Обеспечение информационной безопасности в сетях IP

Угрозы информационной безопасности и необходимость защиты информации. IP телефония, удаленные атаки на распределенные вычислительные системы и причины их успеха. Принципы создания защищенных систем связи в распределенных вычислительных системах.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 03.06.2012
Размер файла 740,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Активные атаки можно разделить на две части. В первом случае крэкер предпринимает определенные шаги для перехвата и модификации сетевого потока или попыток "притвориться" другой системой. Во втором случае протокол TCP/IP используется для того, чтобы привести систему-жертву в нерабочее состоянии.

Обладая достаточными привилегиями в Unix (или попросту используя DOS или Windows, не имеющие системы ограничений пользователей), крэкер может вручную формировать IP-пакеты и передавать их по сети. Естественно, поля заголовка пакета могут быть сформированы произвольным образом. Получив такой пакет, невозможно выяснить откуда реально он был получен, поскольку пакеты не содержат пути их прохождения. Конечно, при установке обратного адреса не совпадающим с текущим IP-адресом, крэкер никогда не получит ответ на отосланный пакет. Однако, как мы увидим, часто это и не требуется.

Возможность формирования произвольных IP-пакетов является ключевым пунктом для осуществления активных атак.

6.2.1 Предсказание порядкового номера TCP

Данная атака была описана еще Робертом Моррисом (Robert T. Morris) в A Weakness in the 4.2BSD Unix TCP/IP Software. Англоязычный термин - IP-spoofing IP-spoofing получение доступа путем обмана (ситуация, когда пользователь пытается соединиться с сервером Internet, proxy-сервером или брандмауэром, используя ложный IP-адрес). В данном случае цель крэкера - притвориться другой системой, которой, например, "доверяет" система-жертва (в случае использования протокола rlogin/rsh для беспарольного входа). Метод также используется для других целей - например, для использования SMTP жертвы для посылки поддельных писем.

Описание

Вспомним, что установка TCP-соединения происходит в три стадии (3-way handshake): клиент выбирает и передает серверу порядковый номер (назовем его C-SYN), в ответ на это сервер высылает клиенту пакет данных, содержащий подтверждение (C-ACK) и собственный порядковый номер сервера (S-SYN). Теперь уже клиент должен выслать подтверждение (S-ACK).

После этого соединение считается установленным и начинается обмен данными. При этом каждый пакет имеет в заголовке поле для порядкового номера и номера подтверждения. Данные числа увеличиваются при обмене данными и позволяют контролировать корректность передачи.

Предположим, что крэкер может предсказать, какой порядковый номер (S-SYN по схеме) будет выслан сервером. Это возможно сделать на основе знаний о конкретной реализации TCP/IP. Например, в 4.3BSD значение порядкового номера, которое будет использовано при установке следующего значения, каждую секунду увеличивается на 125000. Таким образом, послав один пакет серверу, крэкер получит ответ и сможет (возможно, с нескольких попыткок и с поправкой на скорость соединения) предсказать порядковый номер для следующего соединения.

Если реализация TCP/IP использует специальный алгоритм для определения порядкового номера, то он может быть выяснен с помощью посылки нескольких десятков пакетов серверу и анализа его ответов.

Итак, предположим, что система A доверяет системе B, так, что пользователь системы B может сделать "rlogin A" rlogin A - Вход в систему А и оказаться на A, не вводя пароля. Предположим, что крэкер расположен на системе C. Система A выступает в роли сервера, системы B и C - в роли клиентов.

Первая задача крэкера - ввести систему B в состояние, когда она не сможет отвечать на сетевые запросы. Это может быть сделано несколькими способами, в простейшем случае нужно просто дождаться перезагрузки системы B. Нескольких минут, в течении которых она будет неработоспособна, должно хватить. Другой вариант - использование описанными в следующих разделах методов.

После этого крэкер может попробовать притвориться системой B, для того, что бы получить доступ к системе A (хотя бы кратковременный).

Крэкер высылает несколько IP-пакетов, инициирующих соединение, системе A, для выяснения текущего состояния порядкового номера сервера.

Крэкер высылает IP-пакет, в котором в качестве обратного адреса указан уже адрес системы B.

Система A отвечает пакетом с порядковым номером, который направляется системе B. Однако система B никогда не получит его (она выведена из строя), как, впрочем, и крэкер. Но он на основе предыдущего анализа догадывается, какой порядковый номер был выслан системе B

Крэкер подтверждает "получение" пакета от A, выслав от имени B пакет с предполагаемым S-ACK (заметим, что если системы располагаются в одном сегменте, крэкеру для выяснения порядкового номера достаточно перехватить пакет, посланный системой A). После этого, если крэкеру повезло и порядковый номер сервера был угадан верно, соединение считается установленным.

Теперь крэкер может выслать очередной фальшивый IP-пакет, который будет уже содержать данные. Например, если атака была направлена на rsh, он может содержать команды создания файла .rhosts или отправки /etc/passwd крэкеру по электронной почте.

Простейшим сигналом IP-spoofing будут служить пакеты с внутренними адресами, пришедшие из внешнего мира. Программное обеспечение маршрутизатора может предупредить об этом администратора. Однако не стоит обольщаться - атака может быть и изнутри Вашей сети.

В случае использования более интеллектуальных средств контроля за сетью администратор может отслеживать (в автоматическом режиме) пакеты от систем, которые находятся в недоступном состоянии. Впрочем, что мешает крэкеру имитировать работу системы B ответом на ICMP-пакеты?

Какие способы существуют для защиты от IP-spoofing? Во-первых, можно усложнить или сделать невозможным угадывание порядкового номера (ключевой элемент атаки). Например, можно увеличить скорость изменения порядкового номера на сервере или выбирать коэффициент увеличения порядкового номера случайно (желательно, используя для генерации случайных чисел криптографически стойкий алгоритм).

Если сеть использует межсетевой экран firewall (или другой фильтр IP-пакетов), следует добавить ему правила, по которым все пакеты, пришедшие извне и имеющие обратными адресами из нашего адресного пространства, не должны пропускаться внутрь сети. Кроме того, следует минимизировать доверие машин друг другу. В идеале не должны существовать способа, напрямую попасть на соседнюю машину сети, получив права суперпользователя на одной из них. Конечно, это не спасет от использования сервисов, не требующих авторизации, например, IRC - чат (крэкер может притвориться произвольной машиной Internet и передать набор команд для входа на канал IRC, выдачи произвольных сообщений и т.д.).

