нейромодельного метода создания искусственого интеллекта. Чтобы научить перцептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая элементарная разновидность автономной работы или "самопрограммирования". При распознании той или иной буквы одни ее элементы или группы элементов оказываются гораздо более существеными, чем другие. Перцептрон мог научаться выделять такие характерные особенности буквы полуавтоматически, своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности перцептрона были ограниченными: машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения.

Ведущие представители так называемого "нисходящего метода" специализировались, в отличие от представителей "восходящего метода", в составлении для цифровых компьютеров общего назначения программ решения задач, требующих от людей значительного интеллекта, например для игры в шахматы или поиска математических доказательств. К числу защитников "нисходящего метода" относились Марвин Минский и Сеймур Пейперт, профессора Массачусетского технологического института. Минский начал свою карьеру исследователя ИИ сторонником "восходящего метода" и в 1951 г. построил обучающуюся сеть на на вакуумных электронных лампах. Однако вскоре к к моменту создания перцептрона он перешел в противоположный лагерь. В соавторстве с южно-африканским математиком Пейпертом, с которым его познакомил Маккаллох, он написал книгу "Перцептроны", где математически доказывалось, что перцептроны, подобные розенблатовским, принципиально не в состоянии выполнять многие из тех функций, которые предсказывал им Розенблат. Минский утверждал, что, не говоря о роли работающих под диктовку машинисток, подвижных роботов или машин, способных читать, слушать и понимать прочитанное или услышанное, перцептроны никогда не обретут даже умения распознавать предмет частично заслоненный другим. Глядя на торчащий из-за кресла кошачий хвост, подобная машина никогда не сможет понять, что она видит.

Нельзя сказать, что появившаяся в 1969 г. эта критическая работа покончила с кибернетикой. Она лишь переместила интерес аспирантов и субсидии правительственных организаций США, традиционно финансирующих исследования по ИИ, на другое направление исследований - "нисходящий метод".

Интерес к кибернетике в последнее время возродился, так как сторонники "нисходящего метода" столкнулись со столь же неодолимыми трудностями. Сам Минский публично выразил сожаление, что его выступление нанесло урон концепции перцептронов, заявив, что, согласно его теперешним представлениям, для реального прорыва вперед в создании разумных машин потребуется устройство, во многом похожее на перцептрон. Но в основном ИИ стал синонимом нисходящего подхода, который выражался в составлении все более сложных программ для компьютеров, моделирующих сложную деятельность человеческого мозга.

История создания умных машин берет начало 40-х гг XX века,после создания первых ЭВМ «искусственный интеллект» начал приобретать черты самостоятельной науки. Термин «искусственный интеллект» -- ИИ -- (AI -- artificial intelligence) был предложен в 1956 г. на семинаре с аналогичным названием в Дартсмутском колледже (США). Семинар был посвящен разработке методов решения логических, а не вычислительных задач. В английском языке данное словосочетание не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть английский аналог: intellect. Вскоре после признания искусственного интеллекта отдельной областью науки произошло разделение его на два направления: нейрокибернетика и «кибернетика черного ящика». Эти направления развиваются практически независимо, существенно различаясь как в методологии, так и в технологии. И только в настоящее время стали заметны тенденции к объединению этих частей вновь в единое целое.

Первые нейросети были созданы в 1956-65 гг. Это были не очень удачные попытки создать системы, моделирующие человеческий глаз и его взаимодействие с мозгом. Постепенно в 1970-80 гг. количество работ по этому направлению искусственного интеллекта стало снижаться. Слишком неутешительны были первые результаты. Авторы объясняли неудачи малой памятью и низким быстродействием существующих в то время компьютеров.

Однако в Японии в рамках проекта «ЭВМ V поколения» был создан первый нейрокомпьютер, или компьютер VI поколения. К этому времени ограничения по памяти и быстродействию были практически сняты. Появились транспьютеры -- параллельные компьютеры с большим количеством процессоров.

Транспьютерная технология -- это только один из десятка новых подходов к аппаратной реализации нейросетей, которые моделируют иерархическую структуру мозга человека.

Сегодня можно выделить три подхода к созданию нейросетей: аппаратный (создание специальных компьютеров, нейрочипов, плат расширения, наборов микросхем); программный (создание программ и инструментариев, рассчитанных на высокопроизводительные компьютеры; сети создаются в памяти компьютера, всю работу выполняют его собственные процессоры); гибридный (комбинации первых двух).

