Перспективные технологии развития ПК

Основные блоки ПК и их назначение. Анализ современных аппаратных средств ПК. Чипсеты системных плат. Перспективные технологии хранения информации на CD и DVD. Пути развития оперативной памяти. Требования к конфигурации ПК со стороны прикладных программ.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 03.04.2012
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Существенно больший эффект обеспечивают двухъядерные МП Хеоп и Opteron. Первыми двухъядерный процессор представила в августе 2004 года и выпустила в апреле 2005 года компания AMD (64-разрядный Opteron, предназначенный для высокопроизводительных серверов). Компания Intel немного запоздала с выпуском своего двухъя-дерного 64-разрядного МП Хеоп (сентябрь 2005 года). Двухъядерный микропроцессор Хеоn (кодовое название Paxville) с тактовой частотой 2,8 ГГц, имеет кэш-память L2 емкостью 2 Мбайт и работает с оперативной памятью DDR 2. Два ядра этого МП делят одну шину. Paxville позиционируется как серверный процессор, которому для работы требуется и новый чипсет -- Intel E8500. Ядро Smithfield микропроцессора представляет собой микросхему, объединяющую на одном монокристалле два ядра Prescott, не имеющих общих схемных компонент (двухъядерные МП Athlon 64 Х2 компании AMD имеют общие для ядер компоненты: арбитр шины и контроллер памяти DDR).

Двухъядерные МП, по сравнению с параллельными виртуальными процессорами, обеспечивают существенно большую производительность, поскольку у них почти нет совместно используемых процессорных ресурсов (АЛУ, МПП, кэш-память L1 у каждого свои). Потребляемая мощность у них значительно меньше, чем у более высокочастотных одноядерных МП той же производительности. Учитывая названные достоинства, двухъядерные, а в последствии и многоядерные МП будут активно использоваться и в персональных компьютерах. В 2007 году более 70% новых настольных ПК имеют двухъядерные микропроцессоры. Для двухъядерных МП необходимы системные платы со специальными разъемами и чипсетами. В частности Intel представила чипсеты i945, 955, 965,975, iP35, iX38, iX48 и др., поддерживающие многоядерную конфигурацию и работающие с памятью DDR.

Особо следует сказать о представленных компаниями Sony, Toshiba и IBM в феврале 2005 года девятиядерных микропроцессорах Cell (cell -ячейка). Эти МП используют все новейшие достижения микроэлектроники: технология 0,09 мкм, «кремний на изоляторе» (SOI), «напряженный кремний» (strained Si), медные соединения (Си). Площадь объединившего девять ядер кристалла - 2,2 см2, число транзисторов - 234 млн, тактовая частота - 4 ГГц и очень низкое энергопотребление - 80 Вт. [10. с.124]

Среди включенных в кристалл девяти ядер выделено одно ядро - Power Processor Element (РРЕ), построенный на базе RISC МП PowerPC. PPE содержит еще два 64-разрядных ядра, поддерживающих выполнение двух потоков вычислений.

Восемь остальных ядер представляют собой векторные процессоры, каждый со своей локальной памятью. Они могут работать как независимо друг от друга, так и согласованно, распределяя между собой вычислительную работу.

Микропроцессоры Cell позиционируются как весьма универсальные процессоры для использования и в серверах, и в персональных настольных и портативных компьютерах, и даже в домашней технике (телевизорах, например). Один из руководителей компании IBM сказал, что архитектура Cell может определить развитие МП на период ближайших 10-20 лет.

Прервым представителем двухъядерных процессоров для персональных компьютеров в 2005 году стал Pentium D, известный под кодовым именем «Smithfield».

Микропроцессоры линейки Core

Компания Intel разработала новую процессорную микроархитектуру, объединяющую некоторые компоненты технологий Net Burst и Centrino.

В рамках этой микроархитектуры разрабатываются МП с кодовыми именами Мегоn (для мобильных ПК), Соnгое (для настольных ПК), Woodcrest и Tigerton (для серверов). В 2006 году компания Intel уже представила использующие эту микроархитектуру микропроцессоры 8-го поколения -- линейку МП Core (Core Solo, Core Duo, Core 2 Duo, Core 2 Extreme, Core 2 Quad, Core Penryn).

В 2004 году компания Intel ввела маркировку МП типа Pentium. Единый трехзначный номер МП учитывает сразу несколько характеристик: базовую архитектуру, тактовую частоту МП и частоту системной шины, объем кэш-памяти и другие. Базовая архитектура отображается старшим разрядом, было предложено три серии:

· ЗХХ - МП Celeron, Celeron M, Celeron M со сверхнизким энергопотреблением;

· 5ХХ - Pentium 4 для настольных и мобильных ПК, в том числе с технологией НТ;

· 7XX - Pentium с низким и сверхнизким энергопотреблением.

Для МП семейства Core компания Intel ввела 5-значную маркировку: однобуквенный префикс и 4-значный цифровой код. Буквенный префикс классифицирует МП по энергопотреблению: U - 14 Вт и менее; L - 15-24 Вт; Т - 25-49 Вт; Е - 50-74 Вт; X -75 Вт и более. Для четырехъядерных МП Core 2 Quad указывается буква Q. Старшая цифра индекса показывает принадлежность МП к определенной группе (процессоры на ядре Соnгое имеют серии 4000 и 6000, а на ядре Мегоn - серии 5000 и 7000.