Шифрование TCP/IP-потока решает в общем случае проблему IP-спуфинга (при условии, что используются криптографически стойкие алгоритмы).

Для того, чтобы уменьший число таких атак, рекомендуется также настроить firewall для фильтрации пакетов, посланных нашей сетью наружу, но имеющих адреса, не принадлежащие нашему адресному пространству. Это защитит мир от атак из внутренней сети, кроме того, детектирование подобных пакетов будет означать нарушение внутренней безопасности и может помочь администратору в работе.

6.2.2 IP Hijacking - Нападение на IP

Если в предыдущем случае крэкер инициировал новое соединение, то в данном случае он перехватывает весь сетевой поток, модифицируя его и фильтруя произвольным образом. Метод является комбинацией 'подслушивания' и IP-спуфинга.

Описание

Необходимые условия - крэкер должен иметь доступ к машине, находящейся на пути сетевого потока и обладать достаточными правами на ней для генерации и перехвата IP-пакетов.

Напомним, что при передаче данных постоянно используются порядковый номер и номер подтверждения (оба поля находятся в IP-заголовке). Исходя из их значения, сервер и клиент проверяют корректность передачи пакетов.

Существует возможность ввести соединение в "десинхронизированное состояние", когда присылаемые сервером порядковый номер и номер подтверждения не будут совпадать с ожидаемым значениеми клиента, и наоборот. В данном случае крэкер, "прослушивая" линию, может взять на себя функции посредника, генерируя корректные пакеты для клиента и сервера и перехватывая их ответы.

Метод позволяет полностью обойти такие системы защиты, как, например, одноразовые пароли, поскольку крэкер начинает работу уже после того, как произойдет авторизация пользователя.

Есть два способа рассинхронизировать соединение

Ранняя десинхронизация

Соединение десинхронизируется на стадии его установки.

Крэкер прослушивает сегмент сети, по которому будут проходить пакеты интересующей его сессии

Дождавшись пакета S-SYN от сервера, крэкер высылает серверу пакет типа RST (сброс), конечно, с корректным порядковым номером, и, немедленно, вслед за ним фальшивый C-SYN-пакет от имени клиента

Сервер сбрасывает первую сессию и открывает новую, на том же порту, но уже с новым порядковым номером, после чего посылает клиенту новый S-SYN-пакет.

Клиент игнорирует S-SYN-пакет, однако крэкер, прослушивающий линию, высылает серверу S-ACK-пакет от имени клиента.

Итак, клиент и сервер находятся в установленом состоянии ESTABLISHED (установлено), однако сессия десинхронизирована.

Естественно, 100% срабатывания у этой схемы нет, например, она не застрахована от того, что по дороге не потеряются какие-то пакеты, посланные крэкером. Для корректной обработки этих ситуаций программа должна быть усложнена.

Десинхронизация нулевыми данными

В данном случае крэкер прослушивает сессию и в какой-то момент посылает серверу пакет с "нулевыми" данными, т.е. такими, которые фактически будут проигнорированы на уровне прикладной программы и не видны клиенту. Аналогичный пакет посылается клиенту. Очевидно, что после этого сессия переходит в десинхронизированное состояние.

ACK-буря

Одна из проблем IP Hijacking заключается в том, что любой пакет, высланный в момент, когда сессия находится в десинхронизированном состоянии вызывает так называемый ACK-бурю. Например, пакет выслан сервером, и для клиента он является неприемлимым, поэтому тот отвечает ACK-пакетом. В ответ на этот неприемлимый уже для сервера пакет клиент вновь получает ответ... И так до бесконечности.

К счастью (или к сожалению?) современные сети строятся по технологиям, когда допускается потеря отдельных пакетов. Поскольку ACK-пакеты не несут данных, повторных передачи не происходит и "буря стихает".

Как показали опыты, чем сильнее ACK-буря, тем быстрее она "утихомиривает" себя - на 10MB ethernet это происходит за доли секунды. На ненадежных соединениях типа SLIP SLIP [Serial Line Internet Protocol] межсетевой протокол для последовательного канала (протокол Internet, обеспечивающий возможность реализации сетевых протоколов при соединении двух систем последовательными (телефонными) линиями; в настоящее время вместо SLIP в основном используется протокол PPP) - ненамного больше.

Детектирование и защита

Есть несколько путей. Например, можно реализовать TCP/IP-стэк, которые будут контролировать переход в десинхронизированное состояние, обмениваясь информацией о порядковом номере/номере подтверждения. Однако в данному случае мы не застрахованы от крэкера, меняющего и эти значения.

Поэтому более надежным способом является анализ загруженности сети, отслеживание возникающих ACK-бурь. Это можно реализовать при помощи конкретных средств контроля за сетью.

Если крэкер не потрудиться поддерживать десинхронизированное соединение до его закрытия или не станет фильтровать вывод своих команд, это также будет сразу замечено пользователем. К сожалению, подавляющее большинство просто откруют новую сессию, не обращаясь к администратору.

Стопроцентную защиту от данной атаки обеспечивает, как всегда, шифрование TCP/IP-трафика (на уровне приложений - secure shell) или на уровн протокола - IPsec). Это исключает возможность модификации сетевого потока. Для защиты почтовых сообщений может применяться PGP.

Следует заметить, что метод также не срабатывает на некоторых конкретных реализациях TCP/IP. Так, некоторые системы генерируют встречный RST-пакет. Это делает невозможным раннюю десинхронизацию.

6.2.3 Пассивное сканирование

Сканирование часто применяется крэкерами для того, чтобы выяснить, на каких TCP-портах работают демоны, отвечающие на запросы из сети. Обычная программа-сканер последовательно открывает соединения с различными портами. В случае, когда соединение устанавливается, программа сбрасывает его, сообщая номер порта крэкеру.

Данный способ легко детектируются по сообщениям демонов, удивленных мгновенно прерваным после установки соединением, или с помощью использования специальных программ. Лучшие из таких программ обладают некоторыми попытками внести элементы искуственного элемента в отслеживание попыток соединения с различными портами.

Однако крэкер может воспользоваться другим методом - пассивным сканированием (английский термин "passive scan"). При его использовании крэкер посылает TCP/IP SYN-пакет на все порты подряд (или по какому-то заданному алгоритму). Для TCP-портов, принимающих соединения извне, будет возвращен SYN/ACK-пакет, как приглашение продолжить 3-way handshake. Остальные вернут RST-пакеты. Проанализировав данные ответ, крэкер может быстро понять, на каких портах работают программа. В ответ на SYN/ACK-пакеты он может также ответить RST-пакетами (cброс), показывая, что процесс установки соединения продолжен не будет (в общем случае RST-пакетами автоматический ответит TCP/IP-реализация крэкера, если он не предпримет специальных мер).

