Анализ основных способов обеспечения безопасности работы в системах удаленного доступа
Терминальный доступ - организация работы, когда информация хранится и обрабатывается на некотором удалённом сервере, а оборудование пользователя выполняет лишь функцию ввода и вывода. Основные способы защиты информации в виртуальной частной сети.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 12.01.2015 |
Размер файла | 93,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
И наконец, чтобы использовать для соединения протокол HTTP, необходимо установить флажок Connect using HTTP first, then connect using my Local Area Network (LAN). Как правило, Outlook 2003 сначала пытается установить связь с сервером Exchange через TCP/IP. Если попытка не удается, Outlook пробует соединиться через HTTP. После установки этого флажка Outlook делает попытку сначала соединиться через HTTP, что позволит избежать задержки, связанной с тайм-аутом протокола.
При обсуждении смены профиля MAPI предполагалось, что профиль на клиентском компьютере уже существует. Если требуется создать профиль, следует помнить, что для этого необходим прямой RCP-доступ к серверу Exchange через TCP/IP. Если нужно создать профили MAPI для удаленных пользователей (т. е. прямой TCP/IP-доступ к серверу Exchange отсутствует), следует задействовать утилиту генерации профиля MAPI, такую как profgen.exe -- инструмент из набора ресурсов Microsoft Office 2003 Resource Kit. В идеале для управления системами необходимо автоматизировать все изменения в MAPI-профилях пользователей, чтобы значительно снизить вероятность возникновения пользовательских ошибок.
Применение RPC over HTTP для подключения клиентов Outlook 2003 к почтовым серверам представляет собой гибкий способ обращения к домашним почтовым ящикам пользователей без ограничений туннелирования или громоздкого клиента на базе Web. Однако в стандартной конфигурации эта функция не работает. Ее запуск требует планирования и настройки конфигурации со стороны администратора систем отправки сообщений. Прежде чем внедрять службу RPC over HTTP на всем предприятии, следует выполнить пилотный проект, чтобы исследовать влияние данной службы на инфраструктуру.
Протокол получения информации о пользователях - Finger.
Протокол Finger возвращает информацию об одном или нескольких пользователях на указанном хосте. Это приложение обычно используется, для того чтобы посмотреть, находится ли конкретный пользователь в настоящее время в системе, или чтобы получить имя какого-либо пользователя, чтобы послать ему почту. Сервер Finger использует заранее известный порт 79. Клиент осуществляет активное открытие на этот порт и отправляет запрос длиной в 1 строку. Сервер обрабатывает запрос, посылает назад вывод и закрывает соединение. Запрос и отклик в формате NVT ASCII, почти так же как мы видели в случае FTP и SMTP.
2. Протоколы удаленного доступа
Протокол Telnet.
Протокол Telnet (TELNET) предназначен для взаимодействия устройств и процессов терминала. TELNET часто применяется программами эмуляции терминала для входа в удаленную систему. TELNET также обеспечивает взаимодействия терминал-терминал и взаимодействия между процессами. Кроме того, TELNET применяется другими протоколами (например, FTP) для создания управляющего канала протокола.
Протокол пересылки файлов FTP.
Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Он может использоваться приложениями и пользователями для передачи файлов по сети. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Однако, кроме пересылки файлов, протокол FTP предлагает и другие услуги. Так, пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов. Кроме того, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей.
Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Он может использоваться приложениями и пользователями для передачи файлов по сети. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Однако, кроме пересылки файлов, протокол FTP предлагает и другие услуги. Так, пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов. Кроме того, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. FTP обеспечивает защиту данных при передаче, отправляя внешнему хосту пароль пользователя и учетного файла пользователя
Протокол TFTP.
Упрощенный протокол передачи файлов (TFTP) предназначен для обмена файлами с внешними хостами. Для передачи файлов TFTP применяет ненадежный Протокол пользовательских дейтаграмм, поэтому обычно он работает быстрее, чем FTP. Как и FTP, TFTP поддерживает передачу файлов в формате NETASCII и в 8-разрядном двоичном формате. В отличие от FTP, TFTP не поддерживает просмотр каталогов или переход в другой каталог внешнего хоста. В нем также не предусмотрена защита с помощью пароля. Кроме того, TFTP работает только с общими каталогами.
Протокол SMTP.
Для передачи электронной почты в Internet разработан специальный протокол Simple Mail Transfer Protocol (SMTP), который является протоколом прикладного уровня и использует транспортный протокол TCP. при использовании протокола SMTP sendmail пытается найти машину-получателя почты и установить с ней взаимодействие в режиме on-line для того, чтобы передать почту в ее почтовый ящик. совместно с этим протоколом используется и Unix-Unix-Copy (UUCP) протокол. UUCP почта передается по принципу "stop-go"(off-line), т. е. почтовое сообщение передается по цепочке почтовых серверов от одной машины к другой, пока не достигнет машины-получателя или не будет отвергнуто по причине отсутствия абонента-получателя.
Протокол IMAP.
С ростом популярности E-mail и multimedia возникла необходимость в одном сообщении передавать данные различных типов:
- текстовую информацию на различных языках,
- графические изображения,
- видео, аудио и просто, бинарные файлы;
Это послужило толчком к созданию унифицированного интерфейса (стандарта), который бы интерпретировался всеми почтовыми системами одинаково.
Протокол MIME.
Стандарт MIME (Multipurpose Internet Mail Extention, многоцелевое расшироение интернет почты) представляет такой удобный интерфейс. Он не заменяет, а расширяет существующий способ формирования электронных сообщений. MIME - новый формат представления данных, представляющий почтовому клиенту гибкий интерфейс для работы с E-mail.
Протокол POP3.
Post Office Protocol (POP) - протокол доставки почты пользователю из почтового ящика почтового сервера РОР.
Конструкция протокола РОРЗ обеспечивает возможность пользователю обратиться к своему почтовому серверу и изъять накопившуюся для него почту. Пользователь может получить доступ к РОР-серверу из любой точки доступа к Интернет. При этом он должен запустить специальный почтовый агент (UA), работающий по протоколу РОРЗ, и настроить его для работы со своим почтовым сервером. В протоколе РОРЗ оговорены три стадии процесса получения почты: авторизация, транзакция и обновление.
Сервер новостей должен заниматься сбором новостей и созданием необходимых индексных файлов.
