Искусственный интеллект

Обзор развития работ в области искусственного интеллекта. Решение задач методом поиска в пространстве состояний. Представление знаний в интеллектуальных системах. Механизмы оперирования с неточными высказываниями. Вычисления по архитектуре клиент-сервер.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 27.04.2014
Размер файла 633,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Мало кто знает, как человек общался с первыми вычислительными машинами. Происходило это так: оператор, используя провода с разъемами на концах, соединял между собой триггеры (из которых, собственно, и состояла машина) таким образом, чтобы при запуске выполнялась нужная последовательность команд. Внешне это очень напоминало манипуляции телефонных АТС начала века, а по сути - было очень квалифицированной работой. Можно сказать, программирование тогда осуществлялось даже не в машинных командах, а на аппаратном уровне. Потом задача упростилась: последовательность нужных команд стали записывать непосредственно в память машины. Для ввода информации стали применяться более производительные устройства. Сначала это были группы тумблеров, переключая которые, оператор (или программист - тогда эти понятия означали одно и то же) мог набрать нужную команду и ввести ее в память машины. Затем появились перфокарты. Следом - перфоленты. Скорость общения с машиной возросла, число ошибок, возникающих при вводе, резко уменьшилось. Но сущность этого общения, его характер - не изменились.

Возможность впервые пообщаться напрямую появилась на так называемых малых машинах. Неизгладимы впечатления от знакомства с диалоговым интерфейсом. Это было чудовищное порождение советской промышленности под поэтическим названием "Наири". Тогда диковинная возможность отстучать на клавиатуре адресованную непосредственно машине команду и получить осмысленный отклик казалась чудом. Особенно если до тех пор весь процесс общения с машиной заключался в передаче в руки лаборанта колоды перфокарт. С тем чтобы через пару дней получить назад эту колоду с комментарием: "У вас тут ошибка, программа не пошла". Измученным такого рода пользователям скудный диалоговый режим командной строки казался верхом совершенства. Именно ему сначала малые ЭВМ, а потом и персоналки во многом обязаны своим триумфальным шествием. Любой потребитель компьютерных услуг мог, не вдаваясь в технические трудности и выучив всего пару десятков команд операционной системы, общаться с компьютером без посредников. Тогда впервые возникло такое понятие, как "юзер", и именно появлению диалогового режима история приписывает взлет и расцвет многих компьютерных компаний, таких, например, как DEC.А потом появился его величество интерфейс графический: отпала нужда в знании вообще каких-либо команд, и юзер стал общаться со своим железным другом на интуитивно понятном языке жестов. На горизонте замаячил призрак звукового интерфейса...

8.2 Понимание в диалоге

Как бы то ни было, продолжатся поиски такого интерфейса, который устроил бы всех. На эту роль сейчас претендует интерфейс речевой. Собственно говоря, это как раз то, к чему человечество всегда стремилось в общении с компьютером. Еще в эпоху перфокарт в научно-фантастических романах человек с компьютером именно разговаривал, как с равным себе. Тогда же, в эпоху перфокарт, или даже ранее, были предприняты первые шаги по реализации речевого интерфейса. Работы в этом направлении велись еще в то время, когда о графическом интерфейсе никто даже и не помышлял. За сравнительно короткий период был выработан исчерпывающий теоретический базис, и практические достижения обуславливались только производительностью компьютерной техники. Исследователи недалеко продвинулись за прошедшие десятки лет, что заставляет некоторых специалистов крайне скептически относиться к самой возможности реализации речевого интерфейса в ближайшем будущем. Другие считают, что задача уже практически решена. Впрочем, все зависит от того, что следует считать решением этой задачи. Построение речевого интерфейса распадается на три составляющие.

Первая задача состоит в том, чтобы компьютер мог "понять" то, что ему говорит человек, то есть он доложен уметь извлекать из речи человека полезную информацию. Пока что, на нынешнем этапе, эта задача сводится к тому, чтобы извлечь из речи смысловую ее часть, текст (понимание таких составляющих, как скажем, интонация, пока вообще не рассматривается). То есть эта задача сводится к замене клавиатуры микрофон. Вторая задача состоит в том, чтобы компьютер воспринял смысл сказанного. Пока речевое сообщение состоит из некоего стандартного набора понятных компьютеру команд (скажем, дублирующих пункты меню), ничего сложного в ее реализации нет. Однако вряд ли такой подход будет удобнее, чем ввод этих же команд с клавиатуры или при помощи мыши. Пожалуй, даже удобнее просто щелкнуть мышкой по иконке приложения, чем четко выговаривать (к тому же мешая окружающим): "Старт! Главное меню! Ворд!" .В идеале компьютер должен четко "осмысливать" естественную речь человека и понимать, что, к примеру, слова "Хватит!" и "Кончай работу!" означают в одной ситуации разные понятия, а в другой - одно и то же . Третья задача состоит в том, чтобы компьютер мог преобразовать информацию, с которой он оперирует, в речевое сообщение, понятное человеку.