Метод не детектируется предыдущими способами, поскольку реальное TCP/IP-соединение не устанавливается. Однако (в зависимости от поведения крэкера) можно отслеживать резко возросшее количество сессий, находящихся в состоянии SYN_RECEIVED. (SIN пакет принят) при условии, что крэкер не посылает в ответ RST) прием от клиента RST-пакета в ответ на SYN/ACK.

К сожалению, при достаточно умном поведении крэкера (например, сканирование с низкой скоростью или проверка лишь конкретных портов) детектировать пассивное сканирование невозможно, поскольку оно ничем не отличается от обычных попыток установить соединение.

В качестве защиты можно лишь посоветовать закрыть на firewall все сервисы, доступ к которым не требуется извне.

6.2.4 Затопление ICMP-пакетами

Традиционный англоязычный термин - "ping flood". Появился он потому, что программа "ping", предназначенная для оценки качества линии, имеет ключ для "агрессивного" тестирования. В этом режиме запросы посылаются с максимально возможной скоростью и программа позволяет оценить, как работает сеть при максимальной нагрузке. Данная атака требует от крэкера доступа к быстрым каналам в Интернет.

Вспомним, как работает ping. Программа посылает ICMP-пакет типа ECHO REQUEST (запрос отклика ICMP), выставляя в нем время и его идентификатор. Ядро машины-получателя отвечает на подобный запрос пакетом ICMP ECHO REPLY (ответ на отклик ICMP) . Получив его ping выдает скорость прохождения пакета.

При стандартном режиме работы пакеты выслаются через некоторые промежутки времени, практически не нагружая сеть. Но в "агрессивном" режиме поток ICMP echo request/reply-пакетов может вызвать перегрузку небольшой линии, лишив ее способности передавать полезную информацию.

Естественно, случай с ping является частным случаем более общей ситуации, связанный с перегрузкой каналов. Например, крэкер может посылать множество UDP-пакетов UDP [User Datagram Protocol] протокол передачи дейтаграмм пользователя (быстрый сетевой протокол транспортного уровня Internet, на котором базируются сетевая файловая система, служба имен и ряд других служб, однако, в отличие от TCP, UDP обеспечивает обмен дейтаграммами без подтверждения доставки) на 19-й порт машины-жертвы, и горе ей, если она, следуя общепринятым правилам, имеет на 19-м UDP-порту знакогенератор, отвечающий на пакеты строчками по 80 байт.

Заметим, что крэкер может также подделывать обратный адрес подобных пакетов, затрудняя его обнаружение. Отследить его поможет разве что скоординированная работа специалистов на промежуточных маршрутизаторах, что практически нереально.

Одной из вариантов атаки - посылать ICMP echo request-пакеты с исходным адресом, указывающем на жертву, на широковещательные-адреса крупных сетей. В результате каждая из машин ответит на этот фальшивый запрос, и машина-отправитель получит больше количество ответов. Посылка множество echo requests от имени "жертвы" на широковещательные-адреса крупных сетей, можно вызвать резкой заполненение канала "жертвы".

Приметы затопления - резко возросшая нагрузка на сеть (или канал) и повышение количество специфических пакетов (таких, как ICMP).

В качестве защиты можно порекомендовать настройку маршрутизаторов, при которых они будут фильтровать тот же ICMP трафик, превышающие некоторую заданную заранее величину (пакетов/ед. времени). Для того, чтобы убедиться, что Ваши машины не могут служить источником ping flood'а, ограничьте доступ к ping.

6.2.5 Локальная буря

Сделаем небольшое отступление в сторону реализации TCP/IP и рассмотрим "локальные бури" на пример UDP-бури. Как правило, по умолчанию системы поддерживают работу таких UDP-портов, как 7 ("эхо", полученный пакет отсылается назад), 19 ("знакогенератор", в ответ на полученный пакет отправителю выслается строка знакогенератора) и других.

В данном случае крэкер может послать единственный UDP-пакет, где в качестве исходного порта будет указан 7, в качестве получателя - 19-й, а в качестве адреса получателя и отправителя будут указаны, к примеру, две машины вашей сети (или даже 127.0.0.1). Получив пакет, 19-й порт отвечает строкой, которая попадает на порт 7. Седьмой порт дублирует ее и вновь отсылает на 19.. и так до бесконечности.

Бесконечный цикл съедает ресурсы машин и добавляет на канал бессмысленную нагрузку. Конечно, при первом потерянном UDP-пакете буря прекратиться. Как недавно стало известно, данная атака временно выводит из строя (до перезагрузки) некоторые старые модели маршрутизаторов.

Очевидно, что в бесконечный разговор могут быть вовлечены многие демоны (в случае TCP/IP может быть применен TCP/IP spoofing, в случае UDP/ICMP достаточно пары фальшивых пакетов)

В качестве защиты стоит еще раз порекомендовать не пропускать в сети пакеты с внутренними адресам, но пришедшие извне. Также рекомендуется закрыть на firewall использование большинства сервисов.

6.2.6 Затопление SYN-пакетами

Пожалуй, затопление SYN-пакетами ("SYN flooding") - самый известный способ нападения, с того времени, как хакерский электронный журнал "2600" опубликовал исходные тексты программы, позволяющие занятьсе этим даже неквалифицированным пользователям. Следует заметить, что впервые эта атака была упомянута еще в 1986 году все тем же Робертом Т. Моррисом.

Вспомним, как работает TCP/IP в случае входящих соединений. Система отвечает на пришедший C-SYN-пакет S-SYN/C-ACK-пакетом, переводит сессию в состояние SYN_RECEIVED (SYN пакет принят) и заносит ее в очередь. Если в течении заданного времени от клиента не придет S-ACK, соединение удаляется из очереди, в противном случае соединение переводится в установленное состояние ESTABLISHED.

Рассмотрим случай, когда очередь входных соединений уже заполнена, а система получает SYN-пакет, приглашающий к установке соединения. По RFC RFC [Requests for Comments] серия документов IETF, начатая в 1969 году и содержащая описания набора протоколов Internet и связанную с ними информацию он будет молча проигнорирован.