Особенности микроархитектуры Core

Все МП этой линейки строятся по 65-нанометровой технологии (0,065 мкм), что при использовании ряда новых эффективных энергосберегающих технологий позволяет существенно снизить их энергопотребление. Напряжение питания 0,85-1,35 В.

Все МП используют разъем LGA 775. Некоторые характеристики МП линейки Core представлены в табл. 1.3.

Благодаря низкому энергопотреблению процессоры этой линейки позиционируются как для настольных, так и для мобильных компьютеров.

Одноядерные МП Core Solo имеют сверхнизкое энергопотребление и предназначены в основном для мобильных ПК. Они обеспечивают высокую производительность в мультимедийных приложениях, системах автоматизированного проектирования, компьютерных играх.

Двухъядерные процессоры Core 2 Duo имеют площадь ядра 1,44 см2 и содержат от 200 до 400 млн транзисторов. Они способны выполнять 4 инструкции за такт (технология Intel Wide Dynamic Execution) и совершать 128-битные SIMD операции из набора SSE3 без потери темпа работы (технология Intel Advanced Media Boost). [16. с.203]

МП Core 2 Duo позволяют передавать данные на частоте, в 4 раза превышающей частоту шины данных (технология quad-pumped), и адреса на частоте, превышающей в раза частоту адресной шины (технология double-clocked).

Таблица 1.3. Характеристики МП линейки Core

Модель МП

Количество ядер

Технология, мкм

Тактовая частота, ГГц

Частота

системной шины (FSB), МГЦ

Энергопотребление, Вт

Размер кэш-памяти L2,Мбайт

Core Solo U1300

1

0,065

1,06

533

5,5

2

Core Solo U1400

1

0,065

1,2

667

6

2

Core Duo L2300

2

0,065

1,5

667

15

2

Core Duo T2250

2

0,065

1,7

533

30

2

Core Duo T2500

2

0,065

2,0

667

31

2

Core Duo T2700

2

0,065

2,3

667

31

2

Core2DuoE6300

2

0,065

1,3

1066

65

2

Core2DuoE6600

2

0,065

2,1

1066

70

4

Core 2 Extreme X6800

2

0,065

2,9

1066

80

4

Core 2 Extreme X7800

2

0,065

2,6

800

80

4

Core2DueT7700

2

0,065

2,4

800

35

4

Core 2 Quad QX6700

4

0,065

2,66

1066

85

8

Core 2 Extreme QuadQX6800

4

0,065

2,93

1066

90

8

Core Penryn E8300

2

0,045

2,83

1333

65

6

Core Penryn E8500

2

0,045

3,16

1333

65

6

Core Penryn QX9300

4

0,045

2,5

1333

95

6

Core Penryn QX9550

4

0,045

2,83

1333

95

12

Микропроцессоры имеют кэш L1 64 Кбайт (32 для данных, 32 для команд) в каждом ядре и общий на два ядра кэш L2, что существенно уменьшает задержки при работе обоих ядер с одним и тем же набором данных. Технология Intel Advanced Smart Cache позволяет при необходимости делить кэш L2 между ядрами в соответствии с их загрузкой.

Кроме технологий Intel Net Burst и Centrino нужно отметить также следующие технологии, поддерживаемые микропроцессорами линейки Core:

· Intel Smart Memory Access - эффективный механизм предварительной выборки
данных, позволяющий ускорить работу МП;

· Intel Virtualization Technology (VT) - технологию виртуализации. VT представляет собой набор аппаратных ресурсов процессора, которые совместно с соответствующим программным обеспечением поддерживают виртуализацию (организацию виртуальных машин). Виртуализация позволяет: снизить стоимость ИТ-ресурсов, повысить производительность системы, увеличить адаптивность ресурсов к меняющимся запросам;

· Intel Execute Disable Bit - технологию защиты программ от некоторых вирусов;

· Intel Enhanced Memory 64 Technology (EM64) - технологию, поддерживающую

с использованием 64-битных регистров МПП адресацию более 4 Гбайт оперативной памяти.

Микропроцессоры Penryn

В 2007 году компания Intel представила семейство микропроцессоров 9-го поколения Core, изготовленных по технологии 0,045 мкм. Эти процессоры, имеющие кодовое название Penryn, имеют высокую производительность и низкое энергопотребление. В состав семейства Penryn входят двух- и четырехъядерные микропроцессоры для настольных ПК и серверов [30]. Двухъядерные процессоры содержат более 820 млн транзисторов, имеют площадь 107 мм2. Для их маркировки в качестве 4-й цифры индекса используется 8 и 9 (серии 8000 и 9000).

У МП Penryn используются новые технологии:

· Deep Power Down, снижающая энергопотребление путем уменьшения токов утечки транзисторов в моменты их простоя,

· усовершенствованная Dynamic Acceleration Technology, повышающая производительность однопоточных приложений путем отключения простаивающих ядер и повышения тактовой частоты работающего ядра

· усовершенствованная Intel Virtualization Technology, уменьшающая время переключения виртуальных машин.

МП семейства Penryn поддерживают расширенный набор команд intel Streaming SIMD Extension 4 (SSE4), а также кэш-память L2 большего объема: двухъядерные до 6 Мбайт, а четырехядерные до 12 Мбайт.