Серверы почты и почтовые клиенты.
Схема передачи/приёма писем.
Работа с почтой в режимах online и offline.
Протокол новостей NNTP.
NNTP представляет собой протокол для рассылки, подписки, поиска и доставки новостей на основе надежного протокола поточного типа (например, TCP) с использованием схемы клиент-сервер. NNTP сконструирован так, что статья, записанная в одном из серверов. Сервер является единственным интерфейсом между программами и базами данных, хранящими новости. Он не выполняет взаимодействия с пользователем или каких-либо операций презентационного уровня. Эти функции передаются программам клиента, которые имеют исчерпывающую информацию о среде. При работе через Интернет в рамках протокола TCP используется порт 119. На команды, посылаемые клиентом, предусмотрены текстовые и статусные отклики. Всякая сессия начинается с процедуры установления соединения между клиентом и сервером по инициативе клиента (например, с использованием протокола TCP). становится доступной для всех подписчиков-клиентов.становится доступной для всех подписчиков-клиентов. Единицей хранения на сервере является статья.
Работа с сервером новостей.
Альтернативные системы рассылки (subscribe.ru).
Сетевой протокол времени NTP
Сетевой протокол задания времени NTP лужит для осуществления синхронизации работы различных процессов в серверах и программах клиента. Протокол NTP обеспечивает механизмы синхронизации с точностью до наносекунд. Протокол предлагает средства для определения характеристик и оценки ошибок локальных часов и временного сервера, который осуществляет синхронизацию. Предусмотрены возможности работы с иерархически распределенными первичными эталонами, такими как синхронизуемые радиочасы
2.1 Протокол SLIP.
SLIP (Serial Line Internet Protocol) -- устаревший сетевой протокол канального уровня эталонной сетевой модели OSI для доступа к сетям стека TCP/IPчерез низкоскоростные линии связи путём простой инкапсуляции IP-пакетов. Используются коммутируемые соединения через последовательные портыдля соединений клиент-сервер типа точка-точка. В настоящее время вместо него используют более совершенный протокол PPP. SLIP был разработан в начале 80-х компанией 3COM. Протокол начал быстро распространяться после включения в ОС Berkeley Unix 4.2 Риком Адамсом (Rick Adams) в 1984, так как благодаря ему стало возможным подключение к Интернет через последовательный COM-порт, имевшийся на большинстве компьютеров. Ввиду своей простоты сейчас используется в микроконтроллерах. Собственно SLIP и PPP - это протоколы, адаптирующие IP для работы на последовательных линиях. Они представляют собой некую прокладку между IP и модемными протоколами. SLIP и PPP имеет смысл использовать вкупе со скоростными модемами на достаточно скоростных линиях.
2.2 Протокол PPP.
Основная функция программного обеспечения SLIP/PPP - организовать пересылку IP -пакетов по последовательной линии, которая не предусматривает деления пересылаемой информации на какие-либо отдельные блоки и пересылает все данные единым непрерывным потоком. SLIP/PPP как раз и занимается организацией такой пересылки, чтобы на другом конце можно было этот сплошной и непрерывный поток данных разделить на составляющие его IP -пакеты, выделить их и передать дальше уже как IP -пакеты.
SLIP/PPP очень удобен для подключения домашнего компьютера к локальной сети, которая, в свою очередь, входит в Internet. Например, можно воспользоваться PPP , чтобы подключить свою домашнюю персоналку к сети вашей организации. И тогда ваш компьютер будет иметь такие же возможности работы в Internet, как и любой другой компьютер вашей организации, подключённый к Сети через Ethernet.
SLIP/PPP подходят и для подключения домашнего компьютера (или очень маленькой локальной сети) к собственно првайдеру, который может предоставить непосредственный доступ в Internet.
Однако следует понимать, что эти протоколы, вообще-то, совсем не предназначены для подключения к Internet сетей средней величины или больших сетей: они не предназначены для работы на высокоскоростных линиях, которые требуются для обслуживания большого количество пользователей.
Для того, чтобы организовать связь через канал связи с непосредственным соединением, инициирующий РРР сначала отправляет пакеты LCР для выбора конфигурации и (факультативно) проверки канала передачи данных. После того, как канал установлен и пакетом LCР проведенo необходимое согласование факультативных средств, инициирующий РРР отправляет пакеты NCP, чтобы выбрать и определить конфигурацию одного или более протоколов сетевого уровня. Как только конфигурация каждого выбранного протокола оперделена, дейтаграммы из каждого протокола сетевого уровня могут быть отправлены через данный канал. Канал сохраняет свою конфигурацию для связи до тех пор, пока явно выраженные пакеты LCP или NCP не закроют этот канал, или пока не произойдет какое-нибудь внешнее событие (например, истечет срок бездействия таймера или вмешается какой-нибудь пользователь).
2.3 Протоколы защищенных каналов SSL, PPTP, IPSec
Протокол PPTP (Point-to-Point Tunneling Protocol) разработан компанией Microsoft совместно с компаниями Ascend Communications, 3Com/Primary Access, ECI-Telematics и US Robotics. Этот протокол был представлен в рабочую группу "PPP Extentions" IETF в качестве претендента на стандартный протокол создания защищенного канала при доступе удаленных пользователей через публичные сети (в первую очередь Internet) к корпоративным сетям. Этот протокол получил статус проекта стандарта Internet, однако, в качестве стандарта так и не был утвержден. Сейчас рабочая группа IETF рассматривает возможность принятия в качестве стандарта протокол L2TP (Layer 2 Tunneling Protocol), который должен объединить лучшие стороны протокола PPTP с протоколом аналогичного назначения L2F (Layer 2 Forwarding), предложенного компанией Cisco.
Протокол PPTP позволяет создавать защищенные каналы для обмена данными по различным сетевым протоколам -- IP, IPX или NetBEUI. Данные этих протоколов инкапсулируются с помощью протокола PPTP в пакеты протокола IP, с помощью которого переносятся в зашифрованном виде через любую сеть TCP/IP. Инкапсулируется исходный кадр РРР, поэтому протокол PPTP можно отнести к классу протоколов инкапсуляции канального уровня в сетевой.