Затопление SYN-пакетами основано на переполнении очереди сервера, после чего сервер перестает отвечать на запросы пользователей. Самая известная атака такого рода - атака на Panix, нью-йоркского провайдера. Panix не работал в течении 2-х недель.

В различных системах работа с очередью реализована по разному. Так, в BSD BSD [Berkeley Software Distribution] программное изделие Калифорнийского университета (адаптированная для Internet реализация операционной системы ЮНИКС с комплектом ее утилит, разрабатываемых и распространяемых университетом) -системах, каждый порт имеет свою собственную очередь размером в 16 элементов. В системах SunOS, напротив, такого разделения и нет и система просто располагает большой общей очередью. Соответственно, для того, что бы заблокировать, к примеру, WWW-порт на BSD достаточно 16 SYN-пакетов, а для Solaris 2.5 их количество будет гораздо больше.

После истечение некоторого времени (зависит от реализации) система удаляет запросы из очереди. Однако ничего не мешает крэкеру послать новую порцию запросов. Таким образом, даже находясь на соединение 2400 bps, крэкер может посылать каждые полторы минуты по 20-30 пакетов на FreeBSD-сервер, поддерживая его в нерабочем состоянии (естественно, эта ошибка была скорректирована в последних версиях FreeBSD)

Как обычно, крэкер может воспользоваться случайными обратными IP-адресами при формировании пакетов, что затрудняет его обнаружение и фильтрацию его трафика.

Детектирование несложно -- большое количество соединений в состоянии SYN_RECEIVED (SYN пакет принят) , игнорирование попыток соединится с данным портом. В качестве защиты можно порекомендовать патчи, которые реализуют автоматическое "прорежение" очереди. Для того, что бы узнать, если к Вашей системе защита от SYN-затопления, обратитесь к поставщику системы.

Другой вариант защиты - настроить cетевой экран firewall так, что бы все входящие TCP/IP-соединения устанавливал он сам, и только после этого перебрасывал их внутрь сети на заданную машину. Это позволит Вам ограничить syn-затопление и не пропустить его внутрь сети.

7. Решения на программном уровне

7.1 SSL - Secure Socket Layer - протокол защищенных сокетов

Протокол SSL (Secure Socket Layer) был разработан фирмой Netscape, как протокол обеспечивающий защиту данных между сервисными протоколами (такими как HTTP, NNTP, FTP и т.д.) и транспортными протоколами (TCP/IP). Часто для него используется аббревиатура HTTPS. Именно эта латинская буква "s" превращает обычный, не защищенный канал передачи данных в Интернете по протоколу HTTP, в засекреченный или защищенный,

Протокол SSL предоставляет "безопасный канал", который имеет три основные свойства:

Канал является частным. Шифрование используется для всех сообщений после простого диалога, который служит для определения секретного ключа.

Канал аутентифицирован. Серверная сторона диалога всегда аутентифицируется, в то время как клиентская - аутентифицируется опционно.

Канал надежен. Транспортировка сообщений включает в себя проверку целостности (с привлечением MAC).

SSL не только обеспечивает защиту данных в Интернете, но так же производит опознание сервера и клиента (server/client authentication). В данный момент протокол SSL принят W3 консорциумом (W3 Consortium) на рассмотрение, как основной защитный протокол для клиентов и серверов (WWW browsers and servers) в сети Интернет.

Использование SSL

Чаще всего, этот протокол используется в составе любого Интернет-ресурса, осуществляющего манипуляции с личными или финансовыми данными посещающих его пользователей Интернета. Чаще всего, это банки, Интернет-магазины или любые другие виртуальные места, в которых приходящие по своим делам пользователи, вынуждены передавать свои личные, и зачастую, секретные данные. Этого может потребовать и простая регистрация, и процедура оплаты какого-либо товара, или любая другая процедура, при которой пользователи вынуждены честно выдавать свои паспортные данные, PIN-ы и пароли. Появляются два довольно веских довода, первый, передаваемую информацию надо шифровать, и второй, мы должны быть уверены, что передаем информацию именно туда, куда нужно. Именно для решения этих двух вопросов и используется SSL.

HTTP и HTTPS

Попытки разработать универсальный сетевой протокол, способный обеспечить надлежащий уровень безопасности при работе в Интернет, предпринимались достаточно давно, и достаточно большим количеством различных фирм и организаций. HTTP протокол предлагал достаточно простой, парольный способ идентификации того или иного пользователя. В момент соединения с сервером, пользователь вводил пароль, пароль передавался серверу в открытом, не зашифрованном виде, и далее, проверив соответствие пароля и имени пользователя, сервер открывал или не открывал затребованное соединение. Далее, по мере развития Интернета, было создано несколько различных безопасных протоколов. Официальный протокол, разработку которого спонсировала IETF, назывался Secure HTTP (SHTTP), Помимо него, разрабатывались, и были созданы, еще несколько не официальных проектов, один из которых, под названием SSL (Secure Sockets Layer), созданный Netscape, получил большую популярность и широкое распространение. Правда, не смотря на свою популярность, SSL не является официальным Интернет стандартом.

SSL в действии

Главным назначением SSL-протокола, является обеспечение приватного и надежного способа обмена информацией между двумя удаленно взаимодействующими приложениями. Протокол реализуется в виде двухслойной (многослойной) среды, специально предназначенной для безопасного переноса секретной информации, через не засекреченные каналы связи. В качестве первого слоя, в такой среде используется некоторый надежный транспортный протокол; TCP к примеру. По слову "транспортный", не трудно догадаться, что TCP берет на себя функции "несущей", и в дальнейшем, становится извозчиком, для всех лежащих выше слоев (протоколов). Вторым по счету слоем, накладываемым на TCP, является SSL Record Protocol. Вместе, эти два слоя, TCP и SSL Record Protocol, формируют своеобразное ядро SSL. В дальнейшем, это ядро становится первичной герметизирующей оболочкой, для всех последующих более сложных протокольных инфраструктур. В качестве одной из таких структур, используется SSL Handshake Protocol (Протокол «рукопожатия»)- позволяющий серверу и клиенту идентифицировать друг друга и согласовывать криптографические алгоритмы и ключи, перед тем как приложения, работающие на серверной и клиентской стороне, смогут начать передачу или прием информационных байтов в защищенном режиме.

Одним из не мало важных преимуществ SSL, является его полная программно-платформенная независимость. Протокол разработан на принципах переносимости, и идеология его построения, не зависит, от тех приложений, в составе которых он используется. Помимо этого, важно и то, что поверх протокола SSL, могут прозрачно накладываться и другие протоколы; либо для еще большего увеличения степени защиты целевых информационных потоков, либо, для адаптации криптографических способностей SSL под какую-нибудь другую, вполне определенную задачу.

