Основные понятия информатики и ее использование

Информационные процессы, количество и кодирование информации. Система счисления. Режимы и методы передачи информации. Основные классы вычислительных машин. Архитектура современного компьютера. Вредоносные программы. Сеть Интернет. Свойства алгоритма.

Рубрика Программирование, компьютеры и кибернетика
Вид шпаргалка
Язык русский
Дата добавления 12.05.2012
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

* возможность обновления BIOS.

Платы расширения предназначены для подключения к шине ПК дополнительных устройств. Они устанавливаются в разъемы расширения на материнской

плате.

Основные типы дочерних плат:

* видеоадаптеры;

* звуковые платы;

* внутренние модемы и факс-модемы;

* адаптеры локальной сети;

* SCSI-адаптеры.

Микропроцессор и его характеристики. Многоядерные процессоры

Процессор (микропроцессор, центральный процессор, CPU) - Микросхема, реализующая функции центрального процессора персонального компьютера, называется микропроцессором. Обязательными компонентами процессора являются

1 Арифметико-логическое устройство предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

получает от генератора тактовых импульсов обратную последовательность импульсов.

3. Микропроцессорная память предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя:

внутренний интерфейс микропроцессора;

буферные запоминающие регистры;

схемы управления портами ввода-вывода и системной шиной. (Порт ввода-вывода -- это аппаратура сопряжения, позволяющая подключить к микропроцессору, другое устройство.)

а)

б)

в)

Рис. 5.4. Микропроцессоры, разработанные фирмами Intel и AMD: а) Intel 80486DX2 б) Intel Celeron 400 Socket 370; в) Intel Celeron 1100 Socket 370

Процессор компьютера предназначен для обработки информации. Каждый процессор имеет определенный набор базовых операций (команд), например, одной из таких операций является операция сложения двоичных чисел.

Технически процессор реализуется на большой интегральной схеме, структура которой постоянно усложняется, и количество функциональных элементов (типа диод или транзистор) на ней постоянно возрастает (от 30 тысяч в процессоре 8086 до 5 миллионов в процессоре Pentium II).

Тактовая частота задает скорость работы компьютера. Чем выше тактовая частота, тем меньше длительность выполнения одной операции и тем выше производительность компьютера.

Под тактом мы понимаем промежуток времени, в течение которого может быть выполнена элементарная операция. Тактовую частоту можно измерить и определить ее значение. Единица измерения частоты - МГц - миллион тактов в секунду.

Другой характеристикой процессора, влияющей на его производительность, является разрядность. В общем случае производительность процессора тем выше, чем больше его разрядность. В настоящее время используются 18,16-, 32- и 64-разрядные процессоры, причем практически все современные программы рассчитаны на 32- и 64-разрядные процессоры.

Часто уточняют разрядность процессора и пишут, например, 16/20, что означает, что процессор имеет 16-разрядную шину данных и 20-разрядную шину адреса. Разрядность адресной шины определяет адресное пространство процессора, т.е. максимальный объем оперативной памяти, который может быть установлен в компьютере.

Производительность процессора является интегральной характеристикой. которая зависит от частоты процессора, его разрядности, а так же особенностей архитектуры (наличие кэш-памяти и др.). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, т.е. определения скорости выполнения процессором определенных операций в какой-либо программной среде.

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности. Первым многоядерным микропроцессором стал POWER4 от IBM, появившийся в 2001 и имевший два ядра. В 2006 г. Intel представила первый двухъядерный процессор на одном кристале Core Duo и чуть позже - первый четырёхъядерный процессор Intel Core 2 Quad.

В 2010 г. этой же компанией представлен 6-ядерный процессор Intel Core i7-990X (тактовая частота 3,46 ГГц для каждого ядра).

История и производители процессоров

Первый микропроцессор Intel 4004 был представлен 15 ноября 1971 года корпорацией Intel. Он был 4-разрядный, содержал 2300 транзисторов, работал на тактовой частоте 108 кГц и стоил 300$. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных процессоров.

Наиболее популярные процессоры сегодня производят фирмы Intel и AMD. Среди процессоров от Intel: Pentium 4, Celeron (упрощённый вариант Pentium), Core 2 Duo (двуядерный), Xeon (серия процессоров для серверов), Itanium и др. AMD, появившаяся на рынке позже, имеет в своей линейке процессоры: Duron, Sempron (сравним с Intel Celeron), Athlon, Athlon 64, Athlon 64 X2, Opteron и др

Совместимость процессоров. Основные параметры процессоров.

Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне. Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти. Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность без угрозы перегрева. Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную архитектуру. В основе работы процессора лежит тот же тактовый принцип, что и в обычных 'часах. Тактовые сигналы процессор получает от материнской платы, которая, в отличие от процессора, представляет собой не кристалл кремния, а большой набор проводников и микросхем. По чисто физическим причинам материнская плата не может работать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более. Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например с оперативной памятью. Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область -- так называемую кэш-память. Это как бы «сверхоперативная память». Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память. «Удачные» обращения в кэш-память называют попаданиями в кэш. Процент попаданий тем выше, чем больше размер кэш-памяти, поэтому высокопроизводительные процессоры комплектуют повышенным объемом кэш-памяти.

Микропроцессорный чипсет.

