Интеллектуальные информационные системы

Понятие интеллектуальной информационной системы, классификация и особенности ИИС. Методика когнитивного анализа сложных ситуаций. Моделирование процессов обработки информации для принятия решений. Формальные логические модели. Модели нейронных сетей.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 02.04.2012
Размер файла 557,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Конечно, реальные генетические алгоритмы, на которых проводятся научные исследования, чаще всего мало похожи на приведенный пример.

Исследователи экспериментируют с различными параметрами генетических алгоритмов, например: способами отбора особей для скрещивания; критериями приспособленности и жесткостью влияния факторов среды; способами выбора признаков, передающихся от родителей потомкам (рецессивные и не рецессивные гены и т.д.); интенсивностью, видом случайного распределения и направленностью мутаций; различными подходами к воспроизводству и отбору.

Поэтому под термином "генетические алгоритмы" по сути дела надо понимать не одну модель, а довольно широкий класс алгоритмов, подчас мало похожих друг на друга.

В настоящее время рассматривается много различных операторов отбора, кроссовера и мутации: турнирный отбор (1981; 1991), реализует n турниров, чтобы выбрать n особей, при этом каждый турнир построен на выборке К элементов из популяции, и выбора лучшей особи среди них (наиболее распространен турнирный отбор с К=2); элитный отбор (1975) гарантируют, что при отборе обязательно будут выживать лучший или лучшие члены популяции совокупности (наиболее распространена процедура обязательного сохранения только одной лучшей особи, если она не прошла как другие через процесс отбора, кроссовера и мутации); двухточечный кроссовер (1970; 1989) и равномерный кроссовер (1989) отличаются способами наследования потомками признаков родителей.

Не смотря на то, что модели биологической эволюции, реализуемые в ГА, обычно сильно упрощены по сравнению с природным оригиналом, тем ни менее ГА являются мощным средством, которое может с успехом применяться для решения широкого класса прикладных задач, включая те, которые трудно, а иногда и вовсе невозможно, решить другими методами.

Достоинства и недостатки генетических алгоритмов.

Однако, ГА не гарантирует обнаружения глобального решения за приемлемое время. ГА не гарантируют и того, что найденное решение будет оптимальным решением. Тем ни менее они применимы для поиска "достаточно хорошего" решения задачи за "достаточно короткое время". ГА представляют собой разновидность алгоритмов поиска и имеют преимущества перед другими алгоритмами при очень больших размерностях задач и отсутствия упорядоченности в исходных данных, когда альтернативой им является метод полного перебора вариантов.

В случаях, когда задача может быть решена специально разработанным для нее методом, практически всегда такие методы будут эффективнее ГА как по быстродействию, так и по точности найденных решений.

Главным же достоинством ГА является то, что они могут применяться для решения сложных неформализованных задач, для которых не разработано специальных методов, т.е. ГА обеспечивают решение проблем. Но даже в тех случаях, для которых хорошо работают существующие методики, можно достигнуть интересных результатов сочетая их с ГА.

Примеры применения генетических алгоритмов

В 1994 году Эндрю Кин из университета Саутгемптона использовал генетический алгоритм в дизайне космических кораблей. За основу была взята модель опоры космической станции, спроектированной в NASA из которой после смены 15 поколений, включавших 4.500 вариантов дизайна, получилась модель, превосходящая по тестам тот вариант, что разработали люди.

Аналогичный генетический алгоритм был использован NASA при разработке антенны для спутника.

Джон Коза из Стэнфорда разработал технологию генетического программирования, в которой результатом эволюции становятся не отдельные числовые параметры "особей", а целые имитационные программы, которые являются виртуальными аналогами реальных устройств. Эта технология позволила компании Genetic Programming повторить 15 человеческих изобретений, 6 из которых были запатентованы после 2000 года, то есть представляют собой самые передовые достижения, а один из контроллеров, "выведенных" в GР, даже превосходит аналогичную человеческую разработку.

Сейчас плоды электронной эволюции можно найти в самых разных сферах: от двигателя самолета Боинг 777 до новых антибиотиков.

Генетические алгоритмы представляют собой компьютерное моделирование эволюции. Материальное воплощение сконструированных таким образом систем до сих пор была невозможна без участия человека. Однако интенсивно ведутся работы, результатом которых является уменьшение зависимости машинной эволюции от человека. Эти работы ведутся по двум основным направлениям:

1. Естественный отбор, моделируемый ГА, переносится из виртуального мира в реальный, например, проводятся эксперименты по реальным битвам роботов на выживание.

2. Интеллектуальные системы, основанные на ГА, конструируют роботов, которые в принципе могут быть изготовлены на автоматизированных заводах без участия человека.

Пример воплощения ГА в реальной битве роботов на выживание: в 2002 году в британском центре Magna открылся павильон Live Robots, где боролись за выживание 12 роботов двух видов: "гелиофаги", способные добывать электроэнергию с использованием солнечных батарей; "хищники", которые могли получать электроэнергию только от гелиофагов. Выжившие роботы загружали свои "гены" в погибших и, таким образом, образовывали новые поколения. Те хищники, которые забирали всю энергию у гелиофагов, теряли источник питания и погибали, не передавая свою тактику потомкам, поступавшие же "более разумно" продолжили свой род. В результате возникла равновесная сбалансированная искусственная экосистема с двумя популяциями.