Перспективы развития оперативной памяти

FeRAM и MRAM

В конце 2002 года появилось сообщение о создании компаниями Toshiba и Infineon Technologies AG новой ферроэлектрической микросхемы энергонезависимой памяти FeRAM (Ferroelectric Random Access non-volatile Memory) емкостью 32 Мбит, по пропускной способности сравнимой с SDRAM. Микросхемы FeRAM потребляют меньше энергии, быстрее, чем флэш-память, выполняют операции чтения (записи), обладают большим сроком жизни, но они примерно в 20-50 раз дороже, чем DRAM, а также имеют более низкую плотность размещения электронных элементов. Компании IBM и Infineon Tehnologies разработали технологию магнитной оперативной памяти с произвольной выборкой (MRAM). MRAM также является энергонезависимой. IBM сообщила, что MRAM в будущем сможет заменить существующие разновидности DRAM. Компьютер с MRAM будет загружаться практически мгновенно[14. с.371].

Развитие технологии хранения информации наглядно свидетельствует о движении технического прогресса по спирали: на следующем витке спирали используются старые принципы реализованные на более прогрессивной технологии. Действительно, первые ОЗУ строились на базе электромагнитных линий задержки (динамические ОЗУ), затем на базе магнитных тороидальных сердечников и пленок (МОЗУ), далее снова на динамических элементах (CMOS-транзисторах, DIMM), и грядет MRAM (опять МОЗУ).

Память РСМ

Низкая стоимость и высокая емкость - основные параметры памяти для настольных компьютеров и серверов. Для мобильных устройств, работающих от батарей, важны также низкое энергопотребление и энергонезависимость памяти, сохранение данных после отключения энергии. В связи со значительным ростом рынка мобильных устройств эти требования к памяти становятся очень важными.

Существует несколько проектов универсальной памяти. Так, по мнению разработчиков IBM и Intel, быстрая энергонезависимая память с изменением фаз (Phase Change Memory, PCM) может стать универсальной. Транзистор в отдельной РСМ-ячейке использует энергию для нагревания или охлаждения материала, меняя его состояние между аморфным (с высоким сопротивлением) и кристаллическим (с низким сопротивлением) и приписывает ячейке 0 или 1. РСМ-память работает гораздо быстрее, чем флэш-память, но медленнее, чем SRAM. Чтобы конкурировать с DRAM, она должна поддерживать неограниченное количество циклов записи. Исследования памяти РСМ показывают, что ее возможности могут соответствовать ограничению флэш-памяти в 100 тыс. циклов записи Компания Ovonyx разработала технологию памяти под названием Ovonics, которая допускает 10 трлн циклов записи; такая память может применяться в качестве как DRAM, так и флэш-памяти..

Память РМС

Память на базе программируемых металлизированных ячеек (Program Metal Cels РМС) компании Axon Technologies представляет собой энергонезависимую альтернативу DRAM, использующую меньше энергии и обеспечивающую большую емкость. Небольшое количество металла самоорганизуется в волокна по мере добавления электронов к ионам металла. Изменение сопротивления отражает состояние ячейки памяти. Твердый электролит наполняется ионами серебра в виде ионопроводящих кристаллов. При подаче малого напряжения электроны, перетекая от отрицательного полюса к положительному, превращают ионы в электропроводящую серебряную нанопроволоку. В результате сопротивление всего устройства уменьшается на несколько порядков. Битовое состояние (0 или 1) определяется путем измерения уровня сопротивления[18. с.302].

Молекулярная память

Технология изготовления молекулярной памяти разработана компанией ZettaCorе. Основа технологии -- химический процесс создания ячеек памяти DRAM с молекулярным конденсатором. Ячейки функционируют за счет добавления или удаления электронов, что связано с изменением электрического напряжения, по которому определяется состояние ячейки (0 или 1). Молекулярная технология позволяет сформировать ячейки памяти, каждая из которых поддерживает четыре состояния и может хранить 2 бита. Она требует на 70% меньше энергии, чем обычная ячейка памяти DRAM, так как конденсатор может сохранять 100-кратный запас энергии и требует меньшей частоты обновления памяти, увеличивается емкость в два или четыре раза без увеличения себестоимости. Обещано, что технология будет запущена в массовое производство в 2008 году.

Нанопамять NRAM

Компания Nantero сообщила о создании нового экспериментального образца электронной памяти на базе углеродных нанотрубок в качестве механической памяти, работающей на принципах изменения положения углеродных волокон, замыкающих или размыкающих соединения между двумя электродами. На кремниевой пластине стандартного размера удалось разместить 10 млрд ячеек памяти NRAM, каждая из которых состоит из нескольких нанотрубок.

Эта память сочетает в себе лучшие качества запоминающих устройств -- дешевизну (DRAM) и энергонезависимость (флэш-память), а также будет обладать высокой стойкостью к воздействию температуры и магнитных полей. Само запоминающее устройство состоит из двух кремниевых подложек, на которых особым образом размещены массивы нанотрубок. Напомним, что толщина углеродной нанотрубки составляет примерно 1/10 000 диаметра человеческого волоса, а толщина ее стенки сравнима с размерами атома.

Технология компании Nantero использует два таких свойства: эластичность (гибкость) нанотрубок и притягивание атомов углерода друг к другу под воздействием сил Ван-дер-Ваальса.

Нанотрубки закрепляются на кремниевой подложке, а под ними на расстоянии примерно 120 нм располагается углеродный субстрат. Малое расстояние между соседними подложками вместе с ничтожными размерами нанотрубок позволяют достичь скоростей записи (чтения) порядка наносекунды.