В 1956-63 гг. велись интенсивные поиски моделей и алгоритмов человеческого мышления и разработка первых программ на их основе. Представители существующих гуманитарных наук -- философы, психологи, лингвисты -- ни тогда, ни сейчас не в состоянии были предложить такие алгоритмы. Тогда кибернетики начали создавать собственные модели. Так последовательно были созданы и опробованы различные подходы.

1. В конце 50-х гг. родилась модель лабиринтного поиска. Этот подход представляет задачу как некоторое пространство состояний в форме графа, и в этом графе проводится поиск оптимального пути от входных данных к результирующим. Была проделана большая работа по разработке этой модели, но для решения практических задач эта идея не нашла широкого применения. кибернетический мышление программа мыслительный

2. Начало 60-х -- это эпоха эвристического программирования. Эвристика -- правило, теоретически не обоснованное, которое позволяет сократить количество переборов в пространстве поиска. Эвристическое программирование -- разработка стратегии действий на основе известных, заранее заданных эвристик.

3. В 1963-70 гг. к решению задач стали подключать методы математической логики. Робинсон разработал метод резолюций, который позволяет автоматически доказывать теоремы при наличии набора исходных аксиом. Примерно в это же время выдающийся отечественный математик Ю.С.Маслов предложил так называемый обратный вывод, впоследствии названный его именем, решающий аналогичную задачу другим способом. На основе метода резолюций француз Альбер Кольмероэ в 1973 г. создает язык логического программирования ПРОЛОГ. Большой резонанс имела программа «Логик-теоретик», созданная Ньуэллом, Саймоном и Шоу, которая доказывала школьные теоремы. Однако большинство реальных задач не сводится к набору аксиом, и человек, решая производственные задачи, не использует классическую логику, поэтому логические модели при всех своих преимуществах имеют существенные ограничения по классам решаемых задач

4. История искуственного интеллекта полна драматических событий, одним из которых стал в 1973 г. так называемый «доклад Лайтхилла», который был подготовлен в Великобритании по заказу Британского совета научных исследований. Известный математик Лайтхилл, никак с искусственным интеллектом профессионально не связанный, подготовил обзор состояния дел в этой области. В докладе были признаны определенные достижения, однако их уровень определялся как разочаровывающий, и общая оценка была отрицательной с позиций практической значимости. Этот отчет отбросил европейских исследователей примерно на пять лет назад, так как финансирование работ существенно сократилось.

5. Примерно в это же время существенный прорыв в развитии практических приложений искусственного интеллекта произошел в США, когда в середине 70-х гг. на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. В США появились первые коммерческие системы, основанные на знаниях, или экспертные системы (ЭС). Стал применяться новый подход к решению задач искусственного интеллекта -- представление знаний. Созданы MYCIN и DENDRAL, ставшие уже классическими, две первые экспертные системы для медицины и химии. Существенный финансовый вклад вносит Пентагон, предлагая базировать новую программу министерства обороны США на принципах искусственного интеллекта. Уже вдогонку упущенных возможностей Европейский Союз в начале 80-х объявляет о глобальной программе развития новых технологий ESPRIT, в которую включена проблематика искусственного интеллекта.

6. В конце 70-х в гонку включается Япония, объявив о начале проекта машин V поколения, основанных на знаниях. Проект был рассчитан на десять лет и объединял лучших молодых специалистов крупнейших японских компьютерных корпораций. Для этих специалистов был создан специально новый институт ICOT, и они получили полную свободу действий, правда, без права публикации предварительных результатов. В результате они создали достаточно громоздкий и дорогой символьный процессор, программно реализующий ПРОЛОГо-подобный язык, не получивший широкого признания. Однако положительный эффект этого проекта был очевиден. В Японии появилась значительная группа высококвалифицированных специалистов в области искуственного интеллекта, которая добилась существенных результатов в различных прикладных задачах. К середине 90-х гг. японская ассоциация искусственного интеллекта насчитывает 40 тысяч человек.

Начиная с середины 1980-х гг., повсеместно происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Растет интерес к самообучающимся системам. Издаются десятки научных журналов, ежегодно собираются международные и национальные конференции по различным направлениям искусственного интеллекта.