Многопротокольность -- основное преимущество инкапсулирующих протоколов канального уровня, к которым относится протокол PPTP. Протокол SSL, например, ориентируется на один протокол сетевого уровня -- IP. К тому же размещение протокола защищенного канала непосредственно под прикладным уровнем требует переписи приложений, если они хотят воспользоваться возможностями защиты. Защиты данных на канальном уровне делает средства защиты прозрачными как для протоколов прикладного уровня, так и для протоколов сетевого уровня.
Существуют также и варианты встраивания средств создания защищенного канала на сетевом уровне. Имеется несколько протоколов этого типа, использующих шифрацию и инкапсуляцию протокола сетевого уровня в сетевой. Для защиты данных в IP-сетях разработана защищенная версия протокола IP, которую чаще всего называют IPSec (подробнее о нем поговорим о нем в следующей части статьи). Эта версия поддерживает аутентификацию на сетевом уровне, а также может выполнять шифрацию пользовательских данных. IPSec -- это набор стандартов, часть из которых существует в виде проектов, а часть еще находится в стадии разработки. Протокол IPSec не определяет жестко, какие методы шифрации должны использоваться для аутентификации и создания защищенного канала, хотя для первых реализаций определен вариант IPSec, использующий дайджест-функцию MD5 для аутентификации и алгоритм шифрования DES для образования защищенного канала. Недостатком протокола IPSec является то, что он работает только в IP-сетях и не определяет способа защищенной транспортировки пакетов других протоколов. Этот недостаток устраняют такие протоколы, как PPTP или L2F.принцип работы PPTP.
Сетевые протоколы функционируют путем обмена порциями данных, называемыми пакетами. Пакет состоит из управляющей информации, специфичной для протокола, и собственно данных, которые должны быть переданы; их часто называют полезной нагрузкой. До тех пор, пока обмен данными происходит достаточно быстро и без ошибок, нас не волнует, какую управляющую информацию добавляет протокол для своих целей. Но она жизненно важна и должна сохраняться неизменной, если два компьютера собираются обмениваться данными, вне зависимости от среды соединения.
PPTP работает путем инкапсуляции "родных" пакетов локальной сети -- например, пакетов IPX -- внутрь пакетов TCP/IP. Весь пакет IPX, включая его управляющую информацию, становится полезной нагрузкой для пакета TCP/IP, который затем можно передавать по Internet. Программные средства на другом конце линии связи извлекают пакет IPX и направляют его для нормальной обработки в соответствии с его собственным протоколом. Этот процесс называется туннелированием, вероятно, потому, что создается коридор в Internet, соединяющий два узла.
Туннелирование позволяет не только экономить на стоимости дальних звонков, но и повышать степень защиты данных. Поскольку туннель соединяет два совместимых протокола с сетью Windows NT/2000, операционная система может выполнять всеобъемлющие проверки надежности защиты, которые она проводит в самой локальной сети. Таким путем соединение может обеспечить принятую в Windows NT/2000 аутентификацию пользователей по протоколам PAP (Password Authentication Protocol) или CHAP (Challenge Handshake Authentication Protocol). Более того, PPTP позволяет передавать данные, зашифрованные RSA-методами RC-4 или DES. Если безопасность подключения к сети VPN является критическим фактором, администратор сервера может указать, что сервер будет принимать посредством дистанционного соединения только пакеты PPTP, но это предотвратит использование сервера в режиме открытого доступа по HTTP или FTP. Однако, если имеется более одного сервера и если нужно обеспечить наивысшую защиту, такое решение -- вполне приемлемый вариант.
Но даже при всех подобных мерах безопасности единственным специальным программным обеспечением для клиента служит сам протокол PPTP плюс программа связи по модему, которая может соединить с сетью VPN. И даже это не является необходимым, если у поставщика услуг Internet есть средства работы с PPTP, позволяющие безопасно передавать любые данные по стандартному протоколу PPP (Point-to-Point Protocol, протокол соединения "точка-точка"). процесс связи по протоколу PPTP .
Поскольку вся идея дистанционного доступа состоит в разрешении машине клиента подключаться по телефонной линии к машине сервера, соединение PPTP инициируется клиентом, который использует служебное средство Windows NT -- Remote Access Service (RAS) -- для установления PPP-соединения с поставщиком услуг Internet. Затем при активизированном соединении PPP с помощью сервера, подключенного к Internet и действующего как сервер RAS, клиент применяет RAS для выполнения второго соединения. На этот раз в поле номера телефона указывается IP-адрес (или доменное имя), и клиент, для того чтобы осуществить соединение, вместо COM-порта использует VPN-порт (VPN-порты конфигурируются на машинах клиента и сервера в процессе инсталляции PPTP).
Ввод IP-адреса инициирует передачу запроса серверу на начало сеанса. Клиент ожидает от сервера подтверждения имени пользователя и пароля и ответа сообщением, что соединение установлено. В этот момент начинает свою работу канал PPTP, и клиент может приступить к туннелированию пакетов серверу. Поскольку они могут быть пакетами IPX и NetBEUI, сервер может выполнять с ними свои обычные процедуры обеспечения защиты.
В основе обмена данными по протоколу PPTP лежит управляющее соединение PPTP -- последовательность управляющих сообщений, которые устанавливают и обслуживают туннель. Полное соединение PPTP состоит только из одного соединения TCP/IP, которое требует передачи эхо-команд для поддержания его открытым, пока выполняются транзакции. В таблице 1 показаны эти сообщения и их функциональное назначение.
Табл. 1
Управляющее сообщение |
Функция |
|
Start-Control-Connection-Request |
Запрос на установление управляющего соединения |
|
Start-Control-Connection-Replay |
Ответ на сообщение Start-Control-Connection-Request |
|
Echo-Request |
Сообщение "Keep-alive" ("все живы") для управляющего соединения |
|
Echo-Replay |
Ответ на сообщение Echo-Request |
|
Set-Link-Info |
Посылается сервером сети для задания PPP-параметров переговоров |
|
Stop-Control-Connection-Request |
Команда завершить управляющее соединение |
|
Stop-Control-Connection-Replay |
Ответ на сообщение Stop-Control-Connection-Request |
Схемы применения протокола PPTP.
В протоколе PPTP определено две схемы его применения.
Первая схема рассчитана на поддержание защищенного канала между сервером удаленного доступа ISP и пограничным маршрутизатором корпоративной сети (рис. 1).