Пример конструирования роботов роботами: в Brandeis University была создана программа Golem, которая сама конструировала роботов. В программу была база деталей, а также механизм мутаций и функция пригодности для "отсеивания" неудачников - тех, кто не научился двигаться. После 600 поколений за несколько дней программа получила модели трех ползающих роботов. Показательно, что роботы оказались симметричными, хотя симметрия никак не была явно прописана в правилах эволюции и исходных данных. Это означает, что она появилась в ходе моделирования машинной эволюции как полезная черта, позволяющая двигаться прямолинейно.

Список литературы

интеллектуальная информационная сеть

1. Интеллектуальные информационные системы в экономике. Учебное пособие. -М: Экзамен. - 2003 г.

2. Гаскаров Д.В. Интеллектуальные информационные системы. Учебное пособие. -М: Высшая школа. - 2003 г.

3. Рыбина. Теория и технология интегрированных экспертных систем. -М: Научтехлитиздат. - 2008 г.

4. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы. -М: Финансы и статистика. - 2004 г.

5. Джораттано Дж., Гайли Г. Экспертные системы: принципы разработки и программирования. -М: Вильямс. - 2007 г.

6. Люгер Дж. Искусственные интеллектуальные стратегии и методы решения сложных проблем. -М: Вильямс. - 2003 г.

7. Рассел, Норвиг. Искусственный интеллект: современный подход. -М: Вильямс. - 2006 г.

8. Тарасов. От многоагентных систем к интеллектуальным организациям - 2002 г.

9. Смолин Д.В. Введение в искусственный интеллект. - 2004 г.

10. Степанюк. Локальная организация интеллектуальных систем. Модели и приложения.

11. Братко. Алгоритмы искусственного интеллекта.

12. Гаврилова, Хорошевский.

13. Частиков, Гаврилова, Белов. Разработка экспертных систем.

14. Девятков. Системы искусственного интеллекта.

15. Круглов, Борисов. Искусственные нейронные сети.

16. Хайкин. Нейронные сети. Полный курс. - 2004 г.

17. Фролов. Интеллектуальные системы и управленческие решения.

18. Фоминых, Кисель, Попов, Шапот. Статические и динамические экспертные системы.

19. Джексон. Введение в экспертные системы.

20. Уотермен. Руководство по экспертным системам.

21. Уотермен. Построение экспертных систем.

Размещено на Allbest


Подобные документы

  • Задача анализа деловой активности, факторы, влияющие на принятие решений. Современные информационные технологии и нейронные сети: принципы их работы. Исследование применения нейронных сетей в задачах прогнозирования финансовых ситуаций и принятия решений.

    дипломная работа [955,3 K], добавлен 06.11.2011

  • Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.

    дипломная работа [3,8 M], добавлен 27.06.2011

  • Системы поддержки принятия решений. Информационные аспекты процессов химической очистки теплоэнергетического оборудования. Математическое моделирование на основе корреляционно-регрессионного анализа. Построение модели. Подсистема "Дисперсионный анализ".

    дипломная работа [4,2 M], добавлен 12.08.2017

  • Анализ существующих решений системы поддержки принятия решений для корпоративной сети. Многоагентная система. Разработка концептуальной модели. Структура базы знаний. Разработка модели многоагентной системы на базе сетей Петри. Методика тестирования.

    дипломная работа [5,1 M], добавлен 19.01.2017

  • Понятие информационной системы как системы сбора, хранения, накопления, поиска и передачи информации, применяемая в процессе управления или принятия решений. Классификация и структура информационных систем. Разнообразие задач, решаемых с помощью ИС.

    контрольная работа [160,6 K], добавлен 18.01.2010

  • Структура модели системы обработки информации. Особенности временной диаграммы и машинной программы решения задачи. Сравнение результатов имитационного моделирования и аналитического расчета характеристик. Описание возможных улучшений в работе системы.

    курсовая работа [1,1 M], добавлен 26.06.2011

  • Структурное обеспечение информационной системы как инструмента формирования управленческих решений. Структурные модели. Классификация компьютерных сетей. Основные понятия локальной сети. Глобальные сети. История возникновения, специфика электронных денег.

    учебное пособие [881,9 K], добавлен 14.09.2015

  • Системы и задачи их анализа. Методы системного анализа: аналитические; математические. Сущность автоматизации управления в сложных системах. Структура системы с управлением, пути совершенствования. Цель автоматизации управления. Этапы приятия решений.

    реферат [324,3 K], добавлен 25.07.2010

  • Основные понятия: модель, моделирование, виды моделей. Пути и способы изучения темы "Моделирование и формализация" в курсе информатики в 8 классе. Создание табличной информационной модели. Понятие информационной модели, системы и структуры системы.

    методичка [1,8 M], добавлен 30.05.2013

  • Построение концептуальной модели системы и ее формализация. Алгоритмизация модели системы и ее машинная реализация. Построение логической схемы модели. Проверка достоверности модели системы. Получение и интерпретация результатов моделирования системы.

    курсовая работа [67,9 K], добавлен 07.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.