Искусственный интеллект становится одной из наиболее перспективных и престижных областей информатики.

В России в 1954 г. в МГУ начал работу семинар «Автоматы и мышление» под руководство академика А.А.Ляпунова (1911-1973), одного из основателей российской кибернетики. В этом семинаре принимали участие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились два основных направления -- нейрокибернетики и кибернетики «черного ящика».

В 1954--64 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. В Ленинградском отделении Математического института им. Стеклова создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е гг., следует отметить алгоритм «Кора» М.М.Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы искусственного интеллекта внесли выдающиеся ученые М.Л.Цетлин, В.Н.Пушкин, М.А.Гаврилов, чьи ученики и явились пионерами этой науки в России.

В 1965-80 гг. происходит рождение нового направления -- ситуационного (соответствует представлению знаний, в западной терминологии). Основателем этой научной школы стал Д.А.Поспелов. Были разработаны специальные модели представления ситуаций -- представления знаний.

При том что отношение к новым наукам в советской России всегда было настороженное, наука с таким «вызывающим» названием тоже не избежала этой участи и была встречена в Академии наук в штыки. К счастью, даже среди членов Академии наук СССР нашлись люди, не испугавшиеся столь необычного словосочетания в качестве названия нового научного направления.

Только в 1974 г. при Комитете по системному анализу при президиуме АН СССР был создан научный Совет по проблеме «Искусственный интеллект», его возглавил Г.С.Поспелов.

По инициативе Совета было организовано пять комплексных научных проектов, которые были возглавлены ведущими специалистами в данной области: «Диалог» (работы по пониманию естественного языка), «Ситуация» (ситуационное управление), «Банк» (банки данных), «Конструктор» (поисковое конструирование), «Интеллект робота».

В 1980-90 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы. В МГУ создается язык РЕФАЛ.

В 1988 г. создается АИИ -- Ассоциация искусственного интеллекта, президентом единогласно избирается Д.А.Поспелов, выдающийся ученый, чей вклад в развитие искусственного интеллекта в России трудно переоценить. В рамках Ассоциации проводится большое количество исследований, организуются школы для молодых специалистов, семинары, симпозиумы, раз в два года собираются объединенные конференции, издается научный журнал.

Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 80-х гг. на прикладных работах начинает сказываться постепенное отставание в технологии. На данный момент отставание в области разработки промышленных интеллектуальных систем составляет порядка 3-5 лет.

*Технические проблемы создания искусственного интеллекта

Видимо, наиболее принципиальная проблема, с которой столкнулись создатели искусственного интеллекта - это воспроизведение свободы воли. Если она действительно существует, то что же это на самом деле такое и с помощью каких средств подобный феномен можно воспроизвести? Возможно ли это с помощью математических методов?

Проблема свободы воли в подобном виде существует. Можно прятать ее за мудреными терминами или сложными программными построениями, суть дела от этого не меняется. Пока ясно, что действия машины строго предопределены. Она не может создать следствия без причины. Невозможно, чтобы при прочих равных условиях один раз дважды два получалось четыре, а другой раз - пять. Подчеркиваем - при прочих равных условиях.

Если мы будем исходить из того, что человек способен создавать результат, который не был предопределен какой-то причиной, тогда, скорее всего, задача создания искусственного интеллекта пока или даже навсегда не решаема. Нельзя создать то, природу чего невозможно понять или объяснить. Другое дело, если мы только считаем, что обладаем свободой воли. Не исключено, что на самом деле мы действуем по заранее предопределенной схеме. Если так, то тогда все встает на свои места и искусственный разум становится вполне понятным и постижимым понятием.

Приходится, однако, констатировать, что помимо фундаментальной проблемы свободы воли существует достаточное количество проблем и чисто технического характера. Судя по всему, для их решения нет принципиальных препятствий. Тем не менее, специалисты пока не нашли удовлетворительных путей их разрешения. Видимо, надо хотя бы схематично упомянуть часть этих проблем.