Чипсет - это набор микросхем, необходимых для взаимодействия процессора со всем остальным электронным хозяйством. Чипсет определяет, какой процессор может работать на данной материнской плате, тип, организацию и максимальный объем используемой оперативной памяти, сколько и какие внешние устройства можно подключить к компьютеру. Первые чипсеты обычно состояли из четырех микросхем. Сегодня в основном чипсеты состоят из двух микросхем, одна из которых называется южным мостом, а другая - северным. Если взглянуть на материнскую плату, то без труда можно найти эту пару - это самые крупные микросхемы после процессора. По их маркировке можно определить производителя и марку чипсета.

Северный мост МСН обеспечивает взаимосвязь между процессором, оперативной памятью, видеокартой и посредством специальной шины, с южным мостом, в котором расположены большинство контроллеров интерфейса ввода-вывода. К числу устройств, встроенных в южный мост, относятся контроллеры шин PCI, дисковых накопителей, встроенные звуковые, сетевые, USB-и RAID контроллеры. Южный мост обеспечивает нормальную работу системных часов и микросхемы BIOS. Иногда встречаются чипсеты, состоящие только из одной микросхемы, объединяющим функциональность обоих мостов.

Знать производителя и марку чипсета не менее важно, чем производителя и марку процессора, поскольку функциональные возможности компьютера определяет чипсет, а от процессора лишь зависит скорость, с которой эти функции выполняются. Разработкой чипсетов занимаются Intel, NVIDIA, AMD,VIA. В настоящее время господствующие позиции на в данном сегменте рынкf занимает семейство чипсетов Intel 965 Expess.

Как видите, в материнских платах очень многое зависит чипсета. Он выполняет множество функций, причем с каждым годом их становится все больше.

Шины материнской платы. Стандарты шин

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами.

Системная шина основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Системная шина включает в себя:

кодовую шипу данных (КШД), содержащую провода и схемы сопряжения, для параллельной передачи всех разрядов числового кода (машинного слова) операнда;

кодовую шину адреса (КША), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;

кодовую шину инструкций (КШИ), содержащую провода и схемы

сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;

шипу питания, содержащую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

* между микропроцессором и основной памятью;

* между микропроцессором и портами ввода-вывода внешних устройств;

* между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Все блоки подключаются к шине через соответствующие унифицированные разъемы непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему контроллера шины, формирующую основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Стандарты шин.

С момента начала использования ПК применялись различные стандарты шинной архитектуры (ISA, EISA, MCA, VLB, PCI, AGP).

Для подключения дочерних плат используются шины стандартов PCI,

AGP. Наиболее распространенным является подключение дочерних плат через шину стандарта PCI (Peripheral Component Interconnect). Шина AGP (Advanced Graphic Port) предназначена для обмена информацией с видеоадаптером.

Для подключения внутренних накопителей используются интерфейсы IDE (Integrated Disc Electronic) и SCSI (Small Computer System Interface). На материнской плате обычно имеются два IDE-контроллера, к каждому из которых можно подключить два IDE-устройства (жесткие диски, накопители на компакт-дисках). Для подключения SCSI-устройств нужно установить специальную дочернюю плату.

Подсоединение периферийных устройств (мышь, внешние модемы, сканеры, цифровые фотокамеры, принтеры и т.п.) производится через специальные интерфейсы, называемые портами ввода-вывода.

Порт (канал ввода-вывода) - путь, по которому происходит обмен данными между микропроцессором и микросхемами внешних устройств. Последовательный порт передает информацию побитно (интерфейс RS-232), а параллельный. Обычно в ПК имеются один параллельный и два последовательных порта Ранее последовательные порты использовались для подключения мыши и внешних модемов, а параллельные - для подключения принтеров, сканеров и ключей защиты программ. В настоящее время последовательные и параллельные порты вытесняются шиной USB (Universal Serial Bus), которая является обязательным элементом современного ПК.

Шина USB представляет собой последовательный интерфейс передачи данных для средне- и низкоскоростных периферийных устройств. Она рассчитана на подключение до 127 устройств, поддерживает их автоопределение Plug and play, а также подключение к работающему компьютеру без его перезагрузки.

В портативных компьютерах часто используется инфракрасный порт (IrDA).

Последовательная шина FireWire (IEEE 1394) используется для подключения устройств, требующих более высокой скорости обмена, чем может обеспечить шина USB (цифровых видеокамер, внешних жестких дисков и другого высокоскоростного оборудования). Может использоваться для создания локальной сети.

Кэш память. Уровни кэш-памяти

Кэш -промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из оперативной (ОЗУ) и быстрее внешней (жёсткий диск или твердотельный накопитель) памяти, за счёт чего уменьшается среднее время доступа и увеличивается общая производительность компьютерной системы.

Ряд моделей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры. Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. В универсальном процессоре в настоящее время число уровней может достигать 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N.

Самой быстрой памятью является кэш первого уровня -- L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. В современных процессорах обычно кэш L1 разделен на два кэша, кэш команд (инструкций) и кэш данных (Гарвардская архитектура). Большинство процессоров без L1 кэша не могут функционировать. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт. Зачастую является возможным выполнять несколько операций чтения/записи одновременно. Латентность доступа обычно равна 2?4 тактам ядра. Объём обычно невелик -- не более 384 Кбайт.

Вторым по быстродействию является L2-cache -- кэш второго уровня, обычно он расположен на кристалле, как и L1. В старых процессорах -- набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1?12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования -- при общем объёме кэша в nM Мбайт на каждое ядро приходится по nM/nC Мбайта, где nC количество ядер процессора. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра.

