Перспективы развития персональных компьютеров

Особенности информатизации общества. История появления персональных компьютеров. Принципы функционирования, структура и виды компьютера. Тенденции развития технологий будущего. Роль и перспективы развития компьютерных технологий в современной жизни.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 16.06.2012
Размер файла 381,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

И совсем недавно ученые стали разрабатывать светящийся пластик, то есть свойства полимеров светиться при пропускании через них электрического тока. Уже более тридцати лет ведутся исследования в этом направлении, и ученые смогли довести проводимость пластиковых проводов до уровня медных даже на практике. И за последние пять лет компания смогла поднять квантовую эффективность пластика до 5% при излучении желтого света. И такие LEP-элементы интересны еще и тем, что способны светиться сами, а это приводит к снижению энергопотребления. Поэтому в ближайшем будущем уже мало кого можно будет удивить пластиковым экраном, который будет достаточно гибким при весе в несколько грамм. Ведь самостоятельное свечение точек увеличивает угол обзора до 180 градусов, а время переключения одной точки всего лишь составляет одну микросекунду.

Сегодня EInk проводит испытания дисплейных вывесок в магазинах компании J.C. Penney в Иллинойсе и Массачусетсе. Вывески размером 4x4 фута изготовлены из пластика, прикрепленного к вспененной основе, и способны принимать электрический импульс, вызывающий изменение текста и картинок. В течение тех же 2 лет компания планирует создать и электронную книгу с гибкими пластиковыми страницами, способными воспроизводить текст из файла, стирать его и восстанавливать. «[У этой книги] будут сотни страниц, которые можно будет перелистывать и на которых можно будет менять весь текст», -- говорит Уилкокс. Если присоединить такую книгу к ПК, она покажет любой нужный вам текст оттуда.

Моррис из IBM предполагает развития дисплеев в инновационном направлении: на смену относительно маленьким двумерным дисплеем придут, большие трехмерные. «Одним очевидным расширением мог бы стать проекционный дисплей, -- говорит он. -- Вы проецировали бы изображение прямо на стены и жили бы в море данных». Моррис предсказывает использование трехмерных дисплеев для игр, развлечений, а также в медицине (например, трехмерное отображение результатов компьютерной томографии и рентгеноскопии, вероятно, сможет дать врачам более полное представление о состоянии нашего организма). На первых порах такие изображения нужно будет проецировать в стеклянный или пластиковый куб, но со временем они «научатся» возникать где угодно.

Три десятка лет назад наивысшим техническим достижением в области портативной электроники была игра в футбол фирмы Coleco. Но сегодня мы уже видим эпидемический рост переносных вычислительных и квазивычислительных устройств: портативные ПК, сотовые телефоны, электронные ассистенты (PDA), цифровые фотоаппараты и видеокамеры, субблокнотные компьютеры, мобильные аудиоплейеры, воспроизводящие MP3-файлы...

При таких темпах развития электроники мы будем ходить напичканные электроникой не хуже киборгов. В действительности вирджинская компания Xybernaut уже продает полнофункциональный носимый компьютерный комплект с видеокамерой Xybercam и маленьким цветным дисплеем, закрепляемым на голове и опускающимся перед глазами пользователя (идеально для монтера, висящего на телефонном столбе). Как же нам удастся не свалиться под тяжестью всей этой ультрапортативной техники? Она сможет остаться, скажем так, портативной благодаря беспроводному подключению, усовершенствованным дисплеям и универсальным устройствам.

Средства беспроводного подключения для блокнотных ПК, несомненно, развиваются очень быстро. IPAD 2 новый продукт Apple -- поддерживает систему беспроводной локальной сети, позволяющую пользователям соединяться с Internet на расстоянии до100 м от точки подключения к линии. Dell тоже выпускает беспроводную сетевую плату, которой будут по желанию покупателя комплектоваться блокноты серии Latitude; в дальнейшем компания планирует предоставлять подобную возможность для всех своих портативных и настольных машин. Можно побиться об заклад, что другие компании вскоре последуют примеру этих двух. Наряду с ключевым словом «беспроводной» к будущему мобильных компьютеров часто применяют еще одно -- «конвергенция».

Примером может служить устройство PdQ Smartphone компании Qualcomm -- цифровой беспроводной телефон со встроенным в трубку органайзером. PdQ может автоматически дозваниваться по номерам, записанным в органайзере, выводить на экран текстовые сообщения (как в пейджере) и выполнять все стандартные программы Palm. Много похожих беспроводных устройств сейчас находятся в стадии разработки.

Беспроводной может быть не только дальняя связь. Также стандарт под названием Bluetooth предназначен для обмена данными с помощью радиоволн между мобильными устройствами, находящимися на расстоянии не более 12 м друг от друга. Можно, например, во время конференции делать заметки на карманном компьютере, а вернувшись в отель, беспроводным путем перенести их в блокнотный ПК.

Дисплеи мобильных устройств также будут совершенствоваться. По словам Боба О'Доннелла, менеджера отдела дисплеев для ПК в IDC, благодаря успехам в разработке светодиодных дисплеев на базе органических соединений должны появиться более яркие и четкие экраны для ПК. Они будут потреблять меньше энергии, поскольку, в отличие от ЖК-дисплеев, не нуждаются в подсветке.

2.2 Тенденции развития персональных компьютеров

Насколько близко мы подошли к действующему квантовому компьютеру? Прежде всего необходимо создать элементы проводников, памяти и логики. Кроме того, эти простые элементы нужно заставить взаимодействовать друг с другом. Наконец, нужно встроить узлы в полноценные функциональные чипы и научиться тиражировать их. По оценкам ученных, прототипы таких компьютеров появились уже в 2009 году, а в 2010-2020 годах должно было начаться их массовое производство.