Рис. 1. Защищенный канал "провайдер-маршрутизатор корпоративной сети" на основе протокола PPTP
В этом варианте компьютер удаленного пользователя не должен поддерживать протокол PPTP. Он связывается с сервером удаленного доступа RAS, установленного у ISP, с помощью стандартного протокола PPP и проходит первую аутентификацию у провайдера. RAS ISP должен поддерживать протокол PPTP. По имени пользователя RAS ISP должен найти в базе учетных данных пользователей IP-адрес маршрутизатора, являющегося пограничным маршрутизатором корпоративной сети данного пользователя. С этим маршрутизатором RAS ISP устанавливает сессию по протоколу PPTP. Протокол PPTP определяет некоторое количество служебных сообщений, которыми обмениваются взаимодействующие стороны, служебные сообщения передаются по протоколу TCP. RAS ISP передает маршрутизатору корпоративной сети идентификатор пользователя, по которому маршрутизатор снова аутентифицирует пользователя по протоколу CHAP. Если пользователь прошел вторичную аутентификацию (она для него прозрачна), то RAS ISP посылает ему сообщение об этом по протоколу РРР и пользователь начинает посылать свои данные в RAS ISP по протоколу IP, IPX или NetBIOS, упаковывая их в кадры РРР. RAS ISP осуществляет инкапсуляцию кадров РРР в пакеты IP, указывая в качестве адреса назначения адрес пограничного маршрутизатора, а в качестве адреса источника -- свой собственный IP-адрес. Пакеты РРР шифруются с помощью секретного ключа, в качестве которого используется дайджест от пароля пользователя, который хранится в базе учетных данных RAS ISP для аутентификации по протоколу CHAP.
Пакеты, циркулирующие в рамках сессии PPTP, имеют следующий вид:
- заголовок канального уровня, используемого внутри Internet (PPP, SLIP, Ethernet); -заголовок-IP; -заголовок-GRE; - исходный пакет PPP, включающий пакет IP, IPX или NetBEUI. Для указания сведений отом, что внутри пакета IP находится инкапсулированный пакет РРР, используется стандартный для Internet заголовок GRE v.2 (RFC 1701 и 1702), используемый при инкапсуляции различного типа. Внутренние серверы корпоративной сети также не должны поддерживать протокол PPTP, так как пограничный маршрутизатор извлекает кадры РРР из пакетов IP и посылает их по сети в необходимом формате --IP, IPX или NetBIOS. Microsoft предложила также и другую схему использования протокола PPTP, с помощью которой образуется защищенный канал между компьютером удаленного пользователя и пограничным маршрутизатором корпоративной сети, в качестве которого должен использоваться RAS Windows NT/2000. Эта схема приведена на рисунке 2.
Рис. 2. Защищенный канал "клиент - маршрутизатор" корпоративной сети на основе протокола PPTP
В первый раз клиент звонит на сервер RAS ISP и устанавливает с ним связь по протоколу PPP, проходя аутентификацию одним из способов, поддерживаемых провайдером -- по протоколам PAP, CHAP или с помощью терминального диалога.
После аутентификации у провайдера, пользователь вторично "звонит", на этот раз в сервер удаленного доступа корпоративной сети. Этот "звонок" отличается от обычного тем, что вместо телефонного номера указывается IP-адрес RAS Windows NT, подключенного к Internet со стороны корпоративной сети. При этом устанавливается сессия по протоколу PPTP между клиентским компьютером и RAS корпоративной сети. Клиент еще раз аутентифицируется, теперь на сервере RAS его сети, а затем начинается передача данных, как и в первом варианте.
2.4 Усугубление проблем безопасности при удаленном доступе
Обеспечение безопасности данных при удаленном доступе - проблема если и не номер один, то, по крайней мере, номер два, после проблемы обеспечения приемлемой для пользователей пропускной способности. А при активном использовании транспорта Internet она становится проблемой номер один.
Неотъемлемым свойством систем удаленного доступа является наличие глобальных связей. По своей природе глобальные связи, простирающиеся на много десятков и тысяч километров, не позволяют воспрепятствовать злонамеренному доступу к передаваемым по этим линиям данным. Нельзя дать никаких гарантий, что в некоторой, недоступной для контроля точке пространства, некто, используя, например, анализатор протокола, не подключится к передающей среде для захвата и последующего декодирования пакетов данных. Такая опасность одинаково присуща всем видам территориальных каналов связи и не связана с тем, используются ли собственные, арендуемые каналы связи или услуги общедоступных территориальных сетей, подобные Internet.
Однако использование общественных сетей (речь в основном идет об Internet) еще более усугубляет ситуацию, хотя бы потому, что в такой сети для доступа к корпоративным данным в распоряжении злоумышленника имеются более разнообразные и удобные средства, чем выход в чистое поле с анализатором протоколов. Кроме того, огромное число пользователей увеличивает вероятность попыток несанкционированного доступа.
Безопасная система - это система, которая, во-первых, надежно хранит информацию и всегда готова предоставить ее своим пользователям, а во-вторых, система, которая защищает эти данные от несанкционированного доступа.
Межсетевой экран (firewall, брандмауэр) - это устройство, как правило, представляющее собой универсальный компьютер с установленным на нем специальным программным обеспечением, который размещается между защищаемой (внутренней) сетью и внешними сетями, потенциальными источниками опасности. Межсетевой экран контролирует все информационные потоки между внутренней и внешними сетями, пропуская данные, в соответствии с заранее установленными правилами. Эти правила являются формализованным выражением политики безопасности, принятой на данном предприятии. Межсетевые экраны базируются на двух основных приемах защиты:
- пакетной фильтрации;
- сервисах-посредниках (proxy-services).
Эти две функции можно использовать как по отдельности, так и в комбинации.
Пакетная фильтрация. Использование маршрутизаторов в качестве firewall.
Фильтрация осуществляется на транспортном уровне: все проходящие через межсетевой экран пакеты или кадры данных анализируются, и те из них, которые имеют в определенных полях заданные ("неразрешенные") значения, отбрасываются.
Пропуск во внутреннюю сеть пакетов сетевого уровня или кадров канального уровня по адресам (MAC-адреса, IP-адреса, IPX-адреса) или номерам портов TCP, соответствующих приложениям. Например, для того, чтобы трафик telnet не пересекал границу внутренней сети, межсетевой экран должен отфильтровывать все пакеты, в заголовке TCP которых указан адрес порта процесса-получателя, равный 23 (этот номер зарезервирован за сервисом telnet). Сложнее отслеживать трафик FTP, который работает с большим диапазоном возможных номеров портов, что требует задания более сложных правил фильтрации.