Кэш третьего уровня наименее быстродействующий, но он может быть очень внушительного размера -- более 24 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании и предназначен для синхронизации данных различных L2.

Иногда существует и 4 уровень кэша, обыкновенно он расположен в отдельной микросхеме. Применение кэша 4 уровня оправдано только для высоко производительных серверов и мейнфреймов.

Проблема синхронизации между различными кэшами (как одного, так и множества процессоров) решается когерентностью кэша. Существует три варианта обмена информацией между кэш-памятью различных уровней, или, как говорят, кэш-архитектуры: инклюзивная, эксклюзивная и неэксклюзивная.

Платы расширения: видеокарта (видеоадаптер), звуковая карта

Графическая плата (известна также как графическая карта, видеокарта, видеоадаптер) (англ. videocard) -- устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Первый IBM PC не предусматривал возможности вывода графических изображений. Современный ПК позволяет выводить на экран двух- и трёхмерную графику и полноцветное видео.

Обычно видеокарта является платой расширения и вставляется в специальный разъём (ISA, VLB, PCI, AGP, PCI-Express) для видеокарт на материнской плате, но бывает и встроенной.

Современная графическая плата состоит из следующих основных частей:

Графический процессор (GPU) -- занимается расчетами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчеты для обработки команд трехмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору.

Видеоконтроллер -- отвечает за формирование изображения в видеопамяти.

Видеопамять -- выполняет роль буфера, в котором в цифровом формате хранится изображение, предназначенное для вывода на экран монитора. Ёмкость видеопамяти так же, как и оперативной памяти кратна степени числа два и на сегодняшний день измеряется в мегабайтах.

Цифро-аналоговый преобразователь (ЦАП) -- служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Большинство ЦАП имеют разрядность 8 бит на канал -- получается по 256 уровней яркости на каждый основной цвет RGB, что в сумме дает 16.7 млн. цветов.

Основные производители

ATI Technologies, NVIDIA Corporation, Matrox, 3D Labs, 3dfx (приобретена NVidia), S3 Graphics, XGI Technology Inc. (приобретена ATI в 2006 г.)

Звуковая плата

Звуковая плата (также называемая звуковая карта, аудиоадаптер) используется для записи и воспроизведения различных звуковых сигналов: речи, музыки, шумовых эффектов.

IBM-PC проектировался не как мультимедийная машина, а инструмент для решения серьёзных научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер -- был звук встроенного динамика бипера, сообщавший о неисправностях.

Любая современная звуковая карта может использовать несколько способов воспроизведения звука. Одним из простейших является преобразование ранее оцифрованного сигнала снова в аналоговый. Глубина оцифровки сигнала (например, 8 или 16 бит) определяет качество записи и, соответственно, воспроизведения. Так, 8-разрядное преобразование обеспечивает качество звучания кассетного магнитофона, а 16-разрядное -- качество компакт-диска.

В настоящее время звуковые карты чаще бывают встроенными в материнскую плату, но выпускаются также и как отдельные платы расширения.

На материнскую плату звуковая плата устанавливается в слоты ISA (устаревший формат) или РСI (современный формат). Когда звуковая плата установлена, на задней панели корпуса компьютера появляются порты для подключения колонок, наушников, микрофона…

Основные производители

Creative Labs, Diamond Multimedia System Inc., ESS Technology, KYE Systems (Genius), Turtle Beach Systems, Yamaha Media Technology.

Рис. 6.3. Активные звуковые колонки

Внутренняя память

Под внутренней памятью понимают все виды запоминающих устройств, расположенные на материнской плате. К ним относятся оперативная память, постоянная память и энергонезависимая память, кеш-память.

Оперативная память

Оперативная память (ОЗУ -- оперативное запоминающее устройство). Существует два типа оперативной памяти - память с произвольным доступом (RAM - Random Access Memory) и память, доступная только на чтение (ROM - Read Only Memory). Процессор ЭВМ может обмениваться данными с оперативной памятью с очень высокой скоростью, на несколько порядков превышающей скорость доступа к другим носителям информации, например дискам.

Оперативная память с произвольным доступом (RAM) служит для размещения программ, данных и промежуточных результатов вычислений в процессе работы компьютера. Данные могут выбираться из памяти в произвольном порядке, а не строго последовательно, как это имеет место, например, при работе с магнитной лентой.

Оперативная память - энергозависимая, т. е. данные в ней хранятся только до выключения ПК. Для долговременного хранения информации служат дискеты, винчестеры, компакт-диски и т. п.

Конструктивно элементы памяти выполнены в виде модулей, так что при желании можно сравнительно просто заменить их или установить дополнительные и тем самым изменить объем общей оперативной памяти компьютера. Емкость модулей памяти кратна степени числа 2: 128, 256, 512, 1024 Mb...

Виды RAM:

Полупроводниковая статическая (SRAM) -- ячейки представляют собой полупроводниковые триггеры. Достоинства -- небольшое энергопотребление, высокое быстродействие. Недостатки -- малый объём, высокая стоимость. Сейчас широко используется в качестве кеш-памяти процессоров.

