Аналитическая платформа Deductor
Анализ данных при помощи визуализаторов. Прогнозирование с помощью линейной регрессии. Кластеризация с помощью самоорганизующейся карты Кохонена. Описание демо-примера программы Deductor. Характеристика многомерного кросс-платформенного хранилища данных.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Информатика |
Вид | лабораторная работа |
Язык | русский |
Прислал(а) | Люба |
Дата добавления | 20.10.2012 |
Размер файла | 479,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение понятия знания, модели его представления – фреймовая, продукционная, семантическая. Разбор аналитической платформы Deductor. Описание демо-примера программы Deductor– прогнозирование с помощью линейной регрессии, использование визуализатора.
курсовая работа [1,1 M], добавлен 07.06.2011Описание платформы Deductor, ее назначение. Организационная структура аналитической платформы Deductor, состав модулей. Принципы работы программы, импорт и экспорт данных. Визуализация информации, сценарная последовательность и мастер обработки.
курсовая работа [3,7 M], добавлен 19.04.2014Короткі теоретичні відомості про Deductor – аналітичну платформу, призначену для створення логічно завершених прикладних рішень в області аналізу даних. Основи роботи з аналітичною платформою Deductor виробництва російської компанії BaseGroup Labs.
лабораторная работа [1,4 M], добавлен 14.10.2014Реалізація сегментації позичальників методом карт Кохонена за допомогою пакету Deductor Studio. Послідовність дій, які необхідно провести для аналізу даних у Deductor Studio. Результат сегментації на картах Кохонена та характеристика кожного сегменту.
контрольная работа [1017,1 K], добавлен 29.09.2010Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
лабораторная работа [36,1 K], добавлен 05.10.2010Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа [728,4 K], добавлен 10.07.2017Понимание хранилища данных, его ключевые особенности. Основные типы хранилищ данных. Главные неудобства размерного подхода. Обработка информации, аналитическая обработка и добыча данных. Интерактивная аналитическая обработка данных в реальном времени.
реферат [849,7 K], добавлен 16.12.2016"Наивная" модель прогнозирования. Прогнозирование методом среднего и скользящего среднего. Метод опорных векторов, деревьев решений, ассоциативных правил, системы рассуждений на основе аналогичных случаев, декомпозиции временного ряда и кластеризации.
курсовая работа [2,6 M], добавлен 02.12.2014Потребность отражения человеческих знаний в памяти компьютера. Модели представления знаний. Продукционные и формально-логические модели. Исчисление предикатов первого порядка. Основные свойства теории фреймов. Аналитическая платформа Deductor.
курсовая работа [538,2 K], добавлен 09.04.2015Определение доли перевозчиков в их общем количестве средствами Excel. Автоматическое и ручное прогнозирование линейной и экспоненциальной зависимости. Вычисление тенденций с помощью добавления линии тренда на диаграмму. Возможности процессора MathCAD.
контрольная работа [3,8 M], добавлен 03.04.2012