Пока окончательное решение существует только для третьей. По сути, синтез речи - это чисто математическая задача, которая в настоящее время решена на довольно хорошем уровне. И в ближайшее время, скорее всего, будет совершенствоваться только ее техническая реализация. Уже есть разного рода программы для чтения вслух текстовых файлов, озвучкой диалоговых окон пунктов меню и могу засвидетельствовать, что с генерацией разборчивых текстовых сообщений они справляются без проблем. Препятствием для окончательного решения первой задачи служит то, что никто до сих пор толком не знает, каким образом можно расчленить нашу речь, чтобы извлечь из нее составляющие, в которых содержится смысл. В том звуковом потоке, который мы выдаем при разговоре, нельзя различить ни отдельных букв, ни слогов: даже, казалось бы, одинаковые буквы и слоги в разных словах на спектрограммах выглядят по-разному. Тем не менее, многие фирмы уже имеют свои методики (увы, тщательно скрываемые), позволяющие худо-бедно решить эту задачу. Во всяком случае, после предварительной тренировки современные системы распознавания речи работают довольно сносно и делают ошибок не больше, чем делали оптические системы распознавания печатных символов лет пять-семь назад. Что касается второй задачи, то она, по мнению большинства специалистов, не может быть решена без помощи систем искусственного интеллекта. Большие надежды есть на появление так называемых квантовых компьютеров. Если же подобные устройства появятся, это будет означать качественный переворот в вычислительных технологиях. Поэтому пока удел речевого интерфейса - всего лишь дублирование голосом команд, которые могут быть введены с клавиатуры или при помощи мыши. А здесь его преимущества сомнительны. Впрочем, есть одна область, которая дли многих может оказаться очень привлекательной. Это речевой ввод текстов в компьютер. Действительно, чем стучать по клавиатуре, гораздо удобнее продиктовать все компьютеру, чтобы он записал услышанное в текстовый файл. Здесь вовсе не требуется, чтобы компьютер осмысливал услышанное, а задача перевода речи в текст более или менее решена. Недаром большинство выпускаемых ныне программ "речевого интерфейса" ориентированы именно на ввод речи.

Хотя и здесь есть место для скепсиса. Если читать вслух, четко выговаривая слова, с паузами, монотонно, как это требуется для системы распознавания речи, то на машинописную страничку у меня уйдет пять минут.

Писать о речевом интерфейсе сложно. С одной стороны, тема абсолютно не нова, с другой - активное развитие и применение этой технологии только начинается (в который раз). С одной стороны, успели сформироваться устойчивые стереотипы и предубеждения, с другой - несмотря на почти полвека настойчивых усилий не нашли разрешения концептуальные вопросы, стоявшие еще перед родоначальниками речевого ввода.

Первый - и, пожалуй, основной - вопрос касается области применения. Поиск приложений где распознавание речи могло бы продемонстрировать все свои достоинства, вопреки устоявшемуся мнению, является задачей далеко не тривиальной. Сложившаяся практика применения компьютеров вовсе не способствует широкому внедрению речевого интерфейса.

Становление современной компьютерной индустрии проходило под флагом графического интерфейса, альтернативы которому в круге задач, решаемых сегодня компьютерами, не существует. Массовые приложения: САПР, офисные и издательские пакеты, СУБД составляют основной объем интеллектуальной начинки компьютеров, оставляя в их нынешнем виде очень мало места для применения альтернативных моделей пользовательского интерфейса, в том числе и речевого.

Для подачи команд, связанных с позиционированием в пространстве, человек всегда пользовался и будет пользоваться жестами, то есть системой "руки- глаза". На этом принципе построен современный графический интерфейс, Перспектива замены клавиатуры и мыши блоком распознавания речи абсолютно отпадает. При этом выигрыш от возложения на него части функций управления настолько мал, что не смог предоставить достаточных оснований даже для пробного внедрения в массовых компьютерах на протяжении уже более тридцати лет. Именно таким сроком оценивается существование коммерчески применимых систем распознавания речи.

Сегодня среди ведущих производителей систем распознавания речи не принято отдавать должное достижениям исследователей прошлых лет. Причина понятна: это не только в значительной степени снизит видимые показатели достигнутого ими прогресса, но и поспособствует возникновению вполне обоснованных сомнений в перспективности осуществляемых подходов вообще.

Для объективной оценки прогресса технологии распознавания речи сравните характеристики систем, реализованных в рамках проекта к 1976 году и систем, продвигаемых на рынок в настоящее время. Возникает два вопроса. Почему не нашли достойного применения разработки двадцатилетней давности и почему за такой продолжительный период не произошло видимого качественного сдвига в характеристиках конкретных систем? Ответ на I первый вопрос частично изложен выше: основная проблема - в области применения. Можно добавить, что вопреки настойчиво навязываемому сегодня в маркетинговых целях (в частности, для продвижения процессоров ММХ) мнению, высокие требования данной технологии к вычислительным ресурсам не являлись основным препятствиям к ее широкому внедрению. Возникновение схожих проблем у разработчиков графических систем привело к созданию и массовому применению графических аппаратных ускорителей, а не отказу от оконного интерфейса .При этом разрабатываемые peчевые адаптеры не превосходят по себестоимости графических. Ответ на второй вопрос напрямую связан с первым. Технология, не находящая применения, не может себя прокормить и обеспечить свой рост. Кроме того, вполне возможно, что ориентация большинства исследовательских центров на увеличение распознаваемого словаря является ошибочной как с точки зрения применимости, так и с точки зрения научной перспективности. Еще в 1969 году в своем знаменитом письме редактору журнала Акустического общества Америки Дж. Пиес, сотрудник фирмы Bell Laboratories, указал на отсутствие явного прогресса в то время и возможности такого прогресса технологии распознавания речи в ближайшем будущем в связи с неспособностью компьютеров анализировать синтаксическую, семантическую и прагматическую информацию, содержащуюся в высказывании. Имеющийся барьер может быть преодолен только с развитием систем искусственного интеллекта- направлением, натолкнувшимся в 70-х на барьер сложности и находящемся в настоящее время практически в полном забвении. Трудно надеяться на дальнейшее улучшение характеристик устройств речевого ввода, учитывая, что уже в 70-х годах их способность распознавать звуки речи превосходила человеческую. Данный факт был подтвержден серией экспериментов по сравнению уверенности распознавания человеком и компьютером слов иностранного языка и бессмысленных цепочек звуков. При отсутствии возможности подключения прагматических (смысловых), семантических и других анализаторов человек явно проигрывает.