Электрический заряд небольшой величины, поступающий на подложку, притягивает к последней группу нанотрубок, расположенных над ней. Далее притянутые нано-трубки удерживаются в таком состоянии под действием сил Ван-дер-Ваальса, которые действуют независимо от наличия электропитания до появления следующего электрического заряда. Благодаря такому устройству свисающие нанотрубки могут играть роль битов памяти: «поднятое» состояние - «0», «опущенное (притянутое)» - «1». Так как в каждом отдельном переходе между указанными состояниями участвует несколько десятков нанотрубок, создается избыточность, предохраняющая систему от случайных потерь информации. В «замкнутом» и «разомкнутом» состояниях система из нанотрубок имеет различное электрическое сопротивление, за счет чего возможно считывание информации. Плотность записи информации в ячейки NRAM сравнима с плотностью записи информации в микросхемах оперативной памяти. В перспективе, плотность записи данных может достичь триллиона бит на квадратный сантиметр, что в 1000 раз больше, чем у современной оперативной памяти.

NRAM может оказаться решением, востребованным компьютерным рынком.

Перспективные технологии записи информации на HDD

Рассмотрим наиболее перспективные технологии записи информации.

Туннельная магниторезистивная запись

В 2005 году компания Samsung анонсировала две новые линейки жестких дисков Spin-Point, использующие технологию записи, основанную на туннельном магниторези-стивном эффекте (Tunneling Magneto Resistance - TMR). Применение TMR-головок позволяет существенно увеличить плотность записи информации - до 100 Гбайт на квадратный дюйм и больше.

Технология перпендикулярной записи

Maxtor Corporation представила технологию изготовления пластин жестких дисков с перпендикулярной записью информации (perpendicular medium recording - PMR).

В отличие от LRM (продольной) она позволяет записывать на одну пластину до 250 Гбайт. Компания Samsung представила винчестер на 3 пластинах емкостью 1 Тбайт с интерфейсом SATA и трансфером 3,0 Гбайт/с[12].

Использование нанометровых магнитных головок

В 2007 году компания Hitachi разработала технологию создания миниатюрных нанометровых 0,03 мкм (в 2000 раз тоньше человеческого волоса) магнитных головок, что позволит увеличить емкость винчестеров до 4 Тбайт.

Перспективные технологии хранения информации на CD и DVD

Наиболее перспективными технологиями, уже представленными в настоящее время являются технологии Blu-ray Disks (BD) и High Definition (HD) disks.

Blu-ray-диск - BD

Технология Blu-ray использует голубой лазер с длиной волны более короткой (405 нм), чем у традиционного красного лазера (780 нм), что позволяет более плотно записывать информацию.

Формат BD разработан ассоциацией BDA (Blu-ray Disk Association), в которую входят компании Sony, Samsung, Philips, Pioneer и др.

Компания Ricoh разработала технологию, позволяющую размещать на 8-слойном Blu-ray-Disc (BD) до 200 Гбайт (вмещает 18 часов High Definition видео).

Существующий двухслойный BD имеет емкость 50 Гбайт.

Компания Imation - член ассоциации производителей дисков по технологии Blu-ray и организации по разработке стандартов DVD (DVD Forum) в 2006 году запустила в производство диски форматов BD, BD-R (записываемые) и BD-Re-R (перезаписываемые) указанной емкости[6. с.244].

HDDVD

Диски с высокой плотностью (HD) записи используют также голубой лазер и являются конкурентами BD, поскольку позволяют хранить тоже весьма большие объемы данных: 15 Гбайт - однослойные и 30 Гбайт - двухслойные (в 2007 году представлены диски емкостью 25 и 50 Гбайт).

Формат HD-DVD разработали компании NEC и Toshiba; компания Imation в 2006 запустила в производство диски HD-DVD-R и HD-DVD-ReR названной выше емкости.

BD и HD-DVD имеют стандартный диаметр 120 мм и толщину 1,2 мм (HD-DVD чуть толще из-за более толстого защитного слоя, что обеспечивает их лучшую защиту от механических повреждений).

В табл. 1.4. показаны основные характеристики некоторых моделей оптических дисков.

Таблица 1.4. Основные характеристики некоторых моделей оптических дисков

Характеристика

CD

DVD

Blu Ray

HD DVD

Число сторон

1

1;2

l;2

1; 2

Число слоев

1

1;2

1;2

1; 2

Емкость одного слоя, Гбайт

0,7

4,7

25

15; 25

Толшина защитного слоя, мм

1,2

0,6

0,15

0,6

Расстояние между дорожками, мкм

1,6

0,75

0,32

0,32; 0,4

Ширина пита,мкм

0,85

0,4

0,15

0,15; 0,2

Длина волны лазера, нм

780

650

405

405

Многослойный CD

В 2003 году Фирма Hitachi объявила о новой технологии изготовления многослойных CD, позволяющей на одном диске формата 7,2 дюйма разместить 1 Тбайт = 1024 Гбайт I информации. На диске можно создать до 100 слоев толщиной 0,3 мкм (толщина слоя у DVD -- 25 мкм). Ослабление сигнала при работе с внутренними слоями незначительное. «Прозрачность» слоев обеспечивается использованием специальных материалов с изменяемой прозрачностью под действием внешнего электрического сигнала (некоторая аналогия с жидкими кристаллами).