Конечно, заглянуть вперед более чем на несколько лет можно лишь чисто умозрительно, хотя в том что ко второй половине этого века обрабатывающая мощность компьютеров превысит интеллектуальные способности человека, можно не сомневаться. Вполне вероятно, что к тому времени начнется и колонизация Солнечной системы. А к 22-му веку и люди, и компьютеры широко распространятся по ее планетам и начнут готовиться к освоению ближайших звездных систем.

Многоядерные процессоры отражают тенденцию последних лет: производительность компьютеров постоянно повышается и вместе с тем уменьшается потребляемая мощность.

Все большее значение многоядерные процессоры приобретают в условиях всеобщей «цифрофикации» окружающей нас информации. Музыка, видео, фотографии, игры - их носители повсеместно становятся цифровыми, растет и количество устройств, генерирующих, обрабатывающих и хранящих цифровой контент (фото- и видеокамеры, DVD- и МР3-плееры).

Еще одна важная задача - расширение коммуникационной функции ПК. Проникновение в наши офисы и дома новых телекоммуникационных технологий, таких как VoIP, а также рост пропускной способности сетей требует обработки огромного количества пакетов данных, но это не должно влиять на скорость работы основных приложений. Многоядерные процессоры помогут справиться с этой задачей, правильно распределив ресурс вычислительных ядер для обработки сетевых пакетов и выполнения других приложений. Трофимов, В. Информационные системы и технологии в экономике и управлении / [Текст]. - М.: Юрайт, 2012. - 378 с.

Многоядерные процессоры Intel в сочетании с другими компонентами платформ предоставляют расширенные возможности для управления и для обеспечения безопасности. Они позволяют уменьшить время отклика системы во время одновременной работы нескольких управляющих или профилактических программ, таких как антивирусная проверка, обновление ПО, проверка конфигурации или запрос на инвентаризацию. Более того, используя технологию виртуализации, поддерживаемую многими платформами Intel, можно одновременно запустить несколько операционных систем без снижения производительности приложений в каждой из них.

Значительные вычислительные ресурсы многоядерных процессоров предоставят разработчикам игр большую степень свободы для создания полноценной графики, для реализации физики процессов, а также функций искусственного интеллекта.

По прогнозам, к 2013 году число транзисторов в микропроцессоре достигнет 1 млрд., тактовая частота возрастет до 10 ГГц, а производительность достигнет 100 млрд.оп/с. Развитие процессоров ЭВМ представляет собой систему процессоров. Каждый процессор состоит из некоторой совокупности запоминающих устройств, устройств управления и операционного устройства. Эти составные части процессора связаны между собой определенным образом. Связь между процессорами осуществляется за счет наличия общих запоминающих устройств, которые могут служить для передачи информации (в этом случае они называются буферными ЗУ) и для передачи управляющих сигналов (в этом случае они называются контактными ЗУ).

Одни процессоры машины называют центральными, другие - периферийными. К периферийным относят процессоры, предназначенные для ввода или вывода информации. Способы контакта и обмена с ними в реальных ЭВМ очень разнообразны. Но общий принцип действия всех процессоров одинаков.

Идея, в соответствии с которой ЭВМ рассматривается как система процессоров, и связанное с этой идеей выделение в особую категорию контактных ЗУ, оказалась очень плодотворной.

Одной из плодотворных находок явилась система прерываний - замечательный союз программных и аппаратных (внутримашинных) средств, предназначенных для быстрой реакции машины на чрезвычайные события. Действия этой системы направлены на то, чтобы «зафиксировать» ситуацию, имеющую место в ЭВМ в момент возникновения прерывания. Под прерыванием, таким образом, понимается временное прекращение выполнения текущей программы центральными устройствами ЭВМ с запоминанием точки, в которой прервана данная программа со всей относящейся к ней информацией (адресом команды, на которой произошло прерывание, результатом предыдущей операции и т.д.), и одновременный переход к выполнению другой программы. Программа, прерванная ранее и находящаяся в состоянии «ожидания», может вернуться в состояние «счет» после устранения причины, вызвавшей ее прерывание.

Современные цифровые машины обладают еще многими другими устройствами, повышающими их эффективность и удобство применения. Большой интерес, например, представляют ЭВМ, содержащие в своем составе несколько центральных процессоров. Такие ЭВМ называются многопроцессорными, что, кстати говоря, не очень удачно, потому что любые ЭВМ являются многопроцессорными.

За счет большого числа центральных процессоров среднее число операций, которые может выполнять ЭВМ в единицу времени, т.е. быстродействие машины, возрастает. Для многопроцессорной ЭВМ программу решения задач иногда можно составить так, чтобы различные части этой программы выполняли разные центральные процессоры.

Составление таких программ получило название параллельного программирования (точнее: программирование с расчетом на параллельное выполнение программ). Поскольку ЭВМ представляет собой систему процессоров, то можно говорить о «коллективе исполнителей».

Обработка информации осуществляется по программе, которая представляет собой последовательность команд, направляющих работу компьютера. Команда состоит из кода операции и адреса. Код операции сообщает микропроцессору, что нужно сделать, какую выполнить операцию: сложить, сравнить, переслать и очистить. Адрес указывает место, где находятся данные, подлежащие обработке. Команды бывают безадресные, одноадресные и двухадресные.

Развитие микропроцессора происходит в процессе повышения тактовой частоты. Для повышения тактовой частоты при выбранных материалах используются: более совершенный технологический процесс с меньшими проектными нормами; увеличение числа слоев металлизации; более совершенная схемотехника меньшей каскадности и с более совершенными транзисторами, а также более плотная компоновка функциональных блоков кристалла.