Для иллюстрации приведенных выше, возможно, несколько спорных утверждений рассмотрим перспективу и основные проблемы применения систем речевого ввода текстов, особенно активно продвигаемых в последнее время. Для сравнения: спонтанная речь произносится со средней скоростью 2,5 слов в секунду, профессиональная машинопись - 2 слова в секунду, непрофессиональная -0,4. Таким образом, на первый взгляд, речевой ввод имеет значительное превосходство по производительности. Однако оценка средней скорости диктовки в реальных условиях снижается до 0,слова в секунду в связи с необходимостью четкого произнесения слов при речевом вводе и достаточно высоким процентом ошибок распознавания, нуждающихся в корректировке. Речевой интерфейс естественен для человека и обеспечивает дополнительное удобство при наборе текстов. Однако даже профессионального диктора может не обрадовать перспектива в течение нескольких часов диктовать малопонятливому и немому (к этому еще вернемся) компьютеру. Кроме того, имеющийся опыт эксплуатации подобных систем свидетельствуете высокой вероятности заболевания голосовых связок операторов, что связано с неизбежной при диктовке компьютеру монотонностью речи.

Часто к достоинствам речевого ввода текста относят отсутствие необходимости в предварительном обучении. Однако одно из самых слабых мест современных систем распознавания речи - чувствительность к четкости произношения - приводит к потере этого, казалось бы, очевидного преимущества, Печатать на клавиатуре оператор учится в среднем 1-2 месяца. Постановка правильного произношения может занять несколько лет. Кроме того, дополнительное напряжение -следствие сознательных и подсознательных усилий по достижению более высокой распознаваемости - совсем не способствует сохранению нормального режима работы речевого аппарата оператора и значительно увеличивает риск появления специфических заболеваний. Существует и еще одно неприятное ограничение применимости, сознательно не упоминаемое, на мой взгляд, создателями систем речевого ввода. Оператор, взаимодействующий с компьютером через речевой интерфейс, вынужден работать в звукоизолированном отдельном помещении либо пользоваться звукоизолирующим шлемом. Иначе он будет мешать работе своих соседей по офису, которые, в свою очередь, создавая дополнительный шумовой фон будут значительно затруднять работу речевого распознавателя, Таким образом, речевой интерфейс вступает в явное противоречие с современной организационной структурой предприятий, ориентированных на коллективный труд. Ситуация несколько смягчается с развитием удаленных форм трудовой деятельности, однако еще достаточно долго самая естественная для человека производительная и потенциально массовая форма пользовательского интерфейса обречена на узкий круг применения.

Ограничения применимости систем распознавания речи в рамках наиболее популярных традиционных приложений заставляют сделать вывод о необходимости поиска потенциально перспективных для внедрения речевого интерфейса приложений за пределами традиционной офисной сферы, что подтверждается коммерческими успехами узкоспециализированных речевых систем.

8.3 Примеры системы обработки естественного языка

Самый успешный на сегодня проект коммерческого применения распознавания речи - телефонная сеть фирмы AT&. Клиент может запросить одну из пяти категорий услуг, используя любые слова. Он говорит до тех пор, пока в его высказывании встретится одно из пяти ключевых слов. Эта система в настоящее время обслуживает около миллиарда звонков в год. Данный вывод находится в противоречии с устоявшимися широко распространенными стереотипами и ожиданиями. Несмотря на то, что одним из наиболее перспективных направлений для внедрения систем распознавания речи может стать сфера компьютерных игр, узкоспециализированных реабилитационных программ для инвалидов, телефонных и информационных систем, ведущие разработчики речевого распознавания наращивают усилия по достижению универсализации и увеличения объемов словаря даже в ущерб сокращению процедуры предварительной настройки на диктора. А между тем именно эти приложения представляют очень низкие требования к объему распознаваемого словаря наряду с жесткими ограничения, налагаемыми на предварительную настройку. Более того распознавание спонтанной слитной речи практически топчется на месте с ^ 70-х годов силу неспособности компьютера эффективно анализировать неакустические характеристики речи. Даже Билл Гейтс, являющий собой смысле идеал прагматизма, оказался не свободен от исторически сложившихся стереотипов. Начав в 95-96 году с разработки собственной универсальной системы распознавания речи провозгласил очередную эру повсеместного внедрения речевого интерфейса. Средства речевого планируется включить в стандартную поставку новой версии - чисто офисной операционной системы. При этом руководитель Microsoft упорно повторяет фразу о том, что скоро можно будет забыть о клавиатуре и мыши. Вероятно, он планирует продавать вместе с коробкой Windows NT акустические шлемы вроде тех, которые используют военные летчики и пилоты "Формулы 1". Кроме того, неужели Microsoft в ближайшем будущем прекратит выпуск Word, Excel и т. д.? Управлять графическими объектами экрана голосом, не имея возможности помочь руками, более чем затруднительно.

Говоря о речевом интерфейсе, часто делают упор на распознавание речи, забывая о другой его стороне- речевом синтезе. Заглавную роль в этом перекосе сыграло бурное развитие в последнее время систем, ориентированных на события, в значительной степени подавляющих отношение к компьютеру как активной стороне диалога. Еще относительно недавно (лет тридцать назад) подсистемы распознавания и синтеза речи рассматривались как части единого комплекса речевого интерфейса. Однако интерес к синтезу пропал достаточно быстро. Во-первых, разработчики не встретили даже десятой доли сложностей, с которыми они столкнулись при создании систем распознавания. Во-вторых, в отличие от распознавания синтез речи не демонстрирует значительных преимуществ перед другими средствами вывода информации из компьютера. Практически вся его ценность заключается в дополнении речевого ввода. Для человека естественным и привычным является именно диалог, а не монолог. Как следствие недооценки необходимости речевого ответа появляется повышенная утомляемость операторов, монотонность речи и ограниченность применимости речевого интерфейса. Чем может помочь слепому компьютер, оснащенный распознавателем речи, если он лишен устройства обратной не визуальной связи?

Широко известен факт непроизвольной подстройки голоса под голос собеседника. Почему не использовать эту способность человека для увеличения безошибочности распознавания речи компьютером за счет корректировки произношения оператора с помощью двустороннего диалога? Кроме того, вполне возможно, что правильно организованный и модулированный синтез может в значительной степени снизить риск появления у оператора заболеваний, связанных с монотонностью речи и дополнительным напряжением. Повсеместное проникновение графического пользовательского интерфейса было обеспечено за счет совместного применения графического монитора, средства вывода графической информации, и мыши - для ее ввода, а также, не в последнюю очередь, благодаря гениальным концептуальным находкам в области оконного интерфейса фирмы Xerox.