Полупроводниковая динамическая (DRAM) -- каждая ячейка представляет собой конденсатор. Достоинства -- низкая стоимость, большой объём. Недостатки -- необходимость периодического считывания и перезаписи каждой ячейки -- т. н. «регенерации», и, как следствие, понижение быстродействия, большое энергопотребление. Обычно используется в качестве оперативной памяти компьютеров.

Постоянная память ROM (Read Only Memory)

В момент включения компьютера в его оперативной памяти отсутствуют любые данные, поскольку оперативная память не может сохранять данные при отключенном компьютере. Но процессору необходимы команды, в том числе и сразу после включения. Поэтому процесор обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес указывает на память, которую принято называть постоянной памятью ROM или постоянным запоминающим устройством (ПЗУ). Микросхема ПЗУ способна продолжительное время сохранять информацию, даже при отключенном компьютере. Говорят, что программы, которые находятся в ПЗУ, "зашиты" в ней - они записываются туда на этапе изготовления микросхемы. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System).

Основное назначение этих программ состоит в том, чтобы проверить состав и трудоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками.

Энергонезависимая память CMOS RAM

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами BIOS, но такими средствами невозможно обеспечить роботу со всеми возможными устройствами (в связи с их огромным разнообразием и наличием большого количества разных параметров). Но для своей работы программы BIOS требуют всю информацию о текущей конфигурации системы. По очевидной причине эту информацию нельзя сохранять ни в оперативной памяти, ни в постоянной. Специально для этих целей на материнской плате есть микросхема энергонезависимой памяти, которая называется CMOS. От оперативной памяти она отличается тем, что ее содержимое не исчезает при отключении компьютера, а от постоянной памяти она отличается тем, что данные можно заносить туда и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы.

Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате. В этой памяти сохраняются данные про гибкие и жесткие диски, процессоры и т.д. Тот факт, что компьютер четко отслеживает дату и время, также связанн с тем, что эта информация постоянно хранится (и обновляется) в памяти CMOS. Таким образом, программы BIOS считывают данные о составе компьютерной системы из микросхемы CMOS, после чего они могут осуществлять обращение к жесткому диску и другим устройствам.

Базовая система ввода-вывода (BIOS).

Вазовая система ввода-вывода (Basic Input Output System - BIOS) является, с одной стороны, составной частью аппаратных средств, с другой - одним из программных модулей ОС. Возникновение данного названия связано с тем, что BIOS включает в себя набор программ ввода-вывода. С помощью этих программ ОС и прикладные программы могут взаимодействовать как с различными устройствами самого компьютера, так и с периферийными устройствами.

Как составная часть аппаратных средств система BIOS в ПК реализована в виде одной микросхемы, установленной на материнской плате компьютера. Большинство современных видеоадаптеров и контроллеров-накопителей имеют собственную систему BIOS, которая дополняет системную BIOS. Одним из разработчиков BIOS является фирма IBM, создавшая NetBIOS. Данный программный продукт не подлежит копированию, поэтому другие производители компьютеров были вынуждены использовать микросхемы BIOS независимых фирм. Конкретные версии BIOS связаны с набором микросхем (или чипсетом), находящихся на системной плате.

Как программный модуль ОС система BIOS содержит программу тестирования при включении питания компьютера POST (Power On Self Test - самотестирование при включении питания компьютера). При запуске этой программы тестируются основные компоненты компьютера (процессор, память и др.). Если при подаче питания компьютера возникают проблемы, т. е. BIOS не может выполнить начальный тест, то извещение об ошибке будет выглядеть как последовательность звуковых сигналов.

Внешняя память. Разновидности внешней памяти.

Внешняя память - это память, реализованная в виде внешних, относительно материнской платы, устройств с разными принципами хранения информации и типами носителя, предназначенных для долговременного хранения информации. В частности, в внешней памяти хранится все программное обеспечение компьютера. Устройства внешней памяти могут размещаться как в системном блоке компьютера, так и в отдельных корпусах. Физически, внешняя память реализована в виде накопителей. Накопители - это запоминающие устройства, предназначенные для продолжительного (что не зависит от электропитания) хранения больших объемов информации. Емкость накопителей в сотни раз превышает емкость оперативной памяти или вообще неограниченная, когда речь идет о накопителях со сменными носителями.

Накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители с сменными и постоянными носителями. Привод - это объединение механизма чтения-записи с соответствующими электронными схемами управления. Его конструкция определяется принципом действия и видом носителя. Носитель - это физическая среда хранения информации, по внешнему виду может быть дисковым или ленточным. По принципу запоминания различают магнитные, оптические и магнитооптичческие носители. Ленточные носители могут быть лишь магнитными, в дисковых носителях используют магнитные, магнитооптические и оптические методы записи-считывания информации.

Самыми распространенными являются накопители на магнитных дисках, которые делятся на накопители на жестких магнитных дисках (НЖМД) и накопители на гибких магнитных дисках (НГМД), и накопители на оптических дисках, такие как накопители CD-ROM, CD-R, CD-RW и DVD-ROM.

Жесткий диск

Накопитель на жёстких магнитных дисках, жёсткий диск или винчестер (англ. Hard Disk Drive, HDD) -- энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных компьютерах.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке воздуха, образуемой при быстром вращении дисков.

Название «винчестер» жёсткий диск получил благодаря фирме IBM, которая в 1973 выпустила жёсткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе диски и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером».

В Европе и Америке название «винчестер» вышло из употребления в 1990-х годах; в российском же компьютерном сленге название «винчестер» сохранилось, сократившись до слова «винт».