Так, все производители микропроцессоров перешли на технологию КМОП, хотя Intel, например, использовала БиКМОП для первых представителей семейства Pentium. Известно, что биполярные схемы и КМОП на высоких частотах имеют примерно одинаковые показатели тепловыделения, но КМОП-схемы более технологичны, что и определило их преобладание в микропроцессорах.

Уменьшение размеров транзисторов, сопровождаемое снижением напряжения питания с 5В до 2,5-3В и ниже, увеличивает быстродействие и уменьшает выделяемую тепловую энергию. Все производители микропроцессоров перешли с проектных норм 0,35-0,25мкм на 0,18мкм и 0,12мкм и стремятся использовать уникальную 0,07мкм технологию (см. Таблица 1).

Таблица 1 - Тенденции изменений характеристик памяти

Год производства

2005

2006

2007

2010

2013

2016

DRAM, нм

80

70

65

45

32

32

МП, нм

80

70

65

45

32

32

Uпит, В

0,9

0,9

0,7

0,6

0,5

0,4

Р, Вт

170

180

190

218

251

288

При минимальном размере деталей внутренней структуры интегральных схем 0,1-0,2мкм достигается оптимум, ниже которого все характеристики транзистора быстро ухудшаются. Практически все свойства твердого тела, включая его электропроводность, резко изменяются и «сопротивляются» дальнейшей миниатюризации, возрастание сопротивления связей происходит экспоненциально. Потери даже на кратчайших линиях внутренних соединений такого размера «съедают» до 90% сигнала по уровню и мощности.

Уменьшение длины межсоединений актуально для повышения тактовой частоты работы, так как существенную долю длительности такта занимает время прохождения сигналов по проводникам внутри кристалла. Например, в Alpha 21264 предприняты специальные меры по кластеризации обработки, призванные локализовать взаимодействующие элементы микропроцессора.

Проблема уменьшения длины межсоединений на кристалле при использовании традиционных технологий решается путем увеличения числа слоев металлизации. Так, Cyrix при сохранении 0,6 мкм КМОП технологии за счет увеличения с 3 до 5 слоев металлизации сократила размер кристалла на 40% и уменьшила выделяемую мощность, исключив существовавший ранее перегрев кристаллов.

Одним из шагов в направлении уменьшения числа слоев металлизации и уменьшения длины межсоединений стала технология, использующая медные проводники для межсоединений внутри кристалла, разработанная фирмой IBM и используемая в настоящее время и другими фирмами-изготовителями СБИС.

В настоящее время ряд фирм выпускает процессоры для персональных компьютеров с тактовой частотой свыше 4 ГГц.

2.3 Увеличение объема и пропускной способности подсистемы памяти

Возможные решения по увеличению пропускной способности подсистемы памяти включают создание кэш-памяти одного или нескольких уровней, а также увеличение пропускной способности интерфейсов между процессором и кэш-памятью и конфликтующей с этим увеличением пропускной способности между процессором и основной памятью.

Совершенствование интерфейсов реализуется как увеличением пропускной способности шин, так и введением дополнительных шин, расшивающих конфликты между процессором, кэш-памятью и основной памятью. В последнем случае одна шина работает на частоте процессора с кэш-памятью, а вторая - на частоте работы основной памяти. При этом частоты работы второй шины, например, равны 66, 66, 166 МГц для микропроцессоров Pentium Pro-200, Power PC 604E-225, Alpha 21164-500, работающих на тактовых частотах 300, 225, 500 МГц, соответственно. При ширине шин 64, 64, 128 разрядов это обеспечивает пропускную способность интерфейса с основной памятью 512, 512, 2560 Мбайт/с, соответственно. Мелехин, В.Ф. Вычислительные машины, системы и сети [Текст] / В.Ф. Мелехин, Е.Г. Павловский. - М.: Академия, 2007. - 147 с.

Общая тенденция увеличения размеров кэш-памяти реализуется по-разному:

внешние кэш-памяти данных и команд с двухтактовым временем доступа объемом от 256 Кбайт до 2 Мбайт со временем доступа 2 такта в HP PA-8000;

отдельный кристалл кэш-памяти второго уровня, размещенный в одном корпусе в Pentium Pro;

размещение отдельных кэш-памяти команд и кэш-памяти данных первого уровня объемом по 8 Кбайт и общей для команд и данных кэш-памяти второго уровня объемом 96 Кбайт в Alpha 21164.

Наиболее используемое решение состоит в размещении на кристалле отдельных кэш-памятей первого уровня для данных и команд с возможным созданием внекристальной кэш-памяти второго уровня.

Увеличение количества параллельно работающих исполнительных устройств. Каждое семейство микропроцессоров демонстрирует в следующем поколении увеличение числа функциональных исполнительных устройств и улучшение их характеристик, как временных (сокращение числа ступеней конвейера и уменьшение длительности каждой ступени), так и функциональных (введение ММХ- расширений системы команд и т.д.).

В настоящее время процессоры могут выполнять до 6 операций за такт. Однако число операций с плавающей точкой в такте ограничено двумя для R10000 и Alpha 21164, а 4 операции за такт делает HP PA-8500.

Для того чтобы загрузить функциональные исполнительные устройства, используются переименование регистров и предсказание переходов, устраняющие зависимости между командами по данным и управлению, буферы динамической переадресации.