Будущее речевого интерфейса вне меньшей степени зависит от умения современных разработчиков не только создать технологическую основу речевого ввода, но и гармонично слить технологические находки в единую логически завершенную систему взаимодействия "человек-компьютер".

8.4 Методы озвучивания речи

Теперь скажем несколько слов о наиболее распространенных методах озвучивания, то есть о методах получения информации, управляющей параметрами создаваемого звукового сигнала, и способах формирования самого звукового сигнала. Самое широкое разделение стратегий, применяемых при озвучивании речи, - это разделение на подходы, которые направлены на построение действующей модели речепроизводящей системы человека, и подходы, где ставится задача смоделировать акустический сигнал как таковой. Первый подход известен под названием артикуляторного синтеза. Второй подход представляется на сегодняшний день более простым, поэтому он гораздо лучше изучен и практически более успешен. Внутри него выделяется два основных направления - формантный синтез по правилам и компилятивный синтез.

Формантные синтезаторы используют возбуждающий сигнал, который проходит через цифровой фильтр, построенный на нескольких резонансах, похожих на резонансы голосового тракта. Разделение возбуждающего сигнала и передаточной функции голосового тракта составляет основу классической акустической теории речеобразования.

Компилятивный синтез осуществляется путем склейки нужных единиц компиляции из имеющегося инвентаря. На этом принципе построено множество систем, использующих разные типы единиц и различные методы составления инвентаря. В таких системах необходимо применять обработку сигнала для приведения частоты основного тона, энергии и длительности единиц к тем, которыми должна характеризоваться синтезируемая речь. Кроме того, требуется, чтобы алгоритм обработки сигнала сглаживал разрывы в формантной (и спектральной в целом) структуре на границах сегментов. В системах компилятивного синтеза применяются два разных типа алгоритмов обработки сигнала: LР (сокр. англ. Linear Рreduction - линейное предсказание) и РSOLA (сокр. англ. Рitch Sуnchronous Оvеrlap аnd Аdd). LP-синтез основан в значительной степени на акустической теории речеобразования, в отличие от РSOLA-синтеза, который действует путем простого разбиения звуковой волны, составляющей единицу компиляции, на временные окна и их преобразования. Алгоритмы РSOLA позволяют добиваться хорошего сохранения естественности звучания при модификации исходной звуковой волны.

8.5 Наиболее распространенные системы синтеза речи

Наиболее распространенными системами синтеза речи на сегодня, очевидно, являются системы, поставляемые в комплекте со звуковыми платами. Если ваш компьютер оснащен какой-либо из них, существует значительная вероятность того, что на нем установлена система синтеза речи - увы, не русской, а английской речи, точнее, ее американского варианта. К большинству оригинальных звуковых плат Sound Blaster прилагается система Сreative Техt-Аssist, а вместе со звуковыми картами других производителей часто поставляется программа Моnо1оgue компании First Byte.

TextAssist представляет собой реализацию формантного синтезатора по правилам и базируется на системе DECTalk, разработанной корпорацией Digital Eguipment при участии известного американского фонетиста Денниса Клана (к сожалению, рано ушедшего из жизни). DECTalk до сих пор остается своего рода стандартом качества для синтеза речи американского варианта английского. Компания Сrеаtive Technologies предлагает разработчикам использовать ТехtАssist в своих программах с помощью специального ТехtАssistАpi(ААРI). Поддерживаемые операционные системы - МS Windows и Windows 95; для Windws NT также существует версия системы DЕСТаlk, изначально создававшейся для Digital Units. Новая версия ТехtАssist, объявленная фирмой Аssotiative Computing, inс. и разработанная с использованием технологий DЕСTа1k и Сrеаtivе, является в то же время многоязычной системой синтеза, поддерживая английский, немецкий, испанский и французский языки. Это обеспечивается прежде всего использованием соответствующих лингвистических модулей, разработчик которых - фирма Lеrnout& Наuspie Sреесh Рrоducts, признанный лидер в поддержке многоязычных речевых технологий. В новой версии будет встроенный редактор словаря, а также специализированное устройство ТехtRеаdеr с кнопочным управлением работой синтезатора в разных режимах чтения текста.

Программа Моnоlоguе, предназначенная для озвучивания текста, находящегося в буфере обмена МS Windows, использует систему РrоVоiсе. РrоVоiсе - компилятивный синтезатор с использованием оптимального выбора режима компрессии речи и сохранения пограничных участков между звуками, разновидность ТD-РS0LА. Рассчитан на американский и британский английский, немецкий, французский, латино-американскую разновидность испанского и итальянского языков. Инвентарь сегментов компиляции - смешанной размерности: сегменты - фонемы или аллофоны. Компания First Вуtе позиционирует систему РrоVоicе и программные продукты, основанные на ней, как приложения с низким потреблением процессорного времени. FirstByte также предлагает рассчитанную на мощные компьютеры систему артикуляторного синтеза РrimoVox для использования в приложениях телефонии. Для разработчиков: Моnо1оguе Win32 поддерживает спецификацию Мicrosoft SAPI.

Мода на свободно распространяемые продукты не миновала и области приложений синтеза речи. МВR0LA- так называется система многоязычного синтеза, реализующая особый гибридный алгоритм компилятивного синтеза и работающая как под РС/ Windows 3.1, РС/Windows 95, так и под Sun4. Впрочем, система принимает на входе цепочку фонем, а не текст, и потому не является, строго говоря, системой синтеза речи по тексту. Формантный синтезатор Тru-Voicе фирмы Сеntigram Cоmmunication Соrporation(США) близок к описанным выше системам по архитектуре и предоставляемым возможностям, однако он поддерживает больше языков: американский английский, латино-американский, испанский, немецкий, французский, итальянский. Кроме того, в этот синтезатор включен специальный препроцессор, который обеспечивает быструю подготовку для чтения сообщений, получаемых по электронной почте, факсов и баз данных.