Конечно, для фильтрации пакетов может быть использован и обычный маршрутизатор, и действительно, в Internet 80% пакетных фильтров работают на базе маршрутизаторов. Однако маршрутизаторы не могут обеспечить ту степень защиты данных, которую гарантируют межсетевые экраны.
Главные преимущества фильтрации межсетевым экраном по сравнению с фильтрацией маршрутизатором состоят в следующем:
межсетевой экран обладает гораздо более развитыми логическими способностями, поэтому он в отличие от маршрутизатора легко может, например, обнаружить обман по IP-адресу;
у межсетевого экрана большие возможности аудита всех событий, связанных с безопасностью.
Сервисы - посредники (Proxy-services) Сервисы-посредники не допускают возможности непосредственной передачи трафика между внутренней и внешней сетями. Для того, чтобы обратиться к удаленному сервису, клиент-пользователь внутренней сети устанавливает логическое соединение с сервисом-посредником, работающим на межсетевом экране. Сервис-посредник устанавливает отдельное соединение с "настоящим" сервисом, работающим на сервере внешней сети, получает от него ответ и передает по назначению клиенту - пользователю защищенной сети.
Для каждого сервиса необходима специальная программа: сервис-посредник. Обычно, защитный экран включает сервисы-посредники для FTP, HTTP, telnet. Многие защитные экраны имеют средства для создания программ-посредников для других сервисов. Некоторые реализации сервисов-посредников требуют наличия на клиенте специального программного обеспечения. Пример: Sock - широко применяемый набор инструментальных средств для создания программ-посредников.
Сервисы-посредники не только пересылают запросы на услуги, например, разработанный CERN сервис-посредник, работающий по протоколу HTTP, может накапливать данные в кэше межсетевого экрана, так что пользователи внутренней сети могут получать данные с гораздо меньшим временем доступа.
Журналы событий, поддерживаемые сервисами-посредниками, могут помочь предупредить вторжение на основании записей о регулярных неудачных попытках. Еще одним важным свойством сервисов-посредников, положительно сказывающимся на безопасности системы, является то, что при отказе межсетевого экрана защищаемый посредником сервис-оригинал остается недоступным.
Трансляция сетевых адресов - новый вид сервиса-посредника. Трансляторы адресов заменяют "внешние" IP-адреса серверов своих сетей на "внутренние". При таком подходе топология внутренней сети скрыта от внешних пользователей, вся сеть может быть представлена для них одним-единственным IP-адресом. Такая непрозрачность сети усложняет задачу несанкционированного доступа. Кроме этого, трансляция адресов дает еще одно преимущество - позволяет иметь внутри сети собственную систему адресации, не согласованную с Internet, что снимает проблему дефицита IP-адресов.
Сервисы-посредники намного надежнее фильтров, однако они снижают производительность обмена данными между внутренней и внешней сетями, они также не обладают той степенью прозрачности для приложений и конечных пользователей, которая характерна для фильтров.
Технология защищенного канала призвана обеспечивать безопасность передачи данных по открытой транспортной сети, например, по сети Internet. Защищенный канал включает в себя выполнение трех основных функций:
- взаимная аутентификация абонентов;
- защита передаваемых по каналу сообщений от несанкционированного доступа;
- подтверждение целостности поступающих по каналу сообщений.
Взаимная аутентификация обеих сторон при установлении соединения может быть выполнена, например, путем обмена сертификатами.
Секретность может быть обеспечена каким-либо методом шифрации, например, передаваемые сообщения шифруются с использованием симметричных сессионных ключей, которыми стороны обмениваются при установлении соединения. Сессионные ключи передаются также в зашифрованном виде, при этом они шифруются с помощью открытых ключей. Использование для защиты сообщений симметричных ключей связано с тем, что скорость процессов шифрации и дешифрации на основе симметричного ключа существенно выше, чем при использовании несимметричных ключей.
Целостность передаваемых сообщений достигается за счет того, что к сообщению (еще до его шифрации сессионным ключом) добавляется дайджест, полученный в результате применения односторонней функции к тексту сообщения.
Защищенный канал в публичной сети часто называют также виртуальной частной сетью - VirtualPrivateNetwork, VPN. Существует два способа образования VPN:
- с помощью специального программного обеспечения конечных узлов;
- с помощью специального программного обеспечения шлюзов, стоящих на границе между частной и публичной сетями.
В первом случае программное обеспечение, установленное на компьютере удаленного клиента, устанавливает защищенный канал с сервером корпоративной сети, к ресурсам которого клиент обращается. Преимуществом этого подхода является полная защищенность канала вдоль всего пути следования, а также возможность использования любых протоколов создания защищенных каналов, лишь бы на конечных точках канала поддерживался один и тот же протокол. Недостатки заключаются в избыточности и децентрализованности решения.
Избыточность состоит в том, что уязвимыми для злоумышленников обычно являются сети с коммутацией пакетов, а не каналы телефонной сети или выделенные каналы. Поэтому установка специального программного обеспечения на каждый клиентский компьютер и каждый сервер корпоративной сети не является необходимой. Децентрализация процедур создания защищенных каналов не позволяет вести централизованное управление доступом к ресурсам сети. В большой сети необходимость отдельного администрирования каждого сервера и каждого клиентского компьютера с целью конфигурирования в них средств защиты данных - это трудоемкая процедура. Во втором случае клиенты и серверы не участвуют в создании защищенного канала - он прокладывается только внутри публичной сети с коммутацией пакетов, например, внутри Internet. Канал создается между сервером удаленного доступа провайдера услуг публичной сети и пограничным маршрутизатором корпоративной сети. Это хорошо масштабируемое решение, управляемого централизованно как администратором корпоративной сети, так и администратором сети провайдера. Для клиентских компьютеров и серверов корпоративной сети канал прозрачен - программное обеспечение этих конечных узлов остается без изменений. Реализация этого подхода сложнее - нужен стандартный протокол образования защищенного канала, требуется установка программного обеспечения, поддерживающего такой протокол, у всех провайдеров, необходима поддержка протокола производителями серверов удаленного доступа и маршрутизаторов.
Протоколы аутентификации удаленных пользователей.