Широко используются архитектуры с длинным командным словом - VLIW. Так, архитектура IA-64, развиваемая Intel и HP, использует объединение нескольких инструкций в одной команде (EPIC). Это позволяет упростить процессор и ускорить выполнение команд. Процессоры с архитектурой IA-64 могут адресоваться к 4 Гбайтам памяти и работать с 64-разрядными данными. Архитектура IA-64 используется в микропроцессоре Merced, обеспечивая производительность до 6 Гфлоп при операциях с одинарной точностью и до 3Гфлоп - с повышенной точностью на частоте 1ГГц.

Системы на одном кристалле и новые технологии. В настоящее время получили широкое развитие системы, выполненные на одном кристалле - SOC (System On Chip). Сфера применения SOC - от игровых приставок до телекоммуникаций. Такие кристаллы требуют применения новейших технологий.

Основной технологический прорыв в области SOC удалось сделать корпорации IBM, которая смогла реализовать сравнительно недорогой процесс объединения на одном кристалле логической части микропроцессора и оперативной памяти. В новой технологии, в частности, используется так называемая конструкция памяти с врезанными ячейками (trench cell). В этом случае конденсатор, хранящий заряд, помещается в некое углубление в кремниевом кристалле. Это позволяет разместить на нем свыше 24 тыс. элементов, что почти в 8 раз больше, чем на обычном микропроцессоре, и в 2-4 раза больше, чем в микросхемах памяти для ПК. Хотя кристаллы, объединяющие логические схемы и память на одном кристалле, выпускались и ранее, например, такими фирмами, как Toshiba, Siemens AG и Mitsubishi, подход, предложенный IBM, выгодно отличается по стоимости. Причем ее снижение никоим образом не сказывается на производительности.

Использование новой технологии открывает широкую перспективу для создания более мощных и миниатюрных микропроцессоров и помогает создавать компактные, быстродействующие и недорогие электронные устройства: маршрутизаторы, компьютеры, контроллеры жестких дисков, сотовые телефоны, игровые и Интернет-приставки.

Для создания SOC IBM использует самые современные технологические решения, одним из которых являются медные межсоединения (copper interconnect). По сравнению с технологией, где межсоединения выполнены на основе алюминия, медь позволяет сделать кристалл меньшим по размеру и более быстродействующим. Медная металлизация уменьшает общее сопротивление, что позволяет увеличить скорость работы кристалла на 15-20%. Обычно эта технология дополняется еще одной новинкой: технологией кремний на изоляторе - КНИ (SOI, Silicon On Insulator). Она уменьшает паразитные емкости, возникающие между элементами микросхемы и подложкой. Благодаря этому тактовую частоту работы транзисторов также можно увеличить. Возрастание скорости от использования КНИ приближается к 20-30%. Таким образом, общий рост производительности в идеальном случае может достигнуть 50%.

2.4 Компьютеры будущего

Будущее может быть разным, и путей к нему тоже много, но ни то, ни другое предсказать невозможно. И все же кое-какие широкие штрихи набросать можно, причем в большинстве сценариев прогресс приводит к изменению способа нашего общения, объема информации, с которой нам придется иметь дело, и, возможно, даже наших природных способностей. Трофимов, В. Информационные системы и технологии в экономике и управлении / [Текст]. - М.: Юрайт, 2012. - 298 с.

Технология микропроцессоров уже приближается к фундаментальным ограничениям. Следуя закону Мура, к 2014 - 2020 годам размеры транзистора должны уменьшиться до четырех-пяти атомов. Рассматриваются многие альтернативы, но, если они не будут реализованы в массовом производстве, закон Мура перестанет работать. Этот закон (вернее, прогноз соучредителя Intel Гордона Мура) гласит, что плотность транзисторов в микросхеме удваивается каждые полтора года, и все последние 20 лет он выполнялся. Если в начале нового столетия пост производительности микропроцессоров прекратится, в вычислительной технике наступит стагнация. Но возможно, что вместо этого произойдет технологический скачок с тысячекратным увеличением мощности компьютеров.

Последний сценарий очень привлекателен. Мало того, что целый ряд технологий получит необходимое развитие, разработки в одних областях помогут продвижению других. Инженер Рэй Курцвейл (Ray Kurzweil) называет это "законом взаимного усиления выгод". Когда в развитии какой-то области происходит скачок, время между открытиями сокращается и предыдущие достижения накладываются на следующие, что еще больше ускоряет прогресс.

Глядя в будущее, можно сказать, что процессоры и платформы Intel будут выделяться не только высокой производительностью самой по себе, но также богатыми и разнообразными вычислительными и коммуникационными возможностями, управлением питанием, повышенной надежностью, безопасностью и управляемостью, а также полной интеграцией со всеми остальными компонентами платформы.

К технологиям, способным экспоненциально увеличивать обрабатывающую мощность компьютеров, следует отнести молекулярные или атомные технологии; ДНК и другие биологические материалы; трехмерные технологии; технологии, основанные на фотонах вместо электронов; и наконец, квантовые технологии, в которых используются элементарные частицы. Если на каком-нибудь из этих направлений удастся добиться успеха, то компьютеры могут стать вездесущими. А если таких успешных направлений будет несколько, то они распределятся по разным нишам. Например, квантовые компьютеры будут специализироваться на шифровании и поиске в крупных массивах данных, молекулярные - на управлении производственными процессами и микромашинах, а оптические - на средствах связи.