Вы начинаете использовать SSL в тот момент, когда вводите в адресной строке своего браузера URL начинающийся с аббревиатуры HTTPS, В результате, вы подключаетесь к порту за номером 443, который для SSL обычно используется по умолчанию; для стандартного HTTP соединения, чаще всего используется порт 80. В процессе подключения, браузер пользователя (в дальнейшем клиент), посылает серверу приветственное сообщение (hello message). В свою очередь сервер, также должен посылать клиенту свое приветственное сообщение. Приветственные сообщения, являются первичными, инициализирующими сообщениями и содержат информацию, используемую при дальнейшей настройке открываемого секретного канала. В общем случае, приветственное сообщение устанавливает четыре основных параметра: версия протокола, идентификатор сессии, способ шифрования, метод компрессии, а также, два специально сгенерированных случайных числа; и сервер, и клиент, генерируют такие числа независимо друг от друга, а затем, просто обмениваются ими друг с другом.

После получения приветственного сообщения от клиента, сервер отсылает свой сертификат, если таковой у него имеется. Также, при необходимости, сервер может послать и некое ключевое сообщение, например в случае отсутствии сертификата. Если сервер авторизирован (т.е. имеет соответствующий сертификат), он может потребовать и клиентский сертификат, если того потребует выбранный способ шифрования данных. После этого, производится еще ряд промежуточных обменных операций, в процессе которых, производится окончательное уточнение выбранного алгоритма шифрования, ключей и секретов, и далее, сервер посылает клиенту некое финальное сообщение, после чего обе стороны приступают к обмену зашифрованной информации.

Ложка дегтя

SSL как таковой, теоретически, может обеспечить практически полную защиту любого Интернет соединения. Но для успешного функционирования SSL, кроме него самого, необходимы также и чисто программные средства, претворяющие технологию SSL в жизнь. Программы, так или иначе использующие SSL протокол, как ни странно, является порой самым уязвимым местом этой технологии. Именно из-за ошибок в этих программах, возможна почти полная потеря, всех, достигнутых после использования SSL щитов и заслонов. К таким программным инструментам, прежде всего, относятся активно используемые нами Интернет-браузеры.

Одним из самых показательных критериев уровня защиты, является размер используемых ключей. Чем больше этот размер, тем соответственно надежнее защита. Браузеры в основном используют три размера: 40, 56 и 128 бит, соответственно. Причем, 40-а битный вариант ключа недостаточно надежен. Таким образом, предпочтительнее использовать именно 128-ми битные ключи. Применительно к Internet Explorer-у от Microsoft, это означает загрузку дополнительного пакета (security pack). Так как интернациональные версии этого браузера, всегда снабжаются исключительно 40-а или 56-и битной защитой, а 128-ми битная защита, ставится только на североамериканские версии этого браузера (США, Канада). Для того чтобы установить, какой именно размер ключа используется в вашем браузере, в Netscape Navigator вам достаточно открыть подменю "Options/Security Preferences", а в Internet Explorer, подменю "Help/About".

Но размер ключа, не будет играть решающий роли, если в защите браузера имеется внутренняя брешь. Сообщения об открытии таких брешей, в тех или иных браузерах, появляются с регулярными интервалами. Такая брешь напоминает открытую форточку в протапливаемой комнате - все тепло мгновенно выветривается. По этому поводу, уместно вспомнить случай произошедший с Netscape Navigator, в мае 2000 года. Тогда, один корейский студент обнаружил такую, довольно не приятную особенность, этого браузера. При попытке соединения с сервером, обладающим не годным сертификатом, с дальнейшим отказом от продолжения такого соединения, происходило следующее. Netscape, по ошибке, помещал этот сертификат в список годных, и соответственно, при последующем подключение уже не выдавал пользователю ни каких предупреждающих сообщений, спокойно подключаясь к этому, не вполне надежному, серверу

Но все эти и им подобные прорехи, не идут ни в какое сравнение с той угрозой, которую могут представлять для пользователя вовремя не отозванные сертификаты. Дело в том, что браузеры обычно поставляются с неким, вполне определенным набором действительных сертификатов, но автоматического механизма проверки этой годности по прошествию некоторого времени - не существует. Таким образом, возможно, что действие, того или иного, используемого вашим браузером сертификата, уже, давно кончилось; мог истечь срок годности, мог быть потерян контроль над личным ключом соответствующим этому сертификату и.т.д. В любом из этих случаев, сертификат автоматически отзывается, и помещается в специальный, так называемый revocation list, или список не годных сертификатов, создаваемый и обновляемый тем или иным сертификационным сообществом (CA). Теперь, если не удалить такой сертификат из вашего браузера, он по прежнему будет числиться как годный, со всеми вытекающими отсюда последствиями.

Следует заметить, что идея, заложенная в протоколе SSL безусловно, хороша. Хотя у нее есть и свои плюсы, и свои минусы, но в целом, этот протокол можно назвать одним из наиболее удачных решений проблемы защиты пользовательских данных при их распространении "открытым" каналом. Этот протокол вполне бы мог стать некой сетевой панацеей. Но, к сожалению, практика, показывает что идея это еще не решение. Без соответствующей практической составляющей, идея так и остается идеей, а потому, пользователи безусловно, должны помнить, что символ замка, появляющийся в строке состояния их Интернет-браузеров, еще не гарантия того, что все наши секреты и тайны находятся под действительно надежной защитой

Реализации SSL

Теперь несколько слов о реализации SSL. Наиболее распространенным пакетом программ для поддержки SSL является SSLeay. Последняя версия (SSLeay v. 0.8.0) поддерживает SSLv3. Эта версия доступна в исходных текстах. Этот пакет предназначен для создания и управления различного рода сертификатами. Так же в его состав входит и библиотека для поддержки SSL различными программами. Эта библиотека необходима, например, для модуля SSL в распространенном HTTP сервере Apache. Если Вы устанавливаете версию, вне США, то особых проблем с алгоритмом RSA быть не должно. Но только накладывается ограничение на длину ключа в 40 бит. Действеут это ограничение и на другой пакет от фирмы Netscape - SSLRef. А вот если компьютер с SSLeay находится на территории США, то за использование алгоритма RSA необходимо заплатить. Но об этом нужно разговаривать с самой фирмой RSA Data Security Inc.