Millipede-диск

В 2005 году компания IBM представила действующий прототип нового типа памяти, построенной на MEMS (микроскопических электромеханических системах), использующих предложенную в 2003 году технологию Millipede. По этой технологии информация записывается путем создания в пластике углублений, которые при необходимости стираются последующим «замазыванием». Все эти операции производятся с помощью массива микроскопических (диаметр -- около 10 нм) иголок, благодаря чему устройство и было названо Millipede («многоножка»). Емкость прототипа примерно 125 Гбайт (соответствует 25 DVD) при размерах примерно с почтовую марку[11].

Флуоресцентные оптические диски (FMD)

В 2004 году компанией C3D анонсированы оптические «трехмерные» диски -флуоресцентные многослойные диски (Fluorescent Multilayer Disks -- FMD). Первые представленные модели дисков FMD ROM стандартного формата 5 дюймов (12 см) при 10 слоях имели емкость 140 Гбайт. В ближайших планах компании предусмотрено существенно увеличить количество слоев и поднять емкость FMD дисков до 10 Тбайт и более (подобную емкость сейчас имеют RAID-массивы, занимающие площади в несколько квадратных метров). Обещаны лучшие время доступа и скорость чтения, чем у DVD.

Особенности организации флуоресцентных дисков

В CD отражающий алюминиевый слой уменьшает прозрачность диска, a FMD таких слоев не имеет и абсолютно прозрачен. FM D однороден и имеет только условные области форматирования, названные разработчиками слоями (в некотором смысле - - аналоги дорожек на магнитных дисках). В традиционных оптических дисках (CD, DVD) читающий лазерный луч отражается от слоя с записанной информацией. В флуоресцентных дисках материал условного слоя не отражает, а излучает записанную информацию: при освещении читающим лазерным лучом материал начинает излучать, изменяя спектр излучаемого сигнала в зависимости от записанного бита информации (своеобразная частотная модуляция, в отличие от амплитудной модуляции в традиционных CD). При записи информации на FMD лазерным лучом более мощным, чем читающим, специальная фотохромная субстанция условного слоя обратимо переходит из одного состояния в другое, изменяя свои физические свойства, в частности -- спектр изучаемого сигнала. FMD являются энергонезависимыми и принципиально могут быть перезаписываемыми.

Это поистине революционная технология в ВЗУ.

Голографические оптические диски (HVD)

HVD Alliance (Fujitsu, CMC Magnetics, Nippon Paint) анонсировал формат Holographic I Versatile Disc (HVD) с потенциальной емкостью диска 1 Тбайт и очень высокой скоростью чтения блока данных.

Прочие технологии

Autostrategy -- выбирает при записи оптимальную стратегию записи для диска, оценивая его качество.

PlexEraser -- технология уничтожения данных (для безопасности).

SecureRecording -- запись информации на диск с защитой паролем.

GigaRec -- технология уплотненной записи (увеличивает емкость стандартного диска в 1,5-2 раза).

Q-Check -- диагностика качества поверхности диска.

Следует отметить также формат Divx-диска, разработанный компанией Digital Video Express для предотвращения многократного использования (проката) дисков, - после извлечения диска из упаковки он может быть использован только в течение первых 48 часов, после этого запись на диске автоматически стирается.

3. Требования к конфигурации ПК со стороны прикладных программ

Весьма ресурсоемкими пользовательскими программами являются:

· графический пакет AutoCAD, позволяющий создавать самые сложные конструкторские машиностроительные чертежи;

· пакеты компьютерной графики Photoshop и 3D Мах.
Последние версии AutoCAD и Photoshop CS поддерживают:

· многочисленные скрипты, позволяющие создавать собственные элементы интерфейса (окна, кнопки, поля для ввода текстов, настраиваемые клавиатурные команды);

· эффективные технологии работы со слоями;

· создание и хранение многочисленных элементарных фрагментов графики и чертежей, на основе которых создаются и объемные изображения;

· браузеры для поиска и просмотра изображений, их вращения, сортировки, отображения растровой и векторной графики;

· технологии для работы с цифровыми фотографией и видео в Photoshop, включая непосредственную совместную работу с цифровыми камерами;

· и многое другое.

И при всем этом требования к компьютерным ресурсам по современным меркам сравнительно невелики. Например, для пакета Photoshop CS достаточен микропроцессор Pentium III или 4, оперативная память 256 Мбайт, свободное пространство на жестком диске 300 Мбайт, видеокарта с глубиной цвета 16 бит и разрешением 1024x768.

Наиболее серьезные требования к конфигурации компьютера из всех массово продаваемых программ предъявляют компьютерные игры. Надо сказать, что из простого развлечения геймеров игровые программы превратились, вероятно, в основной двигатель прогресса компьютерной техники. Именно для нужд геймеров выпускаются самые мощные ПК и самые изощренные графические акселераторы.

Но тем не менее, многие современные компьютерные игры не требуют очень мощных компьютеров: согласно регулярным публикациям в журнале Computer Price, большинство ИГР довольствуется минимальной конфигурацией: микропроцессор Pentium III 500-800 МГц, 64-128 Мбайт ОЗУ, 16-32 Мбайт видеокарта; рекомендуемая конфигурация: Pentium III 1,0-1,51Гц, 256Мбайт ОЗУ, 64Мбайт видеопамяти (вместо Pentium может использоваться в обоих вариантах и Athlon XP/64).