Возможности современного производства пока не позволяют наладить недорогое массовое изготовление подобных устройств. Однако многие ученые уверены в том что решение будет найдено. Уже есть свидетельства определенного взаимного усиления выгод по Курцвейлу. Например, эффективность "генетических чипов" удалось повысить (а стоимость - понизить) благодаря использованию других чипов, содержащих полмиллиона маленьких зеркал, - первоначально они предназначались для оптических систем связи. Цифровая микрозеркальная система (Digital Micromirror Device, DMD) от Texas Instruments применялась даже для демонстрации последней серии фильма "Звездные войны". Точно так же микромашины (micro-electro-mechanical systems, MEMS) изготавливаются с применением технологии травления, разработанной для производства электронных микросхем. В этих устройствах датчики сочетаются с микроприводами, что позволяет им выполнять физические действия. Возможно даже, что MEMS помогут в создании компьютеров атомных размеров, необходимых для квантовых вычислений.

В нашем веке вычислительная техника сольется не только со средствами связи и машиностроения, но и с биологическими процессами, что откроет такие возможности, как создание искусственных имплантантов, интеллектуальных тканей, разумных машин, "живых" компьютеров и человеко-машинных гибридов. Если закон Мура проработает еще 10 лет, уже в 2020 году компьютеры достигнут мощности человеческого мозга - 20000000 миллиардов операций в секунду (это 100 млрд. нейронов умножить на 1000 связей одного нейрона и на 200 возбуждений в секунду). А к 2060 году компьютер сравняется по силе разума со всем человечеством. Одной вероятности подобной перспективы достаточно, чтобы отбросить любые опасения по поводу применения био- и генной инженерии для расширения способностей человека.

"Я не верю в научную фантастику типа "Звездного пути", где через 400 лет люди остаются прежними, - сказал астрофизик Стивен Хокинг (Stephen Hawking), выступая в прошлом году в Белом доме. - По-моему, человеческая раса и сложность ее ДНК очень скоро начнут меняться".

Однако для этого вычислительная техника будущего столетия должна вобрать в себя некоторые новейшие технологии. Ниже приводится обзор нескольких новых технологий и процессов, способных не только обеспечить продолжение действия закона Мура, но и превратить его из линейного в прогрессирующий.

Первые опыты с молекулярными устройствами еще не гарантируют появления таких компьютеров, однако это именно тот путь, который предначертан всей историей предыдущих достижений. Массовое производство действующего молекулярного компьютера вполне может начаться где-нибудь между 2012 и 2017 годами.

Биокомпьютеры. Применение в вычислительной технике биологических материалов позволит со временем уменьшить компьютеры до размеров живой клетки. Пока эта чашка Петри, наполненная спиралями ДНК, или нейроны, взятые у пиявки и подсоединенные к электрическим проводам. По существу, наши собственные клетки - это не что иное, как биомашины молекулярного размера, а примером биокомпьютера, конечно, служит наш мозг.

Ихуд Шапиро (Ehud Shapiro) из Вейцманоского института естественных наук соорудил пластмассовую модель биологического компьютера высотой 30 см. Если бы это устройство состояло из настоящих биологических молекул, его размер был бы равен размеру одного из компонентов клетки - 0,000025 мм. По мнению Шапиро, современные достижения в области сборки молекул позволяют создавать устройства клеточного размера, которое можно применять для биомониторинга.

Более традиционные ДНК-компьютеры в настоящее время используются для расшифровки генома живых существ. Пробы ДНК применяются для определения характеристик другого генетического материала: благодаря правилам спаривания спиралей ДНК, можно определить возможное расположение четырех базовых аминокислот (A, C, T и G).

Чтобы давать полезную информацию, цепочки ДНК должны содержать по одному базовому элементу. Это достигается при помощи луча света и маски. Для получения ответа на тот или иной вопрос, относящийся к геному, может потребоваться до 80 масок, при помощи которых создается специальный чип стоимостью более 12 тыс. дол. Здесь-то и пригодилась микросхема DMD от Texas Instruments: ее микрозеркала, направляя свет, исключают потребность в масках.

Билл Дитто (Bill Ditto) из Технологического института штата Джорджия провел интересный эксперимент, подсоединив микродатчики к нескольким нейронам пиявки. Он обнаружил, что в зависимости от входного сигнала нейроны образуют новые взаимосвязи. Вероятно, биологические компьютеры, состоящие из нейроподобных элементов, в отличие от кремниевых устройств, смогут искать нужные решения посредством самопрограммирования. Дитто намерен использовать результаты своей работы для создания мозга роботов будущего.

Оптические компьютеры. По сравнению с тем, что обещают молекулярные или биологические компьютеры, оптические ПК могут показаться не очень впечатляющими. Однако ввиду того, что оптоволокно стало предпочтительным материалом для широкополосной связи, всем традиционным кремниевым устройствам, чтобы передать информацию на расстояние нескольких миль, приходится каждый раз преобразовывать электрические сигналы в световые и обратно.

Эти операции можно упростить, если заменить электронные компоненты чисто оптическими. Первыми станут оптические повторители и усилители оптоволоконных линий дальней связи, которые позволят сохранять сигнал в световой форме при передаче через все океаны и континенты. Со временем и сами компьютеры перейдут на оптическую основу, хотя первые модели, по-видимому, будут представлять собой гибриды с применением света и электричества. Оптический компьютер может быть меньше электрического, так как оптоволокно значительно тоньше (и быстрее) по сравнению с сопоставимыми по ширине полосы пропускания электрическими проводниками. По существу, применение электронных коммутаторов ограничивает быстродействие сетей примерно 50 Гбит/с. Чтобы достичь терабитных скоростей потребуются оптические коммутаторы (уже есть опытные образцы). Это объясняет, почему в телекоммуникациях побеждает оптоволокно: оно дает тысячекратное увеличение пропускной способности, причем мультиплексирование позволяет повысить ее еще больше. Инженеры пропускают по оптоволокну все больше и больше коротковолновых световых лучей. В последнее время для управления ими применяются чипы типа TI DMD с сотнями тысяч микрозеркал. Если первые трансатлантические медные кабели позволяли передавать всего 2500 Кбит/с, то первое поколение оптоволоконных кабелей - уже 280 Мбит/с. Кабель, проложенный сейчас, имеет теоретический предел пропускной способности в 10 Гбит/с на один световой луч определенной длины волны в одном оптическом волокне. Граничин, О.Н. Информационные технологии в управлении / [Текст]. - М.: Бином, 2011.