7.2 IPSec - протокол защиты сетевого трафика на IP-уровне

Краткая историческая справка появления протокола

В 1994 году Совет по архитектуре Интернет (IAB IAB [Internet Activities Board] - Координационный совет сети Internet ( технический орган, отвечающий за развитие набора протоколов Internet ( TCP ); включает технические группы IRTF и IETF , каждая из которых занимается решением своих задач )) выпустил отчет "Безопасность архитектуры Интернет". В этом документе описывались основные области применения дополнительных средств безопасности в сети Интернет, а именно защита от несанкционированного мониторинга, подмены пакетов и управления потоками данных. В числе первоочередных и наиболее важных защитных мер указывалась необходимость разработки концепции и основных механизмов обеспечения целостности и конфиденциальности потоков данных. Поскольку изменение базовых протоколов семейства TCP/IP вызвало бы полную перестройку сети Интернет, была поставлена задача обеспечения безопасности информационного обмена в открытых телекоммуникационных сетях на базе существующих протоколов. Таким образом, начала создаваться спецификация Secure IP - Защищенный IP, дополнительная по отношению к протоколам IPv4 и IPv6.

Архитектура IPSec

IP Security - это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав входят около 20 предложений по стандартам и 18 RFC.

Спецификация IP Security (известная сегодня как IPsec) разрабатывается IETF (Internet Engineering Task Force - проблемная группа проектирования Internet) В настоящее время IPsec включает 3 алгоритмо-независимые базовые спецификации, опубликованные в качестве RFC-документов "Архитектура безопасности IP", "Аутентифицирующий заголовок (AH)", "Инкапсуляция зашифрованных данных (ESP)". Необходимо заметить, что в марте 1998 года Рабочая группа IP Security Protocol предложила новые версии этих спецификаций, имеющие в настоящее время статус предварительных стандартов. Кроме этого, существуют несколько алгоритмо-зависимых спецификаций, использующих протоколы MD5, SHA, DES.

Рис. 8 Архитектура IPSec

Рабочая группа IP Security Protocol разрабатывает также и протоколы управления ключевой информацией. В задачу этой группы входит разработка протокола IKMP (Internet Key Management Protocol), протокола управления ключами прикладного уровня, не зависящего от используемых протоколов обеспечения безопасности. В настоящее время рассматриваются концепции управления ключами с использованием спецификации ISAKMP (Internet Security Association and Key Management Protocol) и протокола Oakley установления ключа (Oakley Key Determination Protocol). Спецификация ISAKMP описывает механизмы согласования атрибутов используемых протоколов, в то время как протокол Oakley позволяет устанавливать сессионные ключи на компьютеры сети Интернет. Рассматриваются также возможности использования механизмов управления ключами протокола SKIP SKIP команда подготовки следующей команды. Создаваемые стандарты управления ключевой информацией, возможно, будут поддерживать Центры распределения ключей, аналогичные используемым в системе Kerberos.

Гарантии целостности и конфиденциальности данных в спецификации IPsec обеспечиваются за счет использования механизмов аутентификации и шифрования соответственно. Последние, в свою очередь, основаны на предварительном согласовании сторонами информационного обмена т.н. "контекста безопасности" - применяемых криптографических алгоритмов, алгоритмов управления ключевой информацией и их параметров. Спецификация IPsec предусматривает возможность поддержки сторонами информационного обмена различных протоколов и параметров аутентификации и шифрования пакетов данных, а также различных схем распределения ключей. При этом результатом согласования контекста безопасности является установление индекса параметров безопасности (SPI), представляющего собой указатель на определенный элемент внутренней структуры стороны информационного обмена, описывающей возможные наборы параметров безопасности.

По сути, IPSec, работает на третьем уровне, т. е. на сетевом уровне. В результате передаваемые IP-пакеты защищены прозрачным для сетевых приложений и инфраструктуры образом. В отличие от SSL (Secure Socket Layer), который работает на четвертом (т. е. транспортном) уровне и теснее связан с более высокими уровнями модели OSI, IPSec призван обеспечить низкоуровневую защиту.

Рис. 9 Модель OSI/ISO

К IP-данным, готовым к передаче по виртуальной частной сети, IPSec добавляет заголовок для идентификации защищенных пакетов. Перед передачей по Internet эти пакеты инкапсулируются в другие IP-пакеты. IPSec поддерживает несколько типов шифрования, в том числе DES DES [Data Encription Standard] стандарт шифрования данных, шифровальный стандарт (широко используемый высоконадежный алгоритм для шифрования и дешифрования данных, разработанный U.S. National Bureau of Standards) и MD5 - дайджест сообщения.

Чтобы установить защищенное соединение, оба участника сеанса должны иметь возможность быстро согласовать параметры защиты, такие как алгоритмы аутентификации и ключи. IPSec поддерживает два типа схем управления ключами, с помощью которых участники могут согласовать параметры сеанса. Эта двойная поддержка вызвала определенные трения в рабочей группе IETF.

С текущей версией IP, IPv4, могут быть использованы или Internet Secure Association Key Management Protocol (ISAKMP), или Simple Key Management for Internet Protocol. !!!! С новой версией IP, IPv6, придется использовать ISAKMP, известный сейчас как ISAKMP/Oakley. К сожалению, две вышеописанные схемы управления ключами во многом несовместимы, а значит, гарантировать интероперабельность из конца в конец вряд ли возможно.

Заголовок AH AH [Authentication Header] - Аутентифицирующий заголовок

Аутентифицирующий заголовок (AH) является обычным опциональным заголовком и, как правило, располагается между основным заголовком пакета IP и полем данных. Наличие AH никак не влияет на процесс передачи информации транспортного и более высокого уровней. Основным и единственным назначением AH является обеспечение защиты от атак, связанных с несанкционированным изменением содержимого пакета, и в том числе от подмены исходного адреса сетевого уровня. Протоколы более высокого уровня должны быть модифицированы в целях осуществления проверки аутентичности полученных данных.

Формат AH достаточно прост и состоит из 96-битового заголовка и данных переменной длины, состоящих из 32-битовых слов. Названия полей достаточно ясно отражают их содержимое: Next Header указывает на следующий заголовок, Payload Len представляет длину пакета, SPI является указателем на контекст безопасности и Sequence Number Field содержит последовательный номер пакета.