При работе с видео, например для оцифровки VHS-видеофильма, также достаточен не очень мощный ПК - Pentium/Athlon 1,5 ГГц, 256 Мбайт ОЗУ, винчестер 10 Гбайт, видеокарта 64 Мбайт.

Все вышесказанное показывает, что нет необходимости покупать самый навороченный ПК (тем более с самыми новыми технологиями - они стоят непомерно дорого, а эффекта от них часто бывает чуть-чуть).

Конфигурацию ПК следует выбирать для предполагаемой предметной области его использования, иногда немного «на вырост». Прогнозирование развития компьютеров дело неблагодарное. Но существует один закон - закон Мура, который неукоснительно выполняется уже на протяжении 25 лет: через каждые 1,5года мощности основных узлов компьютеров удваиваются. Вот этим законом и нужно руководствоваться при выборе конфигурации ПК на перспективу.

Заключение

В заключении подведем итоги:

· Будут увеличиваться производительность, быстродействие, тактовая частота системной платы и тактовая частота микропроцессора. К сожалению, обратной стороной этого роста, опять же, является сравнительно быстрое увеличение теплообразования процессоров. Учитывая же тот факт, что площадь кристалла процессора практически остается постоянной, рост теплообразования способствует увеличению плотности энергии. Невозможность неограниченного роста тактовой частоты с одной стороны и необходимость повышения производительности с другой потребовал новых идей в области процессорных архитектур. Решение было найдено в многоядерных структурах, позволяющих реализовать параллельные вычисления. Процессоры с несколькими ядрами обеспечили дальнейший рост производительности при снижении показателя энергии, затраченной на выполнение одной инструкции. В качестве примера можно привести линейку двухъядерных процессоров Intel Core 2 Duo (Conroe) и четырехъядерных моделей Intel Core 2 Quad (Kentsfield).

· Оперативная память развивается в нескольких направлениях. Во-первых, будет увеличиваться емкость. Во-вторых, количество циклов записи. Так же нужно отметить, что на сегодняшний день уже существуют технологии которые позволяют создавать новые микросхемы памяти по всем параметрам превосходящие ныне существующие, но они в 20 - 50 раз дороже. Поскольку каждая компания выпускающая оперативную память использует свою технологию изготовления, то можно надеяться что оперативная память будет увеличивать свою емкость при этом оставаясь доступной по цене.

· Внешние запоминающие устройства благодаря новым перспективным технологиям увеличивают свою емкость, скорость чтения и записи информации, а так же и срок эксплуатации.

Еще необходимо отметить, что, несмотря на существующие барьеры, на пути повышения производительности элементов и систем, ученые и инженеры успешно их преодолевают. Они предлагают различные пути решения встающих перед компьютерной отраслью проблем. Это и улучшение полупроводниковых техпроцессов, и совершенствование архитектуры высокочастотных микросхем, и внедрение перспективных технологий, а также разработка оптимальных дизайнов материнских плат и поиск путей модификации конструктивов системных блоков.

Устройство будущих компьютеров будет основано на применении главным образом передовых отраслей широкого спектра научных дисциплин (молекулярная электроника, молекулярная биология, робототехника), а также квантовой механики, органической химии и др. А для их производства компьютеров будут необходимы значительные экономические затраты, в несколько десятки раз превышающие затраты на производство современных “классических” полупроводниковых компьютеров.

Главным выводом можно считать тот факт, что разнообразие существующих на сегодняшний момент научных разработок в области микроэлектроники, а также обширности накопленных знаний в области других научных дисциплин позволяет надеяться на создание “суперкомпьютера”, который будет доступен по цене всем желающим и будет справляться со всеми поставленными перед ним задачами, а область применения ЭВМ станет чрезвычайно обширной:

· по мере поступления рыночной информации автоматически управлять процессами производства продукции;

· накапливать человеческие знания и обеспечивать получение необходимой информации в течение нескольких минут;

· регулировать движение всех видов транспорта;

· ставить диагнозы в медицине;

· обрабатывать налоговые декларации;

· создавать новые виды продукции;

· вести домашнее хозяйство;

· и главное это будущее ЭВМ сможет вести диалог с человеком.

В настоящий момент мы, конечно же, даже не можем себе представить, как достичь этих невероятных пределов. Но ученые по крупицам собирают некие физические сведения, которые не ясны простому человеку и если развитие ЭВМ будет идти теми же темпами, все описанное станет реальностью через каких-нибудь две сотни лет.

Глоссарий

№ П/П

Термин

Понятие

1

Адресное пространство

максимальное количество ячеек основной памяти, которое может быть непосредственно адресовано микропроцессором

2

Оперативное запоминающее устройство (ОЗУ)

предназначено для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе в текущий интервал времени.

3

Основная память (ОП)

предназначена для хранения и оперативного обмена информацией с прочими блоками машины

4

Конструктив

определяет те физические разъемные соединения, которые используются для установки МП, и которые определяют пригодность материнской платы для установки МП

5

Микропроцессор (МП) , или CPU

функционально - законченное программно управляемое устройство обработки информации выполненное в виде одной или нескольких больших (БИС) или сверхбольших (СБИС) интегральных схем.