Недостатки логических моделей. Машина действует по строгим законам математики. Она оперирует символами и совершает с ними последовательные операции. Тут все строго детерминировано. Однако, когда возникает вопрос о решении той или иной практической задачи, становится ясно, что далеко не всегда имеется возможность ввести в машину весь набор исходных данных. Некоторые из них отсутствуют, некоторые - не до конца ясны. Но как просчитывать результат, если исходные данные не являются полными? С помощью определенных моделей программисты пытаются решить эту задачу. Пытаются отказаться от использования замкнутых моделей, отходят в той или иной форме от логического подхода. Говорят о создании теории правдоподобной аргументации. Тем не менее проблема недостатков логических моделей пока не решена.

Сложные проблемы нередко требуют использования различных интеллектуальных систем знаний. Однако такие системы, как правило, построены по своей собственной логике. И эта логика достаточно часто не совпадает. Те или иные элементы таких систем могут входить и входят в противоречие друг с другом.

Важный вопрос - это оценка решения, предложенного машиной. Можно ли ему доверять? Один из способов - это спросить у машины, почему она предложила такое решение. Тут выделяют два вида объяснений: как был получен результат и почему он именно такой, а не иной. Генерация объяснений - это важнейшее направление развития искусственного интеллекта, которое еще не нашло своего удовлетворительного решения.

Не решен также вопрос о том, как именно должна машина выполнять полученный ею запрос. Наиболее простое решение - это поиск по образцу. Но тут возникает серьезное ограничение. В таком случае запрос (вопрос) имеет предельно упрощенную форму. Но ведь человек способен отвечать не только на простейшие вопросы. Он подчас даже отвечает на вопросы, которые прямо не указаны в запросе, а лишь предполагаются. Пока машина справляется с такими задачами с очень большими ограничениями. В частности, это касается понятия "рассуждать". Человек может порассуждать над вопросом и ответить исходя из его комплексного анализа. Для машины это подчас неразрешимая задача.

Машина пока не научилась проводить такую операцию - "понимать" полученную информацию. Что касается человека, то для нас более или менее ясно, что кроется за этим термином. Но как научить машину что-то "понимать"? Наверное, эта проблема не может быть решена без ответа на вопрос, что же это за феномен - "понимание". Возможно, его объяснение должно уйти от определений психологии и получить более точное описание, позволяющее этот феномен воспроизводить.

Еще одна нерешенная техническая проблема - это синтез, генерация текстов. Мы с вами можем легко заговорить, сформулировать свою мысль, порассуждать на заданную тему. Может ли это сделать машина? В каких-то ограниченных пределах уже может, но пока не так, как человек.

Конечно, существуют и другие проблемы. Очень перспективное направление - это создание многоагентых систем. Много нереализованных возможностей остается в области генерации машиной образов. Отдельное направление - это создание сетей, которые способны к самообучению и самосовершенствованию (эволюции).

*Философические проблемы

Вообще же Проблема сознания заключается в парадоксальной ситуации: мы, разумные существа, обладаем сознанием, оно у нас есть, но мы не знаем что такое сознание. Мамардашвили, определяя эту ситуацию, писал: «Сознание -- это парадоксальность, к которой невозможно привыкнуть». Раскрывая особенность парадоксальности сознания, он указывал на две трудности в изучении сознания. Первая состоит в том, что само понятие «сознание» является предельным философским понятием, таким как понятие «бытие». А такого рода понятия не поддаются классическому родо-видовому определению. Другая трудность проистекает из того, что сознание «весьма странное явление, которое есть и которое в то же время нельзя ухватить, представить как вещь». Однако, есть еще одно обстоятельство, делающее проблему сознания особенно сложной.Кант задает вопрос, что позволяет разным представлениям, из которых состоит всякая мысль, образовывать целое единство этой мысли? И он отвечает -- трансцендентальное единство апперцепций. Это означает, что все данное в наглядном представлении многообразие объединяется при помощи трансцендентальной апперцепции в понятие объекта. Кант говорит, что это объединение есть акт, который сопровождает всякую содержательную мысль и может словесно выражен так: «Я мыслю». Иными словами, чтобы мысль о том, что сейчас я держу в руке белый лист бумаги, не распадалась на различные по содержанию представления, а была одной мыслью, эта мысль должна всегда сопровождаться актом мышления «Я мыслю».

Специфика нашего существования -- сознательного существования -- в философской традиции после Хайдеггера определяется термином «экзистирование». Экзистирование -- это существование способом понимания собственного существования. В чем специфика такого существования, «существования пониманием»? Что такое понимание?