Недавно компания Quest Communications проложила оптический кабель с 96 волокнами (48 из них она зарезервировала для собственных нужд), причем по каждому волокну может пропускаться до восьми световых лучей с разной длиной волны. Возможно, что при дальнейшем развитии технологии мультиплексирования число лучей увеличится еще больше, что позволит расширять полосу пропускания без замены кабеля.

Целиком оптические компьютеры появятся через десятилетия, но работа в этом направлении идет сразу на нескольких фронтах. Например, ученые из университета Торонто создали молекулы жидких кристаллов, управляющие светом в фотонном кристалле на базе кремния. Они считают возможным создание оптических ключей и проводников, способных выполнять все функции электронных компьютеров.

Однако прежде чем оптические компьютеры станут массовым продуктом, на оптические компоненты, вероятно, перейдет вся система связи - вплоть до "последней мили" на участке до дома или офиса. В ближайшие 15 лет оптические коммутаторы, повторители, усилители и кабели заменят электрические компоненты.

Квантовые компьютеры. Квантовый компьютер будет состоять из компонентов субатомного размера, и работать по принципам квантовой механики. Квантовый мир - очень странное место, в котором объекты могут занимать два разных положения одновременно. Но именно эта странность и открывает новые возможности.

Например, один квантовый бит может принимать несколько значений одновременно, то есть находиться сразу в состояниях "включено", "выключено" и в переходном состоянии. 32 таких бита, называемых q-битами, могут образовать свыше 4 млрд комбинаций - вот истинный пример массово-паралельного компьютера. Однако, чтобы q-биты работали в квантовом устройстве, они должны взаимодействовать между собой. Пока ученым удалось связать друг с другом только три электрона.

Уже есть несколько действующих квантовых компонентов - как запоминающих, так и логических. Теоретически квантовые компьютеры могут состоять из атомов, молекул, атомных частиц или "псевдоатомов". Последний представляет собой четыре квантовых ячейки на кремниевой подложке, образующих квадрат, причем в каждой такой ячейке может находиться по электрону. Когда присутствуют два электрона, силы отталкивания заставляют их размещаться по диагонали. Одна диагональ соответствует логической "1", а вторая - "0". Ряд таких ячеек может служить проводником электронов, так как новые электроны будут выталкивать предыдущие в соседние ячейки. Компьютеру, построенному из таких элементов, не потребуется непрерывная подача энергии. Однажды занесенные в него электроны больше не покинут систему.

Теоретики утверждают, что компьютер, построенный на принципах квантовой механики, будет давать точные ответы, исключая возможность ошибки. Так как в основе квантовых вычислений лежат вероятностные законы, каждый q-бит на самом деле представляет собой и "1", и "0" с разной степенью вероятности. В результате действия этих законов менее вероятные (неправильные) значения практически исключаются.

Заключение

По итогам представленной работы можно сделать следующие выводы: эволюция, которая все время происходит в мире компьютерной технике, очень и очень необходима. Ведь чем более универсальна техника, тем больше мы способны произвести на своих рабочих местах при помощи нее.

С развитием ПК развиваемся и мы. И чем проще и доступней будет эта машина, тем продуктивней будет наша работа и ярче жизнь в целом.

При разработке и создании собственно компьютеров существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперкомпьютеры - и миниатюрные и сверхминиатюрные ПК.

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволяют общаться с компьютером естественным для человека образом.

В ближайшие годы будет возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Информационная революция затронет все стороны жизнедеятельности.

Компьютерные системы: при работе на компьютере с «дружественным интерфейсом» человек будет воочию видеть виртуального собеседника, активно общаться с ним на естественном речевом уровне с аудио- и видеоразъяснениями, советами, подсказками. «Компьютерное одиночество», так вредно влияющее на психику активных пользователей, исчезнет.

Интернет предоставляет также возможность побывать практически «вживую» во многих уголках земного шара - по обоим полушариям разбросаны сотни телевизионных камер, с определенной периодичностью (от нескольких минут до нескольких часов) транслирующих в сеть полученную ими картинку. Их принадлежность самая разнообразная - от частных лиц и организаций до «компетентных органов».

ЭВМ настолько прочно вошли в нашу жизнь, что без них уже невозможно представить практически ни одну сферу жизни и деятельности человека. Любое место работы в настоящее время компьютеризировано. Так как отошли в прошлое бумага и ручка. Компьютер помогает делать расчеты чертить графики, рисунки все, на что простой человек, тратил очень много времени и сил.

В дальнейшем ЭВМ будут еще более часто использоваться всвязи с тем, что они позволяют повысить удобство работы, производительность труда и уменьшить трудозатраты.

С расширением областей деятельности человека для них будут разрабатываться свои конфигурации ЭВМ, наиболее удобные и необходимые для этой области, поэтому разнообразие конфигураций, пусть даже в рамках какого-то стандарта, будет постоянно расти.

Множество ученых работают над развитием компьютерных технологий и их мысли двигают прогресс.