Контроль доступа пользователей к ресурсам корпоративной сети должен осуществляться в соответствии с политикой безопасности организации, которой принадлежит данная сеть. Эффективное разграничение доступа к сетевым ресурсам может быть обеспечено только при надежной аутентификации пользователей. Требования к надежности аутентификации удаленных пользователей должны быть особенно высокими, так как при взаимодействии с физически удаленными пользователями значительно сложнее обеспечить доступ к сетевым ресурсам. В отличие от локальных пользователей удаленные пользователи не проходят процедуру физического контроля при допуске на территорию организации.
При удаленном взаимодействии важна аутентификация не только пользователей, но и оборудования, поскольку подмена пользователя или маршрутизатора приводит к одним и тем же последствиям -- данные из корпоративной сети передаются не тем лицам, которым они предназначены.
Для обеспечения надежной аутентификации удаленных пользователей необходимо выполнение следующих требований:
* проведение аутентификации обеих взаимодействующих сторон -- как удаленного пользователя, так и сервера удаленного доступа -- для исключения маскировки злоумышленников;
* оперативное согласование используемых протоколов аутентификации;
* осуществление динамической аутентификации взаимодействующих сторон в процессе работы удаленного соединения;
* применение криптозащиты передаваемых секретных паролей либо механизма одноразовых паролей для исключения перехвата и несанкционированного использования аутен-тифицирующей информации.
Протокол РРР имеет встроенные средства, которые могут быть использованы для организации аутентификации при удаленном взаимодействии. В стандарте RFC 1334 определены два протокола аутентификации:
* по паролю -- PAP (Password Authentication Protocol);
* по рукопожатию -- CHAP (Challenge Handshake Authentication Protocol).
В процессе установления удаленного соединения каждая из взаимодействующих сторон может предложить для применения один из стандартных протоколов аутентификации -- РАР или CHAP.
Иногда компании создают собственные протоколы аутентификации удаленного доступа, работающие вместе с протоколом РРР. Эти фирменные протоколы обычно являются модификациями протоколов РАР и CHAP.
Широкое применение для аутентификации по одноразовым паролям получил протокол S/Key. В программных продуктах, обеспечивающих связь по протоколу РРР, протоколы РАР и CHAP, как правило, поддерживаются в первую очередь.
Протокол РАР.
Суть работы протокола РАР довольно проста. В процессе аутентификации участвуют две стороны -- проверяемая и проверяющая. Протокол РАР использует для аутентификации передачу проверяемой стороной идентификатора и пароля в виде открытого текста. Если проверяющая сторона обнаруживает совпадение идентификатора и пароля с записью, имеющейся у него в БД легальных пользователей, то процесс аутентификации считается успешно завершенным, после чего проверяемой стороне посылается соответствующее сообщение. В качестве стороны, чья подлинность проверяется, как правило, выступает удаленный пользователь, а в качестве проверяющей стороны -- сервер удаленного доступа.
Для инициализации процесса аутентификации на базе протокола РАР сервер удаленного доступа после установления сеанса связи высылает удаленному компьютеру пакет LCP (Link Control Protocol) -- протокол управления каналом, указывающий на необходимость применения протокола РАР. Далее осуществляется обмен пакетами РАР. Удаленный компьютер передает по каналу связи проверяющей стороне идентификатор и пароль, введенные удаленным пользователем. Сервер удаленного доступа по полученному идентификатору пользователя выбирает эталонный пароль из БД системы защиты и сравнивает его с полученным паролем. Если они совпадают, то аутентификация считается успешной, что сообщается удаленному пользователю.
Следует особо отметить, что протокол аутентификации РАР, согласно которому идентификаторы и пароли передаются по линии связи в незашифрованном виде, целесообразно применять только совместно с протоколом, ориентированным на аутентификацию по одноразовым паролям, например, совместно с протоколом S/Key. В противном случае пароль, передаваемый по каналу связи, может быть перехвачен злоумышленником и использован повторно в целях маскировки под санкционированного удаленного пользователя.
Протокол CHAP.
В протоколе CHAP используется секретный статический пароль. В отличие от протокола РАР, в протоколе CHAP пароль каждого пользователя для передачи по линии связи шифруется на основе случайного числа, полученного от сервера. Такая технология обеспечивает не только защиту пароля от хищения, но и защиту от повторного использования злоумышленником перехваченных пакетов с зашифрованным паролем. Протокол CHAP применяется в современных сетях гораздо чаще, чем РАР, так как он использует передачу пароля по сети в защищенной форме, и, следовательно, гораздо безопаснее.
Шифрование пароля в соответствии с протоколом CHAP выполняется с помощью криптографического алгоритма хэширования и поэтому является необратимым. В стандарте RFC 1334 для протокола CHAP в качестве хэш-функции определен алгоритм MD5, вырабатывающий из входной последовательности любой длины 16-байтовое значение. Хотя минимальной длиной секрета является 1 байт, для повышения криптостойкости рекомендуется использовать секрет длиной не менее 16 байт. Спецификация CHAP не исключает возможность использования других алгоритмов вычисления хэш-функций.
Для инициализации процесса аутентификации по протоколу CHAP сервер удаленного доступа после установления сеанса связи должен выслать удаленному компьютеру пакет LCP, указывающий на необходимость применения протокола CHAP, а также требуемого алгоритма хэширования. Если удаленный компьютер поддерживает предложенный алгоритм хэширования, то он должен ответить пакетом LCP о согласии с предложенными параметрами. В противном случае выполняется обмен пакетами LCP для согласования алгоритма хэширования.
После этого начинается аутентификация на основе обмена пакетами протокола CHAP.
В протоколе CHAP определены пакеты четырех типов:
* Вызов (Challenge);
* Отклик (Response);
* Подтверждение (Success);
* Отказ (Failure).
Протокол CHAP использует для аутентификации удаленного пользователя результат шифрования произвольного слова-вызова с помощью уникального секрета. Этот секрет имеется как у проверяющей, так и у проверяемой стороны. Процедура аутентификации начинается с отправки сервером удаленного доступа пакета Вызов.
Удаленный компьютер, получив пакет Вызов, зашифровывает его с помощью односторонней функции и известного ему секрета, получая в результате дайджест. Дайджест возвращается проверяющей стороне в виде пакета Отклик.