Характеристики

Интерфейс -- способ, использующийся для передачи данных. Современные накопители могут использовать интерфейсы ATA (IDE, EIDE), Serial ATA, SCSI, SAS, FireWire, USB и Fibre Channel.

Ёмкость -- количество данных, которые могут храниться накопителем. Ёмкость современных устройств может достигать до 1.5 Tб, в ПК сегодня распространены винчестеры ёмкостью 80, 120, 200, 320 Гб. В отличие от принятой в информатике системе приставок, обозначающих кратную 1024 величину (кило=1024), производителями при обозначении ёмкости жёстких дисков используются кратные 1000 величины. Так, напр., «настоящая» ёмкость жёсткого диска, маркированного как «200 Гб», составляет 186,2 Гб.

Физический размер -- почти все современные накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках.

Скорость вращения шпинделя -- количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10000 (персональные компьютеры), 10000 и 15000 об./мин. (серверы и высокопроизводительные рабочие станции).

Производители

Большая часть всех винчестеров производятся всего несколькими компаниями: Seagate, Western Digital, Samsung, а также ранее принадлежавшим IBM подразделением по производству дисков фирмы Hitachi. Fujitsu продолжает выпускать жёсткие диски для ноутбуков и SCSI-диски, но покинула массовый рынок в 2001 году. Toshiba является основным производителем 2,5- и 1,8-дюймовых ЖД для ноутбуков. Одним из лидеров в производстве дисков являлась компания Maxtor, хорошо известная своими «умными» алгоритмами кэширования. В 2006 году состоялось слияние Seagate и Maxtor.

Дисковод 3,5''

Дискета -- портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х -- начале 1990-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД -- «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД -- «накопитель на гибких магнитных дисках»).

Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в защитную оболочку, защищающую магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства -- дисковода (флоппи-дисковода).

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.

Первая дискета диаметром в 200 мм (8?) и ёмкостью 80 килобайт была представлена фирмой IBM в 1971. В 1981 году фирма Sony выпустила на рынок дискету диаметром 3?" (90 мм). Поздняя её версия имеет объём 1440 килобайт или 1,40 мегабайт. Именно этот тип дискеты стал стандартом и используется по сей день.

Из-за малой ёмкости и скорости обмена данными дискета является отживающим носителем информации, поэтому производители не уделяют больше внимания повышению ее надежности, скорее наоборот. Следует запомнить, что дискета не предназначена для того, чтобы непосредственно открывать и сохранять на ней файлы (хотя это можно делать, но не рекомендуется). Дискету следует использовать только для транспортировки данных.

Накопители на компакт-дисках

Цифровая информация представляется на CD чередованием впадин (не отражающих пятен) и отражающих свет островков. Компакт-диск имеет всего одну физическую дорожку в форме непрерывной спирали, идущей от наружного диаметра диска к внутреннему. Считывание информации с компакт-диска происходит при помощи лазерного луча, который, попадая на отражающий свет островок, отклоняется на фотодетектор, интерпретирующий это как двоичную единицу. Луч лазера, попадающий во впадину, рассеивается и поглощается: фотодетектор фиксирует двоичный ноль.

Скорость передачи данных для привода определяется скоростью вращения диска. Обычно она указывается в сравнении со стандартом Audio CD, для которого скорость считывания данных составляет порядка 150 Кбайт/с. Т.е. CDx2 означает, что скорость обмена данными с таким диском вдвое больше, чем 150 Kбайт/с. Максимальная скорость вращения CD диска превышает скорость чтения Audio CD в 52 раза. 52х150 Kбайт/с=7800 Kбайт/с.

В настоящее время массовому пользователю стали доступны приводы с возможностью однократной записи (CD-R) и перезаписи (CD-RW) информации. Благодаря невысокой цене носителей для однократной записи, эти устройства стали широко применяться для архивирования данных, резервного копирования, хранения больших объемов информации и т. п.

Для однократной записи применяют диски, называемые «золотыми» по цвету наиболее распространенного покрытия. Под покрытием находится отражающая поверхность, сделанная из тончайшей золотой пленки. При записи луч лазера с длиной волны 780 нм (как и при чтении, но с большей в 10 раз мощностью) «прожигает» эту пленку, так что прозрачность слоя изменяется, формируя последовательность нулей и единиц. Очевидно, что однажды записанный диск уже невозможно перезаписать. Золото в качестве подложки применяется потому, что оно имеет максимальную отражательную способность.

Носители на CD с однократной записью обладают очень высокой надежностью. Важным достоинством CD-R дисков является возможность их чтения на любом приводе CD-ROM.

Технология перезаписываемых компакт-дисков CD-RW позволяет не только записывать, но и стирать информацию. Она основана на записи с изменением фазы, заключающейся в переходах рабочего слоя диска под действием луча лазера в кристаллическое или аморфное состояние с разной отражательной способностью. Выглядят носители CD-RW подобно CD-R, но их покрытие обычно имеет темно-серый цвет. Недостатком CD-RW является тот факт, что диски CD-RW могут считываться только на новых (как правило, не хуже 16-скоростных) устройствах CD-ROM, поддерживающих технологию MultiRead. Дело в том, что считывающий лазер для CD-RW должен иметь другую длину волны, так как при 780 нм отраженный сигнал слишком слаб. Максимальное число циклов чтения-записи не превышает десятков тысяч.