Техническое и программное обеспечение, необходимое для создания таких виртуальных систем:

-дешевые, простые, портативные компьютеры со средствами мультимедиа;

-программное обеспечение для «вездесущих» приложений;

-миниатюрные приемо-передающие-радиоустройства (трансиверы) для связи компьютеров друг с другом и с сетью;

-вживляемые под кожу миниатюрные приемо-передающие чипы;

-распределенные широкополосные каналы связи и сети.

Многие предпосылки для создания указанных компонентов, да и простейшие их прообразы уже существуют (вживляемые под кожу миниатюрные приемо-передающие чипы уже сейчас разработаны фирмой Applied Digital Solution).

Но есть и проблемы. Важнейшая из них - обеспечение прав интеллектуальной собственности и конфиденциальности информации, чтобы вся личная жизнь каждого из нас не стала всеобщим достоянием.

Самый мощный компьютер во Вселенной за одну наносекунду способен решать задачи, с которыми современные ЭВМ справляются за промежуток времени, равный жизни Вселенной!

Научно-технический прогресс сегодня шагает семимильными шагами, машины становятся все «резвее» и производительнее, недавно купленный компьютер, не успев прослужить верой и правдой и пары лет, нуждается в апгрейде, модернизации. Но ведь нельзя будет бесконечно растить быстродействие и производительность железного товарища - обязательно будет предел возможностей, природный финиш, а когда это будет пока для всех остается неизвестным.

Рассмотрев в своей выпускной квалификационной работе довольно актуальную на сегодняшний день тему развития, эволюции компьютерной техники, персональных компьютеров в частности, могу с уверенностью сказать, что в скором времени научный прогресс перешагнёт все те высокотехнологичные для своих времён изобретения и создаст что-то такое, о чём сейчас даже невозможно предположить. Но пока, на данный момент, индустрия ПК переживает бурный процесс развития. ПК очень быстро дешевеют, однако за счёт увеличения оперативной и постоянной памяти непрерывно появляются всё новые дорогие модели. Эти тенденции продолжаются до сих пор: цены на общедоступный ПК остаются примерно на одном уровне, но характеристики этого общедоступного компьютера непрерывно улучшаются.

Мои предложения: на наш взгляд, необходимо:

- эволюционный скачек в области энергообеспечения ПК;

- постоянное совершенствование программного обеспечения, как определяющее в смысловом удобстве и качестве эксплуатации компьютеров;

- интенсификация работ по разработке емких носителей информации;

- совершенствование защищенных локальных сетей ПК.

Глоссарий

№ п/п

Понятие

Определение

1

Видеокарта

устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера или самого адаптера, в форму, пригодную для дальнейшего вывода на экран монитора.

2

Кэш

промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из оперативной (ОЗУ) и быстрее внешней (жёсткий диск или твердотельный накопитель) памяти, за счёт чего уменьшается среднее время доступа и увеличивается общая производительность компьютерной системы.

3

Материнская плата

сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера

4

Монитор

аппарат, предназначенный для вывода графической, текстовой или звуковой информации

5

Накопимтель на жёстких магнимтных димсках или НЖМД

запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

6

Оператимвная паммять

энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции.

7

Постоянное запоминающее устройство (ПЗУ)

энергонезависимая память, используется для хранения массива неизменяемых данных.

8

Пиксель

наименьший логический элемент двумерного цифрового изображения в растровой графике, а также [физический] элемент светочувствительной матрицы (иногда называемый сенсель -- от sensor element) и элемент матрицы дисплеев, формирующих изображение.

9

Сеть ЭВМ

сеть обмена и распределенной обработки информации, образуемая множеством абонентских систем, взаимодействующих между собой посредством телекоммуникационной сети

10

Северный мост

системный контроллер чипсета на материнской плате платформы x86, к которому в рамках организации взаимодействия подключены.

11

Физическая среда передачи данных

пространство или материал, обеспечивающие распространение информационных сигналов

12

Центральный процессор

электронный блок либо микросхема -- исполнитель машинных инструкций (кода программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

13

Чипсет

набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций.

14

Южный мост

также известен как контроллер-концентратор ввода-вывода

15

SATA

последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA (IDE), который после появления SATA был переименован в PATA (Parallel ATA)

16

USB

последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике

Список использованных источников

1. Артемьев. А. работаем на ноутбуке в Windows7. Самоучитель [Текст] / Артемьев. А. - СПб., 2010г.

2. Берлинер Э.М. Самоучитель 3 - е издание 2009

3. Брябрин В.М. Программное обеспечение персональных ЭВМ. - М.: Наука, 1988.

4. Воройский, Ф. С. Информатика. Новый систематизированный толковый словарь-справочник (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах) [Текст]/ Ф.С. Воройский -- 3-е изд., перераб. и доп. -- М.: ФИЗМАТЛИТ, 2003. -- 760 с

5. Граничин, О.Н. Информационные технологии в управлении / [Текст]. - М.: Бином, 2011.

6. Гольцман В. Работаем на ноутбуке вWindows7. Питер, 2010.

7. Додд, А.З. Мир телекоммуникаций. Обзор технологий и отрасли [Текст] / А.З. Додд. - М.:Олимп-Бизнес, 2005. - 400 с.

8. Игорь Цуканов. HP подтвердила лидерство // Ведомости, № 8 (2030), 18 января 2008

9. Квинт И. Работаем на нетбуке. СПб., Лидер, 2010

10. Ковтанюк Ю.С. Библия пользователя ПК. -- М.: «Диалектика», 2007.

11. Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991.

12. Локальные вычислительные сети. /Под ред. С.В. Назарова. -В 3-х кн. - М.: Финансы и статистика, 1994 - 1995.