Так как используется односторонняя хэш-функция, то по перехваченным пакетам Вызов и Отклик вычислить пароль удаленного пользователя практически невозможно.
Получив пакет Отклик, сервер удаленного доступа сравнивает содержимое результата из полученного пакета Отклик с результатом, вычисленным самостоятельно. Если эти результаты совпадают, то аутентификация считается успешной и сервер высылает удаленному компьютеру пакет Подтверждение.
В противном случае сервер удаленного доступа высылает пакет Отказ и разрывает сеанс связи.
Пакет Вызов должен быть отправлен сервером повторно, если в ответ на него не был получен пакет Отклик. Кроме того, пакет Вызов может отправляться периодически в течение сеанса удаленной связи для проведения динамической аутентификации, чтобы убедиться, что противоположная сторона не была подменена. Соответственно пакет Отклик должен отправляться проверяемой стороной в ответ на каждый принятый пакет Вызов.
Протокол S/Key.
Одним из наиболее распространенных протоколов аутентификации на основе одноразовых паролей является стандартизованный в Интернете протокол S/Key (RFC 1760). Этот протокол реализован во многих системах, требующих проверки подлинности удаленных пользователей, в частности в системе TACACS+ компании Cisco.
Перехват одноразового пароля, передаваемого по сети в процессе аутентификации, не предоставляет злоумышленнику возможности повторно использовать этот пароль, так как при следующей проверке подлинности необходимо предъявлять уже другой пароль. Поэтому схема аутентификации на основе одноразовых паролей, в частности S/Key, позволяет передавать по сети одноразовый пароль в открытом виде и, таким образом, компенсирует основной недостаток протокола аутентификации РАР.
Однако следует отметить, что протокол S/Key не исключает необходимость задания секретного пароля для каждого пользователя. Этот секретный пароль используется только для генерации одноразовых паролей. Для того чтобы злоумышленник не смог по перехваченному одноразовому паролю вычислить секретный исходный пароль, генерация одноразовых паролей выполняется с помощью односторонней, т.е. необратимой, функции. В качестве такой односторонней функции в спецификации протокола S/Key определен алгоритм хэширования MD4 (Message Digest Algorithm 4). Некоторые реализации протокола S/Key в качестве односторонней функции используют алгоритм хэширования MD5 (Message Digest Algorithm 5).
Иногда желательно, чтобы пользователь имел возможность сам назначать секретный постоянный пароль. Для осуществления такой возможности спецификация S/Key предусматривает режим вычисления одноразовых паролей не только на основе секретного пароля, но и на основе генерируемого проверяющей стороной случайного числа. Таким образом, в соответствии с протоколом S/Key за каждым пользователем закрепляется идентификатор и секретный постоянный пароль.
Перед тем как проходить аутентификацию, каждый пользователь должен сначала пройти процедуру инициализации очередного списка одноразовых паролей, т.е. фазу парольной инициализации. Данная фаза выполняется по запросу пользователя на сервере удаленного доступа.
Для ускорения процедуры аутентификации определенное число одноразовых паролей, например, несколько десятков, может быть вычислено заранее и храниться на удаленном компьютере в зашифрованном виде.
Протокол аутентификации на основе одноразовых паролей S/Key применяют, в частности, для улучшения характеристик протоколов централизованного контроля доступа к сети удаленных пользователей TACACS и RADIUS.
Централизованный контроль удаленного доступа.
Для управления удаленными соединениями небольшой локальной сети вполне достаточно одного сервера удаленного доступа. Однако если локальная сеть объединяет относительно большие сегменты и число удаленных пользователей существенно возрастает, то одного сервера удаленного доступа недостаточно.
При использовании в одной локальной сети нескольких серверов удаленного доступа требуется централизованный контроль доступа к компьютерным ресурсам.
Рассмотрим, как решается задача контроля доступа к сети удаленных пользователей в соответствии с обычной схемой, когда удаленные пользователи пытаются получить доступ к сетевым ресурсам, которые находятся под управлением нескольких разных ОС. Пользователь дозванивается до своего сервера удаленного доступа, и RAS выполняет для него процедуру аутентификации, например, по протоколу CHAP. Пользователь логически входит в сеть и обращается к нужному серверу, где снова проходит аутентификацию и авторизацию, в результате чего получает или не получает разрешение на выполнение запрошенной операции.
Нетрудно заметить, что такая схема неудобна пользователю, поскольку ему приходится несколько раз выполнять аутентификацию -- при входе в сеть на сервере удаленного доступа, а потом еще каждый раз при обращении к каждому ресурсному серверу сети. Пользователь вынужден запоминать несколько разных паролей. Кроме того, он должен знать порядок прохождения разных процедур аутентификации в разных ОС. Возникают также трудности с администрированием такой сети. Администратор должен заводить учетную информацию о каждом пользователе на каждом сервере. Эти разрозненные БД трудно поддерживать в корректном состоянии. При увольнении сотрудника сложно исключить его из всех списков. Возникают проблемы при назначении паролей, существенно затрудняется аудит.
Отмеченные трудности преодолеваются при установке в сети централизованной службы аутентификации и авторизации. Для централизованного контроля доступа выделяется отдельный сервер, называемый сервером аутентификации. Этот сервер служит для проверки подлинности удаленных пользователей, определения их полномочий, а также фиксации и накопления регистрационной информации, связанной с удаленным доступом. Надежность защиты повышается, если сервер удаленного доступа запрашивает необходимую для аутентификации информацию непосредственно у сервера, на котором хранится общая БД системы защиты компьютерной сети.
Однако в большинстве случаев серверы удаленного доступа нуждаются в посреднике для взаимодействия с центральной БД системы защиты, например, со службой каталогов.
Большинство сетевых ОС и служб каталогов сохраняют эталонные пароли пользователей с использованием одностороннего хэширования, что не позволяет серверам удаленного доступа, стандартно реализующим протоколы РАР и CHAP, извлечь открытый эталонный пароль для проверки ответа.
Роль посредника во взаимодействии между серверами удаленного доступа и центральной БД системы защиты может быть возложена на сервер аутентификации. Централизованный контроль удаленного доступа к компьютерным ресурсам с помощью сервера аутентификации выполняется на основе специализированных протоколов. Эти протоколы позволяют объединять используемые серверы удаленного доступа и сервер аутентификации в одну подсистему, выполняющую все функции контроля удаленных соединений на основе взаимодействия с центральной БД системы защиты. Сервер аутентификации создает единую точку наблюдения и проверки всех удаленных пользователей и контролирует доступ к компьютерным ресурсам в соответствии с установленными правилами.