Накопители на DVD дисках

DVD (Digital Versatile Disc, цифровой многоцелевой, или универсальный, диск) -- это оптические диски большой емкости, которые применяются для хранения полнометражных фильмов, музыки высокого качества, компьютерных программ.

Существует несколько вариантов DVD, отличающихся по емкости: односторонние и двухсторонние, однослойные и двухслойные.

Односторонние однослойные DVD имеют емкость 4,7 Гбайт информации, двухслойные -- 8,5 Гбайт; двухсторонние однослойные вмещают 9,4 Гбайт, двухслойные -- 17 Гбайт.

Луч лазера в обычном приводе CD-ROM имеет длину волны 780 нм, а в устройствах DVD -- от 635 нм до 650 нм, благодаря чему плотность записи DVD существенно выше.

Разработчики DVD ориентировались, прежде всего, на возможность записи целого видеофильма с качеством MPEG-2 на один диск, поэтому средняя скорость считывания видеоинформации составляет 4,692 Мбит/с (примерно 600 Кбайт/с), из которых собственно видео считывается со скоростью 3,5 Мбит/с, аудиопоток на трех языках в шестиканальном стандарте Dolby Surround -- со скоростью 1,16 Мбит/с, а субтитры на 4 языках (из 32 возможных) -- со скоростью 40 Кбит/с. Эта скорость в DVD принята за однократную (1x). Умножив скорость 1x потока на стандартную продолжительность фильма (133 минуты), получаем минимальный объем DVD -- 4,7 Гбайт.

Помимо чтения данных с DVD со скоростью порядка 1,2 Мбайт/с, накопители DVD способны читать обычные CD-ROM со скоростью, примерно соответствующей 8-10-скоростным приводам CD-ROM.

В настоящее время уже массово эксплуатируются устройства DVD, позволяющие записывать и перезаписывать данные.

Флэш-память

Флэш-память (flash) -- разновидность полупроводниковой энергонезависимой перезаписываемой памяти.

Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч). Причина в том, что для записи в память необходимо сначала стереть участок памяти, а участок может выдержать лишь ограниченное число стираний.

Преимуществом флэш-памяти над оперативной является её энергонезависимость -- при выключении энергии содержимое памяти сохраняется.

Преимуществом флэш-памяти над жёсткими дисками, CD и DVD дисками является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ.

Недостатком, по сравнению с жёсткими дисками, является относительно малый объём: объём самых больших флэш-карт составляет около 8 Гб.

Благодаря своей компактности, дешевизне и отсутствию потребности в энергии, флэш-память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах -- цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, и с успехом вытесняет дискету в качестве портативного носителя информации.

Периферийные устройства персонального компьютера. Устройства

ввода. Устройства ввода графических данных

Периферийные устройства персонального компьютера подключаются к его интерфейсам и предназначены для выполнения вспомогательных операций. Благодаря им компьютерная система приобретает гибкость и универсальность.

По назначению периферийные устройства можно подразделить на:

устройства ввода данных;

устройства вывода данных;

устройства хранения данных;

устройства обмена данными.

К устройствам ввода информации относятся:

клавиатура, графические планшеты , сканеры, устройства указания, сенсорные экраны.

Устройства ввода графических данных

Для ввода графической информации используют сканеры, графические планшеты (дигитайзеры) и цифровые фотокамеры. Исходный материал вводится в графическом виде, после чего обрабатывается специальными программными средствами (программами распознавания образов),

Планшетные сканеры. Планшетные сканеры предназначены для ввода графической информации с прозрачного или непрозрачного листового материала. Принцип действия этих устройств состоит в том, что луч света, отраженный от поверхности материала (или прошедший сквозь прозрачный материал), фиксируется специальными элементами, называемыми приборами с зарядовой связью (ПЗС). Обычно элементы ПЗС конструктивно оформляют в виде линейки, располагаемой по ширине исходного материала. Перемещение линейки относительно листа бумаги выполняется механическим протягиванием линейки при неподвижной установке листа или протягиванием листа при неподвижной установке линейки.

Ручные сканеры. Принцип действия ручных сканеров в основном соответствует планшетным. Разница заключается в том, что протягивание линейки ПЗС в данном случае выполняется вручную.

Барабанные сканеры. В сканерах этого типа исходный материал закрепляется на цилиндрической поверхности барабана, вращающегося с высокой скоростью. Их используют для сканирования исходных изображений, имеющих высокое качество, но недостаточные линейные размеры (фотонегативов, слайдов и т. п.)

Штрих-сканеры. Эта разновидность ручных сканеров предназначена для ввода данных, закодированных в виде штрих-кода.

Графические планшеты (дигитайзеры). Эти устройства предназначены для ввода художественной графической информации. Существует несколько различных принципов действия графических планшетов, но в основе всех их лежит фиксация перемещения специального пера относительно планшета. Такие устройства удобны для художников и иллюстраторов, поскольку позволяют им создавать экранные изображения привычными приемами, наработанными для традиционных инструментов (карандаш, перо, кисть).

Рис. 7.2. Дигитайзер

Цифровые фото- и видеокамеры. Как и сканеры, эти устройства воспринимают графические данные с помощью приборов с зарядовой связью, объединенных в прямоугольную матрицу. Основным параметром цифровых фотоаппаратов является разрешающая способность, которая напрямую связана с количеством ячеек ПЗС в матрице.