Рис. 10Формат заголовка AH

Последовательный номер пакета был введен в AH в 1997 году в ходе процесса пересмотра спецификации IPsec. Значение этого поля формируется отправителем и служит для защиты от атак, связанных с повторным использованием данных процесса аутентификации. Поскольку сеть Интернет не гарантирует порядок доставки пакетов, получатель должен хранить информацию о максимальном последовательном номере пакета, прошедшего успешную аутентификацию, и о получении некоторого числа пакетов, содержащих предыдущие последовательные номера (обычно это число равно 64).

В отличие от алгоритмов вычисления контрольной суммы, применяемых в протоколах передачи информации по коммутируемым линиям связи или по каналам локальных сетей и ориентированных на исправление случайных ошибок среды передачи, механизмы обеспечения целостности данных в открытых телекоммуникационных сетях должны иметь средства защиты от внесения целенаправленных изменений. Одним из таких механизмов является специальное применение алгоритма MD5: в процессе формирования AH последовательно вычисляется хэш-функция от объединения самого пакета и некоторого предварительно согласованного ключа, а затем от объединения полученного результата и преобразованного ключа. Данный механизм применяется по умолчанию в целях обеспечения всех реализаций IPv6, по крайней мере, одним общим алгоритмом, не подверженным экспортным ограничениям.

Заголовок ESP - Инкапсуляция зашифрованных данных

В случае использования инкапсуляции зашифрованных данных заголовок ESP является последним в ряду опциональных заголовков, "видимых" в пакете. Поскольку основной целью ESP является обеспечение конфиденциальности данных, разные виды информации могут требовать применения существенно различных алгоритмов шифрования. Следовательно, формат ESP может претерпевать значительные изменения в зависимости от используемых криптографических алгоритмов. Тем не менее, можно выделить следующие обязательные поля: SPI SPI [Secutity Parameter Index] Индекс параметра безопасности, указывающее на контекст безопасности, поле порядкового номера, содержащее последовательный номер пакета, и контрольная сумма, предназначенная для защиты от атак на целостность зашифрованных данных. Кроме этого, как правило, в теле ESP присутствуют параметры (например, режим использования) и данные (например, вектор инициализации) применяемого алгоритма шифрования. Часть ESP заголовка может быть зашифрована на открытом ключе получателя или на совместном ключе пары отправитель-получатель. Получатель пакета ESP расшифровывает ESP заголовок и использует параметры и данные применяемого алгоритма шифрования для декодирования информации транспортного уровня.

Рис. 11Формат заголовка ESP

Различают два режима применения ESP - транспортный и тоннельный.

Транспортный режим

Транспортный режим используется для шифрования поля данных IP пакета, содержащего протоколы транспортного уровня (TCP, UDP, ICMP), которое, в свою очередь, содержит информацию прикладных служб. Примером применения транспортного режима является передача электронной почты. Все промежуточные узлы на маршруте пакета от отправителя к получателю используют только открытую информацию сетевого уровня и, возможно, некоторые опциональные заголовки пакета (в IPv6). Недостатком транспортного режима является отсутствие механизмов скрытия конкретных отправителя и получателя пакета, а также возможность проведения анализа трафика. Результатом такого анализа может стать информация об объемах и направлениях передачи информации, области интересов абонентов, расположение руководителей.

Тоннельный режим

Тоннельный режим предполагает шифрование всего пакета, включая заголовок сетевого уровня. Тоннельный режим применяется в случае необходимости скрытия информационного обмена организации с внешним миром. При этом, адресные поля заголовка сетевого уровня пакета, использующего тоннельный режим, заполняются межсетевым экраном организации и не содержат информации о конкретном отправителе пакета. При передаче информации из внешнего мира в локальную сеть организации в качестве адреса назначения используется сетевой адрес межсетевого экрана. После дешифрования межсетевым экраном начального заголовка сетевого уровня пакет направляется получателю.

SA - Security Associations

Security Association (SA) - это соединение, которое предоставляет службы обеспечения безопасности трафика, который передаётся через него. Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA.

Политика безопасности

Политика безопасности хранится в SPD (Security Policy Database - База данных политики безопасности). SPD может указать для пакета данных одно из трёх действий: отбросить пакет, не обрабатывать пакет с помощью IPSec, обработать пакет с помощью IPSec. В последнем случае SPD также указывает, какой SA необходимо использовать (если, конечно, подходящий SA уже был создан) или указывает, с какими параметрами должен быть создан новый SA.

SPD является очень гибким механизмом управления, который допускает очень хорошее управление обработкой каждого пакета. Пакеты классифицируются по большому числу полей, и SPD может проверять некоторые или все поля для того, чтобы определить соответствующее действие. Это может привести к тому, что весь трафик между двумя машинами будет передаваться при помощи одного SA, либо отдельные SA будут использоваться для каждого приложения, или даже для каждого TCP соединения.

ISAKMP/Oakley

Протокол ISAKMP определяет общую структуру протоколов, которые используются для установления SA и для выполнения других функций управления ключами. ISAKMP поддерживает несколько Областей Интерпретации (DOI), одной из которых является IPSec-DOI. ISAKMP не определяет законченный протокол, а предоставляет "строительные блоки" для различных DOI и протоколов обмена ключами.

Протокол Oakley - это протокол определения ключа, использующий алгоритм замены ключа Диффи-Хеллмана. Протокол Oakley поддерживает идеальную прямую безопасность (Perfect Forward Secrecy - PFS), при реализации которой разрешается доступ к данным, защищенным только одним ключом, когда сомнение вызывает единственный ключ. При этом для вычисления значений дополнительных ключей этот ключ защиты повторно никогда не используется; кроме того, для этого не используется и исходный материал, послуживший для вычисления данного ключа защиты.

IKE

IKE - протокол обмена ключами по умолчанию для ISAKMP, на данный момент являющийся единственным. IKE находится на вершине ISAKMP и выполняет, собственно, установление как ISAKMP SA, так и IPSec SA. IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF).

Атаки на AH, ESP и IKE.

Все виды атак на компоненты IPSec можно разделить на следующие группы:

атаки, эксплуатирующие конечность ресурсов системы (типичный пример - атака "Отказ в обслуживании", Denial-of-service или DOS-атака)

атаки, использующие особенности и ошибки конкретной реализации IPSec

атаки, основанные на слабостях самих протоколов AH и ESP

Чисто криптографические атаки можно не рассматривать - оба протокола определяют понятие "трансформ", куда скрывают всю криптографию. Если используемый криптоалгоритм стоек, а определенный с ним трансформ не вносит дополнительных слабостей (это не всегда так, поэтому правильнее рассматривать стойкость всей системы - Протокол-Трансформ-Алгоритм), то с этой стороны все нормально.