8.6 Речевой вывод информации

Речевой вывод информации из компьютера - проблема не менее важная, чем речевой ввод. Это вторая часть речевого интерфейса, без которой разговор с компьютером не может состояться. Мы имеем в виду прочтение вслух текстовой информации, а не проигрывание заранее записанных звуковых файлов. То есть выдачу в речевой форме заранее не известной информации. Фактически, благодаря синтезу речи по тексту открывается еще один канал передачи данных от компьютера к человеку, аналогичный тому, какой мы имеем благодаря монитору. Конечно, трудновато было бы передать рисунок голосом. Но вот услышать электронную почту или результат поиска в базе данных в ряде случаев было бы довольно удобно, особенно если в это время взгляд занят чем-либо другим.

С точки зрения пользователя, наиболее разумное решение проблемы синтеза речи - это включение речевых функций (в перспективе - многоязычных, с возможностями перевода) в состав операционной системы. Точно так же, как мы пользуемся командой РRINT, мы будем применять команду ТАLК или SРЕАК. Такие команды появятся в меню общеупотребительных компьютерных приложений и в языках программирования. Компьютеры будут озвучивать навигацию по меню, читать (дублировать голосом) экранные сообщения, каталоги файлов, и т. д. Важное замечание: пользователь должен иметь достаточные возможности по настройке голоса компьютера, в частности, при желании, суметь выключить голос совсем.

Вышеупомянутые функции и сейчас были бы не лишними для лиц, имеющих проблемы со зрением. Для всех остальных они создадут новое измерение удобства пользования компьютером и значительно снизят нагрузку на нервную систему и на зрение. По нашему мнению, сейчас не стоит вопрос, нужны синтезаторы речи в персональных компьютерах или нет. Вопрос в другом - когда они будут установлены на каждом компьютере. Осталось ждать, может быть, год или два.

8.7 Автоматический компьютерный синтез речи по тексту

Методы синтеза речи

Теперь, после оптимистического описания ближайшего будущего, давайте обратимся собственно к технологии синтеза речи. Рассмотрим какой-нибудь хотя бы минимально осмысленный текст. Текст состоит из слов, разделенных пробелами и знаками препинания. Произнесение слов зависит от их расположения в предложении, а интонация фразы - от знаков препинания. Более того, довольно часто и от типа применяемой грамматической конструкции: в ряде случаев при произнесении текста слышится явная пауза, хотя какие-либо знаки препинания отсутствуют. Наконец, произнесение зависит и от смысла слова! Сравните, например, выбор одного из вариантов "за'мок" или " замо'к" для одного и того же слова "замок".

Уже стартовый анализ проблемы показывает ее сложность. И в самом деле, на эту тему написаны десятки монографий, и огромное количество публикаций осуществляется ежемесячно. Поэтому мы здесь коснемся только самых общих, наиболее важных для понимания моментов.

8.8 Обобщенная функциональная структура синтезатора

Структура идеализированной системы автоматического синтеза речи состоит из нескольких блоков.

· Определение языка текста

· Нормализация текста

· Лингвистический анализ: синтаксический, морфемный анализ и т.д.

· Формирование просоидических характеристик

· Фонемный транскриптор

· Формирование управляющей информации

· Получение звукового сигнала

Она не описывает ни одну из существующих реально систем, но содержит компоненты, которые можно обнаружить во многих системах. Авторы конкретных систем, независимо от того, являются ли эти системы уже коммерческим продуктом или еще находятся в стадии исследовательской разработки, уделяют различное внимание отдельным блокам и реализуют их очень по-разному, в соответствии с практическими требованиями.

8.9 Модуль лингвистической обработки

Прежде всего, текст, подлежащий прочтению, поступает в модуль лингвистической обработки. В нем производится определение языка (в многоязычной системе синтеза), а также отфильтровываются не подлежащие произнесению символы. В некоторых случаях используются спелчекеры (модули исправления орфографических и пунктуационных ошибок). Затем происходит нормализация текста, то есть осуществляется разделение введенного текста на слова и остальные последовательности символов. К символам относятся, в частности, знаки препинания и символы начала абзаца. Все знаки пунктуации очень информативны. Для озвучивания цифр разрабатываются специальные подблоки. Преобразование цифр в последовательности слов является относительно легкой задачей (если читать цифры как цифры, а не как числа, которые должны быть правильно оформлены грамматически), но цифры, имеющие разное значение и функцию, произносятся по-разному. Для многих языков можно говорить, например, о существовании отдельной произносительной подсистемы телефонных номеров. Пристальное внимание нужно уделить правильной идентификации и озвучиванию цифр, обозначающих числа месяца, годы, время, телефонные номера, денежные суммы и т. д. (список для различных языков может быть разным).

8.10 Лингвистический анализ

После процедуры нормализации каждому слову текста (каждой словоформе) необходимо приписать сведения о его произношении, то есть превратить в цепочку фонем или, иначе говоря, создать его фонемную транскрипцию. Во многих языках, в том числе и в русском, существуют достаточно регулярные правила чтения -правила соответствия между буквами и фонемами (звуками), которые, однако, могут требовать предварительной расстановки словесных ударений. В английском языке правила чтения очень нерегулярны, и задача данного блока для английского синтеза тем самым усложняется. В любом случае при определении произношения имен собственных, заимствований, новых слов, сокращений и аббревиатур возникают серьезные проблемы. Просто хранить транскрипцию для всех слов языка не представляется возможным из-за большого объема словаря и контекстных изменений произношения одного и того же слова во фразе.

Кроме того, следует корректно рассматривать случаи графической омонимии: одна и та же последовательность буквенных символов в различных контекстах порой представляет два различных слова/словоформы и читается по-разному (ср. выше приведенный пример слова "замок"). Часто удается решить проблему неоднозначности такого рода путем грамматического анализа, однако иногда помогает только использование более широкой семантической информации.