13. Ляхович В. Ф., Крамаров С. О. Основы информатики: учебник. - М., 2005.

14. Мелехин, В.Ф. Вычислительные машины, системы и сети [Текст] / В.Ф. Мелехин, Е.Г. Павловский. - М.: Академия, 2007. - 557 с.

15. Пасько В. Самоучитель работы на персональном компьютере, шестое издание. - М., 2004. - с. 218.

16. Персональный компьютер фирмы IBM и операционная система MS DOS: Пер. с англ. - М.: Радио и связь, 1991.

17. Семененко В.А. Айдидын В.М., Липова А.Д. Электронные вычислительные машины. - М.: Высшая школа, 1991.

18. Сапков, В.В. Информационные технологии и компьютеризация делопроизводства / [Текст]. - М.: Академия, 2010. - 288 с.

19. Степурин А.В. Самоучитель работы на персональном компьютере (ПК). Краткое руководство. - Гатчина: Издательский дом "Вильямс", 2006.

20. Скотт М. Модернизация и ремонт ПК. -- 17-е изд. -- М.: «Вильямс», 2007.

21. Степаненко О.С. Персональный компьютер, учебный курс, 2-е издание. - СПб.: Компьютерное изд-во "Диалектика", 2000. - с. 195.

22. Современный компьютер: Сб. науч.-попул. статей; Пер. с С56 англ./Под ред. В. М. Курочкина; Предисл. Л. Н. Королева. -- М.: Мир, 1986. - с. 10.

23. Трофимов, В. Информационные системы и технологии в экономике и управлении / [Текст]. - М.: Юрайт, 2012. - 528 с.

24. Толковый словарь по вычислительным системам: Пер. с англ. М.: Машиностроение, 1990.

25. Уинн Л. Рош. Библия по модернизации персонального компьютера. - Мн.: ИПП "Тивали-Стиль", 1995.

26. Фигурнов В. Э. «IBM PC для пользователя», 4-е издание, переработанное и дополненое, M., 1993.

27. Фролов А., Фролов Г. Аппаратное обеспечение IBM PC. М.:Диалог-МИФИ, 1992. - с. 102.

28. Хомоненко А.Д. Основы современных компьютерных технологий: Учебник / Под ред. проф., - СПб.: КОРОНА принт, 2005. - 223 с.

29. Шафрин Ю.А. IBM PC.Учебник. - М., 2002.

30. Яковенко Е.А. Компьютерные курсы. Учебник пользователя. - М.: АСП Сталкер, 200

31. Яковенко Е.А. Компьютерные курсы. Учебник пользователя. - М.: АСП Сталкер, 2006.

32. Яшин, В.Н. Информатика. Аппаратные средства персонального компьютера / [Текст]. - М: Инфра-М, 2010. - 256 с.

Размещено на Allbest.ru


Подобные документы

  • Исторические предшественники компьютеров. Появление первых персональных компьютеров. Концепция открытой архитектуры ПК. Развитие элементной базы компьютеров. Преимущества многопроцессорных и многомашинных вычислительных систем перед однопроцессорными.

    курсовая работа [1,7 M], добавлен 27.04.2013

  • История создания и эволюция персональных компьютеров. Характеристика современных видов компьютеров, их приспособляемость к различным условиям эксплуатации. Тенденции развития микропроцессорных технологий. Примеры решения задач в среде Mathcad и AutoCAD.

    курсовая работа [1,8 M], добавлен 13.04.2015

  • События, предшествовавшие появлению персональных компьютеров. Важнейшие этапы развития вычислительной техники до появления персональных компьютеров. Выпуск операционной системы Windows 3.1. Микропроцессор Intel 8088. Табличный процессор VisiCalc.

    презентация [938,0 K], добавлен 21.06.2013

  • Этапы развития информатики и вычислительной техники. Аппаратная часть персональных компьютеров. Внешние запоминающие устройства персонального компьютера. Прикладное программное обеспечение персональных компьютеров. Текстовые и графические редакторы.

    контрольная работа [32,8 K], добавлен 28.09.2012

  • Роль компьютеров и информационных технологий в жизни современно человека. Основные принципы функционирования современных персональных электронных вычислительных машин. Основные устройства компьютера, компоненты системного блока и их взаимодействие.

    реферат [29,2 K], добавлен 10.12.2012

  • История возникновения и развития персональных компьютеров: появление первых электронных ламп и транзисторов, изобретение интегральных схем, создание микропроцессоров. Отличительные особенности и классификация компьютеров. История развития ноутбуков.

    реферат [33,0 K], добавлен 19.06.2011

  • Роль информационных систем и технологий в жизни современного общества. Назначение и состав программного обеспечения персональных компьютеров. Использование технологий OLE. Операционные среды для решения основных классов инженерных и экономических задач.

    практическая работа [1,2 M], добавлен 27.02.2009

  • История изобретения и развития компьютера. Устройство персональных компьютеров и принцип их работы. Появление IBM PC, их развитие и модернизация. Появление портативных компьютеров, их достоинства и недостатки. Сервера и их функциональные возможности.

    презентация [700,2 K], добавлен 27.11.2008

  • Понятие, цель информационных технологий. История развития вычислительной техники. Ручные, механические и электрические методы обработки информации. Разностная машина Ч. Беббиджа. Разработка персональных компьютеров с применением электронных схем.

    презентация [5,6 M], добавлен 26.11.2015

  • История создания и совершенствования персонального компьютера. Понятие и назначение интерактивных средств мультимедиа для компьютера, возможности и сферы использования. Этапы развития технологий Интернет, назначение и возможности виртуальной реальности.

    реферат [34,1 K], добавлен 15.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.