Устройство вывода информации. Монитор. Виды мониторов.

Основные параметры мониторов

К устройствам вывода информации относятся:

монитор

графопостроители (плоттеры) -- для вывода графической информации на бумажный носитель;

принтеры -- печатающие устройства для вывода информации на бумажный носитель.

пректоры

Монитор (дисплей) необходим для отображения информации. По строению различают следующие виды мониторов:

ЭЛТ -- на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)

ЖК -- жидкокристаллические мониторы (англ. liquid crystal display, LCD)

Плазменный -- на основе плазменной панели

Проекционный -- видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант -- через зеркало или систему зеркал).

OLED-монитор -- на технологии OLED (англ. organic light-emitting diode -- органический светоизлучающий диод)

Виртуальный ретинальный монитор -- технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза.

ЭЛТ- монитор.

ЭЛТ (кинескоп) - электровакуумный прибор, преобразующий электрические сигналы в световые.

Устройство ЭЛТ- монитора:

Электронная пушка, необходимая для формирования электронного луча.

Экран, покрытый люминофором- веществом, светящимся при попадании на него пучка электронов.

Отклоняющаяся система, управляет лучом так, что он формирует требуемое изображение.

В цветном кинескопе, в отличии от черно-белого, три пушки (красная, зеленая и синяя).

Рис. 6.4. Устройство цветного кинескопа. 1 --Электронные пушки. 2 -- Электронные лучи. 3 -- Фокусирующая катушка. 4 -- Отклоняющие катушки. 5 -- Анод. 6 -- Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 -- Красные, зелёные и синие зёрна люминофора. 8 -- Маска и зёрна люминофора (увеличенно).

ЖК-монитор

ЖК-мониторы были разработаны в 1969 году в США. Состоят из двух стеклянных пластин, между которыми находится жидкокристаллическое вещество.

Каждый пиксель ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами и двух поляризационных фильтров.

Рис. 6.5. Пиксель цветного ЖК-дисплея

Электрическое напряжение, исходящее от электродов приводит к тому, что жидкие кристаллы двигаются, от этого зависит степень прозрачности. Под разным углом кристаллы отображают разные цвета. Каждой ячейке соответствует свой номер строки и номер столбца. Проходящий через ячейки свет может быть естественным, но чаще применяют искусственный источник света.

Таким образом жк-монитор состоит из электроники, обрабатывающей входной видеосигнал, жк- матрицы, модуля подсветки, блока питания и корпуса.

Плазменный монитор

Компании Sony, Sharp и Philips совместно разработали технологию PALC ( Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами).

В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется жк-матрица.

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Основные параметры мониторов

Вид экрана -- стандартный (4:3) и широкоформатный

Размер экрана -- определяется длиной диагонали (15 и 17 дюймов, а для операций с графикой желательны мониторы размером 19-21 дюйм),

Разрешение -- число пикселей по вертикали и горизонтали (например, 800 600 или 1024 768).

Глубина цвета -- число отображаемых цветов (от монохромного до 32-битного)

Размер зерна или пикселя

Частота кадровой развертки (обновления экрана)

Одним из главных параметров монитора является частота кадровой развертки, называемой также частотой регенерации (обновления) изображения (частота смены изображения на экране). Она показывает, сколько раз в течение секунды монитор может полностью сменить изображение (поэтому ее также называют частотой кадров). Частоту регенерации изображения измеряют в герцах (Гц). Чем она выше, тем четче и устойчивее изображение, тем меньше утомление глаз, тем больше времени можно работать с компьютером непрерывно. Этот параметр зависит не только от монитора, но и от свойств и настроек видеоадаптера, хотя предельные возможности определяет все-таки монитор. При частоте регенерации порядка 60 Гц мелкое мерцание изображения заметно невооруженным глазом. Сегодня такое значение считается недопустимым. Минимальным считают значение 75 Гц, нормативным - 85 Гц и комфортным - 100 Гц и более. При работе с компьютером нужно помнить, что главная нагрузка приходится на зрение и если изображение будет дрожать на экране глаза будут сильно утомляться

Мониторы на катодно-лучевой трубке (CRT) устареют в течение ближайших нескольких лет. Их место займут тонкие и плоские дисплеи на жидких кристаллах, до сих пор использовавшиеся в ноутбуках и компьютерах laptop.

Принтер. Виды принтеров

В качестве устройств вывода данных, дополнительных к монитору, используют печатающие устройства (принтеры), позволяющие получать копии документов на бумаге или прозрачном носителе. По принципу действия различают матричные, лазерные, светодиодные и струйные принтеры.

Матричные принтеры. Это простейшие печатающие устройства. Данные выводятся на бумагу в виде оттиска, образующегося при ударе цилиндрических стержней («иголок») через красящую ленту. Качество печати матричных принтеров напрямую зависит от количества иголок в печатающей головке. Наибольшее распространение имеют 9-игольчатые и 24-игольчатые матричные принтеры. Последние позволяют получать оттиски документов, не уступающие по качеству документам, исполненным на пишущей машинке.

Рис. Матричный 9-игольчатый принтер формата A3

Лазерные принтеры. Лазерные принтеры обеспечивают высокое качество печати, не уступающее, а во многих случаях и превосходящее полиграфическое. Они отличаются также высокой скоростью печати, которая измеряется в страницах в минуту (ррт - page per minute). Как и в матричных принтерах, итоговое изображение формируется из отдельных точек.