Для языков с достаточно регулярными правилами чтения одним из продуктивных подходов к переводу слов в фонемы является система контекстных правил, переводящих каждую букву/буквосочетание в ту или иную фонему, то есть автоматический фонемный транскриптор. Однако чем больше в языке исключений из правил чтения, тем хуже работает этот метод. Стандартный способ улучшения произношения системы состоит в занесении нескольких тысяч наиболее употребительных исключений в словарь. Альтернативное подходу "слово-буква-фонема" решение предполагает морфемный анализ слова и перевод в фонемы морфов (то есть значимых частей слова: приставок, корней, суффиксов и окончаний). Однако в связи с разными пограничными явлениями на стыках морфов разложение на эти элементы представляет собой значительные трудности. В то же время для языков с богатой морфологией, например, для русского, словарь морфов был бы компактнее. Морфемный анализ удобен еще и потому, что с его помощью можно определять принадлежность слов к частям речи, что очень важно для грамматического анализа текста и задания его просодических характеристик. В английских системах синтеза морфемный анализ был реализован в системе МIТа1к, для которой процент ошибок транскриптора составляет 5%.

Особую проблему для данного этапа обработки текста образуют имена собственные.

8.11 Формирование просодических характеристик

К просодическим характеристикам высказывания относятся его тональные, акцентные и ритмические характеристики. Их физическими аналогами являются частота основного тона, энергия и длительность. В речи просодические характеристики высказывания определяются не только составляющими его словами, но также тем, какое значение оно несет и для какого слушателя предназначено, эмоциональным и физическим состоянием говорящего и многими другими факторами. Многие из этих факторов сохраняют свою значимость и при чтении вслух, поскольку человек обычно интерпретирует и воспринимает текст в процессе чтения. Таким образом, от системы синтеза следует ожидать примерно того же, то есть, что она сможет понимать имеющийся у нее на входе текст, используя методы искусственного интеллекта. Однако этот уровень развития компьютерной технологии еще не достигнут, и большинство современных систем автоматического синтеза стараются корректно синтезировать речь с эмоционально нейтральной интонацией. Между тем, даже эта задача на сегодняшний день представляется очень сложной.

Формирование просодических характеристик, необходимых для озвучивания текста, осуществляется тремя основными блоками, а именно: блоком расстановки синтагматических границ (паузы), блоком приписывания ритмических и акцентных характеристик (длительности и энергия), блоком приписывания тональных характеристик (частота основного тона). При расстановке синтагматических границ определяются части высказывания (синтагмы), внутри которых энергетические и тональные характеристики ведут себя единообразно и которые человек может произнести на одном дыхании. Если система не делает пауз на границах таких единиц, то возникает отрицательный эффект: слушающему кажется, что говорящий (в данном случае - система) задыхается. Помимо этого, расстановка синтагматических границ существенна и для фонемной транскрипции текста. Самое простое решение состоит в том, чтобы ставить границы там, где их диктует пунктуация. Для наиболее простых случаев, когда пунктуационные знаки отсутствуют, можно применить метод, основанный на использовании служебных слов. Именно эти методы используются в системах синтеза Рго-Sе-2000, Infovox- 5А-101 и DЕСTаLк, причем в последней просодически ориентированный словарь, помимо служебных слов, включает еще и глагольные формы.

Задача приписывания тональных характеристик обычно ставится достаточно узко. В системах синтеза речи предложению, как правило, приписывается нейтральная интонация. Не предпринималось попыток моделировать эффекты более высокого уровня, такие, как эмоциональная окраска речи, поскольку эту информацию извлечь из текста трудно, а часто и просто невозможно.

8.12 Cинтезатор русской речи

В качестве примера рассмотрим разработку "Говорящая мышь" клуба голосовых технологий научного парка МГУ. (Известно, что в некоторых российских организациях и компаниях ведутся аналогичные разработки, однако подробных сведений в печати обнаружить не удалось.

В основе речевого синтеза лежит идея совмещения методов конкатенации и синтеза по правилам. Метод конкатенации при адекватном наборе базовых элементов компиляции обеспечивает качественное воспроизведение спектральных характеристик речевого сигнала, а набор правил - возможность формирования естественного интонационно-просодического оформления высказываний. Существуют и другие методы синтеза, может быть, в перспективе более гибкие, но дающие пока менее естественное озвучивание текста. Это, прежде всего, параметрический (формантный) синтез речи по правилам или на основе компиляции, развиваемый для ряда языков зарубежными исследователями. Однако для реализации этого метода необходимы статистически представительные акустико-фонетические базы данных и соответствующая компьютерная технология, которые пока доступны не всем.

8.13 Язык формальной записи правил синтеза

Для создания удобного и быстрого режима изменения и верификации правил, включенных в разные блоки синтезирующей системы, был разработан формализованный и в то же время содержательно прозрачный и понятный язык записи правил, который легко компилируется в исходные тексты программ. В настоящее время блок автоматического транскриптора насчитывает около 1000 строк, записанных на формализованном языке представления правил.

8.14 Интонационное обеспечение

Функция разработанных правил состоит в том, чтобы определить временные и тональные характеристики базовых элементов компиляции, которые при обработке синтагмы выбираются из библиотеки в нужной последовательности специальным процессором (блоком кодировки). Необходимые для этого предварительные операции над синтезируемым текстом: выделение синтагм, выбор типа интонации, определение степени выделенности (ударности-безударности) гласных и символьного звукового наполнения слоговых комплексов осуществляются блоком автоматического транскриптора.

Во временной процессор входят также правила, задающие длительность паузы после окончания синтагмы (конечной/неконечной), которые необходимы для синтеза связного текста. Предусмотрена также модификация общего темпа произнесения синтагмы и текста в целом, причем в двух вариантах: в стандартном - при равномерном изменении всех единиц компиляции - и в специальном, дающем возможность изменения длительности только гласных или только согласных.