Что остается? Replay Attack - воспроизвести атаку - нивелируется за счет использования Порядкового номера (в одном единственном случае это не работает - при использовании ESP без аутентификации и без AH). Далее, порядок выполнения действий (сначала шифрация, потом аутентификация) гарантирует быструю отбраковку "плохих" пакетов (более того, согласно последним исследованиям в мире криптографии, именно такой порядок действий наиболее безопасен, обратный порядок в некоторых, правда очень частных случаях, может привести к потенциальным дырам в безопасности; к счастью, ни SSL, ни IKE, ни другие распространенные протоколы с порядком действий "сначала аутентифицировать, потом зашифровать", к этим частным случаям не относятся, и, стало быть, этих дыр не имеют).

Остается атака Denial-Of-Service (отказ в обслуживании). Как известно, это атака, от которой не существует полной защиты. Тем не менее, быстрая отбраковка плохих пакетов и отсутствие какой-либо внешней реакции на них (согласно RFC) позволяют более-менее хорошо справляться с этой атакой. В принципе, большинству (если не всем) известным сетевым атакам (sniffing, spoofing, hijacking и т.п.) AH и ESP при правильном их применении успешно противостоят. С IKE несколько сложнее. Протокол очень сложный, тяжел для анализа. Кроме того, в силу опечаток (в формуле вычисления HASH_R) при его написании и не совсем удачных решений (тот же HASH_R и HASH_I) он содержит несколько потенциальных "дыр" (в частности, в первой фазе не все Payload в сообщении аутентифицируются), впрочем, они не очень серьезные и ведут, максимум, к отказу в установлении соединения. От атак типа replay, spoofing, sniffing, hijacking IKE более-менее успешно защищается. С криптографией несколько сложнее, - она не вынесена, как в AH и ESP, отдельно, а реализована в самом протоколе. Тем не менее, при использовании стойких алгоритмов и примитивов (PRF), проблем быть не должно. В какой-то степени можно рассматривать как слабость IPsec то, что в качестве единственного обязательного к реализации криптоалгоритма в нынешних спецификациях указывается DES (это справедливо и для ESP, и для IKE), 56 бит ключа которого уже не считаются достаточными. Тем не менее, это чисто формальная слабость - сами спецификации являются алгоритмо-независимыми, и практически все известные вендоры давно реализовали 3DES (а некоторые уже и AES).Таким образом, при правильной реализации, наиболее "опасной" атакой остается отказ в обслуживании.

Оценка протокола

Протокол IPSec получил неоднозначную оценку со стороны специалистов. С одной стороны, отмечается, что протокол IPSec является лучшим среди всех других протоколов защиты передаваемых по сети данных, разработанных ранее (включая разработанный Microsoft PPTP PPTP сетевая технология, которая поддерживает многопротокольные виртуальные частные сети (VPN), позволяя удаленным пользователям безопасно обращаться к корпоративным сетям с помощью коммутируемого соединения, предоставляемого поставщиком услуг Internet (ISP) или с помощью прямого соединения к Internet). С другой стороны, присутствует чрезмерная сложность и избыточность протокола. По мнению аналитиков, протокол является слишком сложным, чтобы быть безопасным. В частности, Niels Ferguson и Bruce Schneier в своей работе "A Cryptographic Evaluation of IPsec - Криптографическое вычисление IPsec” отмечают, что они обнаружили серьёзные проблемы безопасности практически во всех главных компонентах IPsec. Авторы также отмечают, что набор протоколов требует серьёзной доработки для того, чтобы он обеспечивал хороший уровень безопасности. Они также приводят описание ряда атак, использующих как слабости общей схемы обработки данных, так и слабости криптографических алгоритмов.


Подобные документы

  • Предпосылки создания системы безопасности персональных данных. Угрозы информационной безопасности. Источники несанкционированного доступа в ИСПДн. Устройство информационных систем персональных данных. Средства защиты информации. Политика безопасности.

    курсовая работа [319,1 K], добавлен 07.10.2016

  • Система формирования режима информационной безопасности. Задачи информационной безопасности общества. Средства защиты информации: основные методы и системы. Защита информации в компьютерных сетях. Положения важнейших законодательных актов России.

    реферат [51,5 K], добавлен 20.01.2014

  • Сущность информации, ее классификация. Основные проблемы обеспечения и угрозы информационной безопасности предприятия. Анализ рисков и принципы информационной безопасности предприятия. Разработка комплекса мер по обеспечению информационной безопасности.

    курсовая работа [28,2 K], добавлен 17.05.2016

  • Механизмы обеспечения информационной безопасности корпоративных сетей от угроз со стороны сети Интернет. Механизм защиты информации на основе использования межсетевых экранов. Принципы построения защищенных виртуальных сетей (на примере протокола SKIP).

    реферат [293,2 K], добавлен 01.02.2016

  • Понятие, значение и направления информационной безопасности. Системный подход к организации информационной безопасности, защита информации от несанкционированного доступа. Средства защиты информации. Методы и системы информационной безопасности.

    реферат [30,0 K], добавлен 15.11.2011

  • Внешние угрозы информационной безопасности, формы их проявления. Методы и средства защиты от промышленного шпионажа, его цели: получение информации о конкуренте, уничтожение информации. Способы несанкционированного доступа к конфиденциальной информации.

    контрольная работа [30,5 K], добавлен 18.09.2016

  • Проблема защиты информации. Особенности защиты информации в компьютерных сетях. Угрозы, атаки и каналы утечки информации. Классификация методов и средств обеспечения безопасности. Архитектура сети и ее защита. Методы обеспечения безопасности сетей.

    дипломная работа [225,1 K], добавлен 16.06.2012

  • Характеристика информационных ресурсов агрохолдинга "Ашатли". Угрозы информационной безопасности, характерные для предприятия. Меры, методы и средства защиты информации. Анализ недостатков существующей и преимущества обновленной системы безопасности.

    курсовая работа [30,4 K], добавлен 03.02.2011

  • Сущность проблемы и задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации, способы их воздействия на объекты. Концепция информационной безопасности предприятия. Криптографические методы и средства защиты информации.

    курсовая работа [350,4 K], добавлен 10.06.2014

  • Понятие государственной и коммерческой тайны. Основные нормативные документы по оценке информационной безопасности. Потенциальные угрозы безопасности информации в локальных вычислительных сетях. Криптография и ее применение. Защита от удаленных атак.

    курсовая работа [37,3 K], добавлен 24.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.