6

Мультимедиа

комплекс аппаратных и программных средств, позволяющих человеку общаться с компьютером, используя самые разные, естественные для себя среды: звук, видео, графику, тексты, анимацию

7

Рабочая тактовая частота МП

определяет его внутреннее быстродействие, поскольку каждая команда выполняется за определенное количество тактов

8

Рабочее(ие) напряжение(ия)

является фактором пригодности материнской платы для установки МП

9

Разрядность шины адреса МП

определяет его адресное пространство

10

Разрядность шины данных МП

определяет количество разрядов, над которыми одновременно могут выполняться операции

11

Системная плата

важнейшая часть компьютера, содержащая его основные электронные компоненты и осуществляющая взаимодействие между большинством устройств машины

12

Состав инструкции

перечень, вид и тип команд, автоматически исполняемых МП

13

Чипсет - набор системных микросхем

обеспечивают надлежащую работу микропроцессора, системной шины, интерфейсов взаимодействия с оперативной памятью и другими компонентами ПК, а так же во многом определяют тактовую частоту шин СП

14

AI BIOS

обнаружение сбоев в программах BIOS: при обновлении программ и при атаках вирусов функция CrashFree BIOS обнаруживает сбои и выполняет ввод нового программного кода с системной дискеты

15

AI Net

диагностика состояния локальных компьютерных сетей (с помощью специальной прилагаемой утилиты Virtual Cable Nester) и поддержание высокой (1 Гбит/с) пропускной способности сети с помощью встроенного контроллера

16

AI Overclocking

подстройка частоты микропроцессора - автоматический разгон процессора (увеличение его частоты на 33%) в допустимых случаях с одновременной подстройкой напряжения питания модулей оперативной памяти и видеоадаптера; выполняется также регулировка скорости вращения процессорного вентилятора (кулера)

17

DMA

режим, в котором винчестер напрямую общается с оперативной памятью безучастия центрального процессора, перехватывая управление шиной

18

РIO

режим, при котором перемещение данных между периферийным устройством (жестким диском) и оперативной памятью происходит с участием центрального процессора

Список использованных источников

персональный компьютер память программа чипсет

1. Апокин И. А. Майстров Л. Е. Развитие вычислительных машин. - М.: Наука, 1974.400 с.

2. Богумирский Б. Эффективная работа на IBM PC. - СПб.: Питер, 1995.688 с.

3. Бройдо В.Л. Вычислительные системы, сети и телекоммуникации. Учебник. 2-е изд. - СПб.: Питер, 2004.703 с.

4. Бройдо В.Л., Ильина О. П. Архитектура ЭВМ и систем. Учебник. - СПб.: Питер, 2006.718 с.

5. Бройдо В. Л., Ильина О. П. Вычислительные системы, сети и телекоммуникации. 3-е изд. - СПб.: Питер, 2008.766 с.

6. Бройдо В.Л., Ильина О. П. Архитектура ЭВМ и систем. Учебник для вузов.2-е изд. - СПб.: Питер,2009.720 с.

7. Громов Г. Р. Очерки информационной технологии. - М: ИнфоАрт, 1993.336 с,

8. Гук М. Аппаратные средства IBM PC. Энциклопедия. СПБ.: Питер, 2000.816 с.

9. Дроздов Е, А., Пятибратов А. П. Основы построения и функционирования вычислительных систем. - М.; Энергия, 1973.368 с.

10. Журнал Игромания №3(138) 2009 стр.124. авт. ст. Иван Нечесов.

11. Журнал Игромания №4(139) 2009 стр.125. авт. ст. Иван Нечесов.

12. Журнал Железо №4(62) 2009 стр.94. авт. ст. Сергей SJ Плотников.

13. Журнал Железо №6(52) 2008 стр.48. авт. ст. Андрей костров.

14. Информационные системы и технологии в экономике и управлении. 2-е издание. Под ред. Проф. Трофимова В. В. (Трофимов В. В., Ильина О. П., Кияев В. И., Трофимова Е. В., Приходченко А. П.) - М.: Высшее образование, 2007.480 с.

15. Каган Б. М. Электронные вычислительные машины и системы. - М.: Энергоатом-издат, 1991.592 с.

16. Леонтьев В. П. Новейшая энциклопедия персонального компьютера 2009. - М.: ОЛМА Медиа Групп, 2008. - 928 с.

17. Макарова Н. В., Бройдо В. Л., Ильина О. П. и др. Информатика / Под ред. Н. В. Макаровой. - М.: Финансы и статистика, 2003.768 с.

18. Новиков Ю., Черепанов А. Персональные компьютеры. - СПб.: Питер, 2001. 464 с.

19. Нортон П. Программно-аппаратная организация IBM PC. - М.: Радио и связь,
1992.336 с.

20. Петров В. Н. Информационные системы. - СПб.: Питер, 2002.688 с.

21. Пятибратов А. П., Гудыно Л. П., Кириченко А. А. Вычислительные системы, сети и телекоммуникации / Под. ред. А. П. Пятибратова. - М.: Финансы и статистика, 2001.512 с.

22. Пятибратов А.П., Гудыно Л.П., Кириченко А.А. Вычислительные

машины, сети и телекоммуникационные системы: Учебно-практическое пособие / Московский государственный университет экономики, статистики и информатики. - М.: МЭСИ, 2001. - 270 с.

23. Рудометов Е. А. Материнские платы и чипсеты. 4-е изд. Анатомия ПК. - СПб.: Питер, 2007. 368с.

