Использование параллельных вычислений для графических процессоров с использованием технологий Nvidia Cuda

Определение сущности технологии Cuda, как программно-аппаратной архитектуры Nvidia, основанной на расширении языка программирования C. Изучение ее основных характеристик: оптимизированного обмена данными, поддержки 32- 64-битных операционных систем.

Рубрика Программирование, компьютеры и кибернетика
Предмет Информатика
Вид реферат
Язык русский
Прислал(а) incognito
Дата добавления 02.07.2014
Размер файла 340,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Сравнение центрального и графического процессора компьютера в параллельных расчётах. Пример применения технологии CUDA для неграфических вычислений. Вычисление интеграла и сложение векторов. Технические характеристики ПК, применяемого для вычислений.

    курсовая работа [735,9 K], добавлен 12.07.2015

  • Программно-аппаратный комплекс производства компании Nvidia. Код для сложения векторов, представленный в CUDA. Вычислительная схема СPU с несколькими ядрами SMP. Выделение памяти на видеокарте. Проведение синхронизации работы основной и GPU программ.

    презентация [392,5 K], добавлен 14.12.2013

  • Загальна термінологія CUDA. Структура NVIDIA CUDA, особливості створення, принципи оптимізації програм. Проблеми CUDA. Основні поняття і модель програмування, демонстрація технології CUDA на прикладі підрахунку CRC32-коду. Мінімальні вимоги до програми.

    курсовая работа [4,5 M], добавлен 14.05.2012

  • Еволюція GPU та поява GPGPU. OpenCL – відкритий стандарт для паралельного програмування гетерогенних систем. Сутність та особливості технології Nvidia CUDA. Програмно-апаратна платформа CUDA. Програмування за допомогою CUDA SDK. Огляд архітектури Fermi.

    курсовая работа [3,0 M], добавлен 09.06.2012

  • История развития графических адаптеров и их характеристики. Конкуренция изготовителей ATI и NVIDIA как "двигатель прогресса" графических адаптеров. Обзор основных моделей: ATI Radeon, Nvidia GeForce FX. Критерии выбора графических адаптеров при покупке.

    реферат [134,7 K], добавлен 14.11.2013

  • Преимущества архитектуры CUDA по сравнению с традиционным подходом к организации вычислений общего назначения посредством возможностей графических API. Создание CUDA проекта. Код программы расчёта числа PI и суммирования вектора CPU, ее технический вывод.

    курсовая работа [1,4 M], добавлен 12.12.2012

  • Понятие и особенности организации технологии CUDA, принципы реализации алгоритма с его помощью. Генерация случайных чисел. Оценка производительности исследуемой технологии, специфика построения графических программ на основе, преимущества использования.

    контрольная работа [102,7 K], добавлен 25.12.2014

  • История видеокарт, их назначение и устройство. Принципы обеспечения работы графического адаптера. Характеристики и интерфейс видеокарт. Сравнительный анализ аналогов производства компаний NVIDIA GeForce и AMD Radeon. Направления их совершенствования.

    контрольная работа [295,6 K], добавлен 04.12.2014

  • Изучение особенностей операционной системы, набора программ, контролирующих работу прикладных программ и системных приложений. Описания архитектуры и программного обеспечения современных операционных систем. Достоинства языка программирования Ассемблер.

    презентация [1,3 M], добавлен 22.04.2014

  • Знакомство с историей развития многопроцессорных комплексов и параллельных вычислений. Персональные компьютеры как распространенные однопроцессорные системы на платформе Intel или AMD, работающие под управлением однопользовательских операционных систем.

    презентация [1,1 M], добавлен 22.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.