Понимание можно рассмотреть как «внимание», «внятие», «принятие», «впускание», «ассимиляцию» некоего сущего в себя. Когда я понимаю некое сущее, например, когда я понимаю (или не понимаю) предмет своего наблюдения как стол, то тем самым я принимаю (или не принимаю) это сущее как/в содержание моего состояния. Иначе говоря, понимание здесь выступает своеобразным испытанием как модусом моего бытия, экзистирования. И этот модус по природе своей амбивалентен. С одной стороны, понимая (внимая, принимая и так далее) сущее, я испытываю себя на способность понять сущее, а, с другой -- я испытываю само сущее на его истину, выведывая ее у сущего. Понимание предстает в этом случае в виде проверки на способность быть и себя, и сущего. Иными словами, в состоянии сознания в качестве необходимого элемента включены не только интеллектуальные процедуры, но и мои бытийные (и онтологические, и онтические) характеристики.

Упомяну еще один элемент сознания.В своей работе почти полувековой давности «Анализ сознания в работах Маркса» Мамардашвили показал, что сознание, по Марксу являются производной от системы социальной деятельности человека. Таким образом, состояния сознания включают в себя как необходимый элемент социальную составляющую индивидуального бытия, то есть ту систему общественных связей, в которую включен индивид как социальный субъект. Элементы, которые были рассмотрены -- зазор между реальной вещью и интенциональным предметом, социальная система, структура другого в работе сознания (и мышления) -- свидетельствуют о неконтинуальности сознания (мышления).

Зазор, который содержит в себе неинтеллектуальные компоненты не может быть преодолен за счет работы мысли. Он преодолевается лишь индивидуальным усилием быть -- испытанием бытия/бытием -- как актом не интеллектуальным, а экзистенциальным. Иначе говоря, «работа» мысли требует в качестве необходимых условий жизненные (физиологические, психические, социальные и так далее), а не только интеллектуальные элементы. Это обстоятельство и позволяет поставить под сомнение попытки создания искусственного интеллекта.Мы рассмотрели две основные проблемы создания искусственного интеллекта: философическая и техническая. Каждая из этих проблем имеет глобальный масштаб и при этом они тесно связаны друг с другом. Чем глубже ученые и исследователи вникают в проблему тем больше нюансов и сложностей припятствующих созданию разумной машины появляются. Над этим трудятся множество людей,задействованы различные науки,на данный момент достигнуто очень много,а с другой стороны создание искусственного интеллекта стоит лишь на пороге в новую эпоху умных машин.

Размещено на Allbest.ru


Подобные документы

  • Технология экспертных систем на основе искусственного интеллекта: разработка и внедрение компьютерных программ, способных имитировать, воспроизводить области деятельности человека, требующих мышления, определенного мастерства и накопленного опыта.

    курсовая работа [264,8 K], добавлен 22.12.2008

  • Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.

    контрольная работа [27,9 K], добавлен 07.12.2009

  • Феномен мышления. Создание искусственного интеллекта. Механический, электронный, кибернетический, нейронный подход. Появление перцептрона. Искусственный интеллект представляет пример интеграции многих научных областей.

    реферат [27,2 K], добавлен 20.05.2003

  • История возникновения и развития понятия "машинный интеллект". Суть теста Тьюринга, разработанного для оценки интеллекта машины. Принцип функционирования машины для решения головоломки из восьми фишек. Состояние распознавание образа, мышления, анализа.

    презентация [479,6 K], добавлен 14.10.2013

  • Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.

    реферат [40,8 K], добавлен 17.08.2015

  • Принципы построения и программирования игр. Основы 2-3D графики. Особенности динамического изображения и искусственного интеллекта, их использование для создания игровых программ. Разработка логических игр "Бильярд", "Карточная игра - 50", "Морской бой".

    отчет по практике [2,3 M], добавлен 21.05.2013

  • Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.

    реферат [24,7 K], добавлен 05.01.2010

  • Понятие кибернетики как науки об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество. Аспекты мышления в ней: информационный, управленческий. Принципы моделирования мышления.

    презентация [69,9 K], добавлен 23.05.2014

  • История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.

    реферат [45,1 K], добавлен 20.11.2009

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация [3,0 M], добавлен 28.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.