24. Симонович С. В., Евсеев Г. А., Мурановский В. И. Информатика. Базовый курс / Под ред. С. В. Симоновича.. -- СПб.: Питер, 1999.640 с.

25. Степанов Ф. Н. Архитектура вычислительных систем и компьютерных сетей. СПб.: Питер, 2007. 509 с.

26. Таненбаум Э. Архитектура компьютера. -- СПб.: Питер, 2002.704 с.

27. Трофимов В. В. Ильина О. П., Трофимова Е. В. и др. Информационные системы и технологии в экономике и управлении / Под ред. Трофимова В. В. - М.: Высшее образование, 2006.480 с.

28. Хамахер К., Вранешич З., Заки С. Организация ЭВМ. -- СПб.: Питер, 2003.848 с. Хелд Г. Технологии передачи данных. -- СПб.: Питер, 2003.720 с.

29. Цилькер Б. Я., Орлов С. А. Организация ЭВМ и систем. -- СПб.: Питер, 2004. 668 с.

30. http://www.x-medicine.com/ru/pr02.htm

Приложение А

Рис. 1. Структурная схема ПК

Приложение Б

Таблица1. Сравнительные характеристики некоторых популярных чипсетов

Чипсет

Частота шины,

МГц

Поддержка SDRAM

Максимальный объем оперативной памяти, Мбайт

Пиковый обмен с памятью, Мбайт/с

Intel 820

100,133

PC133

1024

1600

Intel 850

400

DRDRAM 300 и 400 МГц

2048

3200

Intel 845D

266

PC266, DDR SDRAM

2048

2100

Intel 865

266,533,800

DDR SDRAM 266/333/400

4096

4000

Intel 875

533,800

PC266, DDR SDRAM

266/333/400

4096

4000

Intel 915

533,800

DDR SDRAM, DDR2 533/400

4096

8000

Intel 925

800

DDR2 SDRAM 400/533

4096

8000

Intel 945

533,800,1066

DDR2 SDRAM 533/667

4096

8000

Intel 955

800,1066

DDR2 SDRAM 533/667

8192

8000

Intel 965

800,1066

DDR2 SDRAM 533/667

8192

8000

Intel 975

800,1066

DDR2 SDRAM 533, 667, 800

8192

12800

Intel X38

1066,1333

DDR2, DDR3 SDRAM

8192

12800

VIA 266A

266

PC266, DDR SDRAM

4096

2100

Размещено на Allbest.ru


Подобные документы

  • История появления и развития оперативной памяти. Общая характеристика наиболее популярных современных видов оперативной памяти - SRAM и DRAM. Память с изменением фазового состояния (PRAM). Тиристорная память с произвольным доступом, ее специфика.

    курсовая работа [548,9 K], добавлен 21.11.2014

  • Оперативная память - часть памяти компьютера: назначение, функции, способ передачи данных процессору. Современные запоминающие устройства: голографическое, молекулярное, на основе графеновой наноленты и нанотрубках; принцип работы и перспективы развития.

    реферат [1,3 M], добавлен 21.04.2011

  • Устройство и архитектуры системных плат персональных компьютеров. Назначения компонентов системных плат ПК стандартов AT, ATX и NLX). Основные признаки системных плат ПК стандартов AT, ATX, NLX. Определение стандарта и форм-фактора системных плат.

    лабораторная работа [20,0 K], добавлен 04.06.2012

  • История развития информатики и вычислительной техники. Общие принципы архитектуры ПЭВМ, ее внутренние интерфейсы. Базовая система ввода-вывода. Материнская плата. Технологии отображения и устройства хранения информации. Объем оперативной памяти.

    презентация [9,3 M], добавлен 26.10.2013

  • Объем двухпортовой памяти, расположенной на кристалле, для хранения программ и данных в процессорах ADSP-2106x. Метод двойного доступа к памяти. Кэш-команды и конфликты при обращении к данным по шине памяти. Пространство памяти многопроцессорной системы.

    реферат [28,1 K], добавлен 13.11.2009

  • Понятие и основные этапы развития информационных технологий, предъявляемые требования к структуре и взаимосвязь элементов. Современные и перспективные информационные технологии в системе дистанционного обучения, принципы их разработки и эффективность.

    курсовая работа [1,2 M], добавлен 27.09.2013

  • Программные средства, обеспечивающие функционирование аппаратных средств ЭВМ. Характеристики пакетов прикладных программ и их классификация. Оформление программных модулей в виде библиотек. Средства доступа к данным. Системы искусственного интеллекта.

    курсовая работа [163,3 K], добавлен 23.04.2013

  • Проблема диагностики материнских плат ПЭВМ. Чипсеты для процессоров. Технологии и интерфейсы материнской платы. Разработка стенда по диагностике, расчет его себестоимости. Техника безопасности при работе со стендом по диагностике материнских плат ПЭВМ.

    дипломная работа [5,9 M], добавлен 27.11.2013

  • Причины возникновения остаточной информации. Уничтожение информации как часть процесса обеспечения информационной безопасности. Метод воздействия магнитным полем и анализ устройств ликвидации информации. Ликвидация информации в оперативной памяти.

    реферат [124,3 K], добавлен 05.12.2012

  • Блок-схема, отражающая основные функциональные компоненты компьютерной системы в их взаимосвязи. Устройства ввода-вывода информации. Определение объема оперативной памяти. Применение карт памяти и flash-дисков для долговременного хранения информации.

    презентация [5,3 M], добавлен 28.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.