Тональный процессор содержит правила формирования для одиннадцати интонационных моделей: нейтральная повествовательная интонация (точка), точковая интонация, типичная для фокусируемых ответов на вопросы; интонация предложений с контрастивным выделением отдельных слов; интонация специального и общего вопроса; интонация особых противопоставительных или сопоставительных вопросов; интонация обращений, некоторых типов восклицаний и команд; два вида незавершенности, перечислительная интонация; интонация вставочных конструкций.

Аллофонная база данных

Необходимый речевой материал был записан в следующем режиме оцифровки: частота дискретизации 22 кГц с разрядностью 16 бит.

В качестве базовых элементов компиляции выбраны аллофоны, оптимальный набор которых и представляет собой акустико-фонетическую базу синтеза. Инвентарь базовых единиц компиляции включает в себя 1200 элементов, который занимает около 7 Мбайт памяти. В большинстве случаев элементы компиляции представляют собой сегменты речевой волны фонемной размерности. Для получения необходимой исходной базы единиц компиляции был составлен специальный словарь, который содержит слова и словосочетания с аллофонами во всех учитываемых контекстах. В нем содержится 1130 словоупотреблений.

На основе данных, полученных от остальных модулей синтеза речи и от аллофонной базы, программа формирования акустического сигнала позволяет осуществлять модификацию длительности согласных и гласных. Она дает возможность модифицировать длительность отдельных периодов на вокальных звуках, используя две или три точки тонирования на аллофонном сегменте, осуществляет модификацию энергетических характеристик сегмента и соединяет модифицированные аллофоны в единую слитную речь.

На этапе синтеза акустического сигнала программа позволяет получать разнообразные акустические эффекты -такие как реверберация, эхо, изменение частотной окраски.

Готовый акустический сигнал преобразуется в формат данных, принятый для вывода звуковой информации. Используются два формата: WAV (Waveform Audio File Format), являющийся одним из основных, или VОХ (Voice File Format), широко используемый в компьютерной телефонии. Вывод также может осуществляться непосредственно на звуковую карту.

Инструментарий синтеза русской речи

Упоминавшийся выше инструментарий синтеза русской речи по тексту позволяет читать вслух смешанные русско-английские тексты. Инструментарий представляет собой набор динамических библиотек (DLL), в который входят модули русского и английского синтеза, словарь ударений русского языка, модуль правил произнесения английских слов. На вход инструментария подается слово или предложение, подлежащее произнесению, с выхода поступает звуковой файл в формате WAV или VOX, записываемый в память или на жесткий диск.

Система распознавания речи

Система распознавания речи состоит из двух частей. Эти части могут быть выделены в блоки или в подпрограммы. Для простоты скажем, что система распознавания речи состоит из акустической и лингвистической частей. Лингвистическая часть может включать в себя фонетическую, фонологическую, морфологическую, синтаксическую и семантическую модель языка.

Акустическая модель отвечает за представление речевого сигнала. Лингвистическая модель интерпретирует информацию, получаемую от акустической модели, и отвечает за представление результата распознавания потребителю.

Классификация систем распознавания речи

Классификация по назначению:

· командные системы

· системы диктовки текста

По потребительским качествам:

· диктороориентированные (тренируемые на конкретного диктора)

· дикторонезависимые

· распознающие отдельные слова

· распознающие слитную речь.

По механизмам функционирования:

· простейшие (корреляционные) детекторы

· экспертные системы с различным способом формирования и обработки базы знаний

· вероятностно-сетевые модели принятия решения, в том числе нейронные сети.

Для человека естественным и привычным является именно диалог, а не монолог. Как следствие недооценки необходимости речевого ответа появляется повышенная утомляемость операторов, монотонность речи и ограниченность применимости речевого интерфейса. Чем может помочь слепому компьютер, оснащенный распознавателем речи, если он лишен устройства обратной не визуальной связи?

Широко известен факт непроизвольной подстройки голоса под голос собеседника. Почему не использовать эту способность человека для увеличения безошибочности распознавания речи компьютером за счет корректировки произношения оператора с помощью двустороннего диалога? Кроме того, вполне возможно, что правильно организованный и модулированный синтез может в значительной степени снизить риск появления у оператора заболеваний, связанных с монотонностью речи и дополнительным напряжением. Повсеместное проникновение графического пользовательского интерфейса было обеспечено за счет совместного применения графического монитора, средства вывода графической информации, и мыши - для ее ввода, а также, не в последнюю очередь, благодаря гениальным концептуальным находкам в области оконного интерфейса фирмы Xerox.

Будущее речевого интерфейса в не меньшей степени зависит от умения современных разработчиков не только создать технологическую основу речевого ввода, но и гармонично слить технологические находки в единую логически завершенную систему взаимодействия "человек-компьютер". Основная работа еще впереди!!!

Лекция 9. Системы машинного зрения

О существовании специальных систем, которые "автоматически вводят в компьютер текст", знают даже начинающие пользователи. Со стороны все выглядит довольно просто и логично. На отсканированном изображении система находит фрагменты, в которых "узнает" буквы, а затем заменяет эти изображения настоящими буквами, или, по-другому, их машинными кодами. Так осуществляется переход от изображения текста к "настоящему" тексту, с которым можно работать в текстовом редакторе. Как этого добиться?

Компанией "Бит" была разработана специальная технология распознавания символов, которая получила название "Фонтанного преобразования", а на ее основе - коммерческий продукт, получивший высокую оценку. Это система оптического распознавания Fine Reader. Сегодня на рынке представлена уже третья версия продукта, которая работает не только с текстом, но и с формами, таблицами, а разработчики уже колдуют над новой четвертой версией Fine Reader, которая будет распознавать не только печатный но и рукописный текст.