Рис. Лазерный принтер

Принцип действия лазерных принтеров следующий:

в соответствии с поступающими данными лазерная головка испускает световые импульсы, которые отражаются от зеркала и попадают на поверхность светочувствительного барабана;

горизонтальная развертка изображения выполняется вращением зеркала;

участки поверхности светочувствительного барабана, получившие световой импульс, приобретают статический заряд;

барабан при вращении проходит через контейнер, наполненный красящим составом (тонером), и тонер закрепляется на участках, имеющих статический заряд;

при дальнейшем вращении барабана происходит контакт его поверхности с бумажным листом, в результате чего происходит перенос тонера на бумагу;

лист бумаги с нанесенным на него тонером протягивается через нагревательный элемент, в результате чего частицы тонера спекаются и закрепляются на бумаге.

Основное преимущество лазерных принтеров заключается в возможности получения высококачественных отпечатков.

Светодиодные принтеры. Принцип действия светодиодных принтеров похож на принцип действия лазерных принтеров. Разница заключается в том, что источником света является не лазерная головка, а линейка светодиодов. Поскольку эта линейка расположена по всей ширине печатаемой страницы, отпадает необходимость в механизме формирования горизонтальной развертки и вся конструкция получается проще, надежнее и дешевле.

Струйные принтеры. В струйных печатающих устройствах изображение на бумаге формируется из пятен, образующихся при попадании капель красителя на бумагу (рис. 6.6). Выброс микрокапель красителя происходит под давлением, которое развивается в печатающей головке за счет парообразования. Качество печати изображения во многом зависит от формы капли и ее размера, а также от характера впитывания жидкого красителя поверхностью бумаги. В этих условиях особую роль играют вязкостные свойства красителя и свойства бумаги.

Рис.7.6. Струйный принтер

К положительным свойствам струйных печатающих устройств следует отнести относительно небольшое количество движущихся механических частей и, соответственно, простоту и надежность механической части устройства и его относительно низкую стоимость. Основным недостатком, по сравнению с лазерными принтерами, является нестабильность получаемого разрешения, что ограничивает возможность их применения в черно-белой полутоновой печати.

В то же время, сегодня струйные принтеры нашли очень широкое применение в цветной печати. Благодаря простоте конструкции они намного превосходят цветные лазерные принтеры по показателю качество/цена. Они позволяют получать цветные оттиски, превосходящие по качеству цветные отпечатки, получаемые фотохимическими методами.

Устройства обмена данными.

(Средство телекоммуникации)

Сетевая плата. TV-тюнер

Сетевая плата (также известная как сетевая карта, сетевой адаптер, Ethernet card, NIC (англ. network interface card)) -- печатная плата, позволяющая взаимодействовать компьютерам между собой, посредством локальной сети.


Подобные документы

  • Кодирование символьной и числовой информации. Основные системы счисления. Двоичная система счисления. Устройства вывода информации. Правила выполнения арифметических операций. Логические основы построения, функциональные узлы ЭВМ. Синтез логических схем.

    презентация [1,2 M], добавлен 08.11.2016

  • Информатика - наука об общих свойствах и закономерностях информации. Появление электронно-вычислительных машин. Математическая теория процессов передачи и обработки информации. История компьютера. Глобальная информационная сеть.

    реферат [120,1 K], добавлен 18.04.2004

  • Актуальность (своевременность) информации. Информационные ресурсы и информационные технологии. Подходы к определению количества информации. Свойства информации, ее качественные признаки. Роль информатики в развитии общества. Бит в теории информации.

    презентация [200,9 K], добавлен 06.11.2011

  • Определение информации, ее виды и свойства. Назначение основных блоков компьютера: процессор, память, системная магистраль, внешнее устройство. Архитектура фон Неймана. Характерные черты информации. Принцип использования двоичной системы счисления.

    контрольная работа [333,2 K], добавлен 21.02.2010

  • Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека. Кодирование информации. Способы кодирования. Кодирование изображений. Информация в кибернетике. Свойства информации. Измерение количества информации.

    реферат [21,4 K], добавлен 18.11.2008

  • Классические принципы построения электронных вычислительных машин, их основные блоки: арифметико-логический, устройства управления, ввода-вывода и памяти. Автоматизация перевода информации. Двоичное кодирование и организация оперативной памяти компьютера.

    презентация [55,2 K], добавлен 22.02.2015

  • История создания сети Интернет и локальных вычислительных сетей (LAN). Функции межсетевого протокола передачи информации. Применение доменной системы имен и выбор способа переадресации данных. Правовые нормы при поиске и просмотре информации в Интернете.

    презентация [786,8 K], добавлен 25.04.2013

  • Место темы "Кодирование информации" в школьном курсе информатики. Рекомендации по изучению "Кодирования информации" в школьном курсе информатики. Дидактический материал для изучения темы "Кодирование информации" и внеклассное мероприятие по информатике.

    курсовая работа [2,3 M], добавлен 17.06.2012

  • Информатика - техническая наука, определяющая сферу деятельности, связанную с процессами хранения, преобразования и передачи информации с помощью компьютера. Формы представления информации, ее свойства. Кодирование информации, единицы ее измерения.

    презентация [117,7 K], добавлен 28.03.2013

  • Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.

    курсовая работа [592,5 K], добавлен 18.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.