К наиболее популярным протоколам централизованного контроля доступа к сети удаленных пользователей относятся протоколы TACACS (Terminal Access Controller Access Control System) и RADIUS (Remote Authentication Dial-In User Service). Они предназначены в первую очередь для организаций, в центральной сети которых используется несколько серверов удаленного доступа. В этих системах администратор может управлять БД идентификаторов и паролей пользователей, предоставлять им привилегии доступа и вести учет обращений к системным ресурсам.
Протоколы TACACS и RADIUS требуют применения отдельного сервера аутентификации, который для проверки подлинности пользователей и определения их полномочий может использовать не только собственную БД, но и взаимодействовать с современными службами каталогов, например, с NDS (Novell Directory Services) и Microsoft Windows NT Directory Service.
Серверы TACACS и RADIUS выступают в качестве посредников между серверами удаленного доступа, принимающими звонки от пользователей, с одной стороны, и сетевыми ресурсными серверами -- с другой. Реализации TACACS и RADIUS могут также служить посредниками для внешних систем аутентификации.
Рассмотрим особенности централизованного контроля удаленного доступа на примере протокола TACACS.
Система TACACS выполнена в архитектуре клиент-сервер. В компьютерной сети, включающей несколько серверов удаленного доступа, устанавливается один сервер аутентификации, который называют сервером TACACS (обычно это программа, работающая в среде универсальной ОС, чаще всего Unix).
На сервере TACACS формируется центральная база учетной информации об удаленных пользователях, включающая их имена, пароли и полномочия. В полномочиях каждого пользователя задаются подсети, компьютеры и сервисы, с которыми он может
работать, а также различные виды ограничений, например, временные ограничения. На этом сервере ведется БД аудита, в которой накапливается регистрационная информация о каждом логическом входе, продолжительности сессии, а также времени использования ресурсов сети.
Клиентами сервера TACACS являются серверы удаленного доступа, принимающие запросы на доступ к ресурсам сети от удаленных пользователей. В каждый такой сервер встроено ПО, реализующее стандартный протокол, по которому они взаимодействуют с сервером TACACS. Этот протокол также называется TACACS.
2.5 Проверка подлинности Windows
Проверка -- это выполняемый в Интернете процесс, в ходе которого проверяется подлинность копии Windows, а также наличие и целостность важных лицензионных файлов Windows. Эта процедура длится всего несколько секунд и позволяет корпорации Майкрософт сопоставить профиль оборудования компьютера с 25-символьным ключом продукта, который обычно указывается в сертификате подлинности. Это сопоставление анонимно архивируется для использования при дальнейших попытках активации и проверки, позволяя гарантировать, что установленный на компьютере ключ продукта Windows соответствует оригинальному ключу продукта Windows, который был приобретен. Таким образом проверка гарантирует, что ключ продукта не используется другими лицами в злоумышленных целях, например, для активации нелицензионных или контрафактных копий Windows. Корпорация Майкрософт может попросить выполнить проверку после активации Windows, в случае запроса загрузки подлинной операционной системы Windows из Центра загрузки Майкрософт или запроса не относящейся к безопасности загрузки из Центра обновления Windows. Во время проверки никакие персональные данные не собираются.
Подобные документы
Классификация угроз информационной безопасности. Ошибки при разработке компьютерных систем, программного, аппаратного обеспечения. Основные способы получения несанкционированного доступа (НСД) к информации. Способы защиты от НСД. Виртуальные частные сети.
курсовая работа [955,3 K], добавлен 26.11.2013Организация компьютерной безопасности и защиты информации от несанкционированного доступа на предприятиях. Особенности защиты информации в локальных вычислительных сетях. Разработка мер и выбор средств обеспечения информационной безопасности сети.
дипломная работа [1,6 M], добавлен 26.05.2014Определение в процессе исследования эффективного способа защиты информации, передающейся по Wi-Fi сети. Принципы работы Wi-Fi сети. Способы несанкционированного доступа к сети. Алгоритмы безопасности беспроводных сетей. Нефиксированная природа связи.
курсовая работа [2,3 M], добавлен 18.04.2014Принципы построения ЭВМ, устройства ввода-вывода. Структура и принципы работы сети Интернет. Поиск информации, виды моделей. Классификация языков программирования. Типы СУБД, операционные системы. Средства защиты от вирусов и несанкционированного доступа.
реферат [156,0 K], добавлен 19.01.2011Свойства и режимы реализации удаленного доступа. Организация удаленного доступа. Интеграция удаленного доступа в корпоративную интрасеть. Установка клиентских средств удаленного доступа для Windows. Утилита, работающая в архитектуре клиент-сервер.
курсовая работа [28,2 K], добавлен 17.12.2011Исследование понятия и классификации видов и методов несанкционированного доступа. Определение и модель злоумышленника. Организация защиты информации. Классификация способов защиты информации в компьютерных системах от случайных и преднамеренных угроз.
реферат [115,1 K], добавлен 16.03.2014Пути несанкционированного доступа, классификация способов и средств защиты информации. Каналы утечки информации. Основные направления защиты информации в СУП. Меры непосредственной защиты ПЭВМ. Анализ защищенности узлов локальной сети "Стройпроект".
дипломная работа [1,4 M], добавлен 05.06.2011Использование программой функции ввода-вывода данных для реализации дружественного интерфейса с пользователем. Функции консоли и особенности их применения для обеспечения аккуратного ввода информации и упорядоченного вывода. Обзор стандартных функций.
лабораторная работа [40,4 K], добавлен 06.07.2009Проверка локальной вычислительной сети техникума (ТОГБОУ СПО "КИТ") с помощью сетевого сканера безопасности XSpider. Средства защиты информации. Отключение удаленного помощника. Система защиты информации от несанкционированного доступа SECRET NET.
отчет по практике [1,4 M], добавлен 21.10.2015Разработка проводной локальной сети и удаленного доступа к данной сети с использованием беспроводной сети (Wi-Fi), их соединение между собой. Расчет времени двойного оборота сигнала сети (PDV). Настройка рабочей станции, удаленного доступа, сервера.
курсовая работа [2,0 M], добавлен 10.11.2010