9.1 Основные принципы или целостность восприятия

В основе фонтанного преобразования лежит принцип целостности. В соответствии с ним любой воспринимаемый объект рассматривается как целое, состоящее из частей, связанных между собой определенными отношениями. Так, например, печатная страница состоит из статей, статья - из заголовка и колонок, колонка - из абзацев, абзацы - из строк, строки - из слов, слова - из букв. При этом все перечисленные элементы текста связаны между собой определенными пространствами и языковыми отношениями.

Для выделения целого требуется определить его части. Части же, в свою очередь, можно рассматривать только в составе целого. Поэтому целостный процесс восприятия может происходить только в рамках гипотезы о воспринимаемом объекте - целом. После того как выдвинуто предположение о воспринимаемом объекте, выделяются и интерпретируются его части. Затем предпринимается попытка "собрать" из них целое, чтобы проверить правильность исходной гипотезы. Разумеется, воспринимаемый объект может интерпретироваться в рамках более крупного целого.

Так, читая предложение, человек узнает буквы, воспринимает слова, связывает их в синтаксические конструкции и понимает смысл.

В технических системах любое решение при распознавании текста принимается неоднозначно, а путем последовательного выдвижения и проверки гипотез и привлечения как знаний о самом исследуемом объекте, так и общего контекста. Целостное описание класса объектов восприятия отвечает двум условиям: во-первых, все объекты данного класса удовлетворяют этому описанию, а во- вторых, ни один объект другого класса не удовлетворяют ему. Например, класс изображений буквы "К" должен быть описан так, чтобы любое изображение буквы "К" в него попадало, а изображение всех других букв - нет. Такое описание обладает свойством отображаемости, то есть обеспечивает воспроизведение описываемых объектов: эталон буквы для системы OCR позволяет визуально воспроизвести букву, эталон слова для распознавания речи позволяет произнести слово, а описание структуры предложения в синтаксическом анализаторе позволяет синтезировать правильное предложение. С практической точки зрения отображаемость играет огромную роль, поскольку позволяет эффективно контролировать качество описаний.

Существует два вида целостного описания: шаблонное и структурное.

В первом случае описание представляет собой изображение в растровом или векторном представлении, и задан класс преобразований (например, повтор, масштабирование и пр.).

Во втором случае описание представляется в виде графа, узлами которого являются составляющие элементы входного объекта, а дугами - пространственные отношения между ними. В свою очередь элементы могут оказаться сложными (то есть иметь свое описание).

Конечно, шаблонное описание проще в реализации, чем структурное. Однако оно не может использоваться для описания объектов с высокой степенью изменчивости. Шаблонное описание, к примеру, может приниматься для распознавания только печатных символов, а структурное - еще и для рукописных.

Целостность восприятия предлагает два важных архитектурных решения. Во первых, все источники знания должны работать по возможности одновременно. Нельзя, например, сначала распознать страницу, а затем подвергнуть ее словарной и контекстной обработке, поскольку в этом случае невозможно будет осуществить обратную связь от контекстной обработки к распознаванию. Во вторых, исследуемый объект должен представляться и обрабатываться по возможности целиком.

Первый шаг восприятие - это формирование гипотезы о воспринимаемом объекте. Гипотеза может формироваться как на основе априорной модели объекта, контекста и результатов проверки предыдущих гипотез (процесс "сверху - вниз"), так и на основе предварительного анализа объекта ("снизу - вверх"). Второй шаг - уточнение восприятия (проверка гипотезы), при котором производится дополнительный анализ объекта в рамках выдвинутой гипотезы и в полную силу привлекается контекст.

Для удобства восприятия необходимо провести предварительную обработку объекта, не потеряв при этом существенной информации о нем. Обычно предварительная обработка сводится к преобразованию входного объекта в представление, удобное для дальнейшей работы (например, векторизация изображения), или получение всевозможных вариантов сегментации входного объекта, из которого путем выдвижения и проверки гипотез выбирается правильный. Процесс выдвижения и проверки гипотез должен быть явно отражен в архитектуре программы. Каждая гипотеза должна быть объектом, который можно было бы оценить или сравнить с другими. Поэтому обычно гипотезы выдвигаются последовательно, а затем объединяются в список и сортируются на основе предварительной оценке. Для окончательного же выбора гипотезы активно используется контекст и другие дополнительные источники знаний.


Подобные документы

  • Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.

    курсовая работа [41,3 K], добавлен 29.08.2013

  • Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.

    реферат [70,7 K], добавлен 18.11.2010

  • Исторический обзор развития работ в области искусственного интеллекта. Создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека. От логических игр до медицинской диагностики.

    реферат [29,1 K], добавлен 26.10.2009

  • Понятие искусственного интеллекта в робототехнике и мехатронике. Структура и функции интеллектуальной системы управления. Классификация и типы знаний, представление их с помощью логики предикатов. Суть семантических сетей, фреймовое представление знаний.

    курс лекций [1,1 M], добавлен 14.01.2011

  • Может ли искусственный интеллект на данном уровне развития техники и технологий превзойти интеллект человека. Может ли человек при контакте распознать искусственный интеллект. Основные возможности практического применения искусственного интеллекта.

    презентация [511,2 K], добавлен 04.03.2013

  • Проблема представления знаний в компьютерных системах – одна из основных проблем в области искусственного интеллекта. Исследование различных моделей представления знаний. Определения их понятия. Разработка операции над знаниями в логической модели.

    курсовая работа [51,9 K], добавлен 18.02.2011

  • Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?

    реферат [49,0 K], добавлен 19.05.2006

  • История развития искусственного интеллекта в странах дальнего зарубежья, в России и в Республике Казахстан. Разработка проекта эффективного внедрения и адаптации искусственного интеллекта в человеческом социуме. Интеграция искусственного в естественное.

    научная работа [255,5 K], добавлен 23.12.2014

  • Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.

    контрольная работа [27,9 K], добавлен 07.12.2009

  • Компоненты и архитектура интеллектуального агента, его дополнение средствами обучения. Различные подходы к созданию искусственного интеллекта, перспективы его развития. Этические и моральные последствия разработки интеллектуальных машин и программ.

    реферат [708,9 K], добавлен 02.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.