Исследование алгоритмов кластеризации данных
Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Информатика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Вася |
Дата добавления | 22.06.2011 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сущность и понятие кластеризации, ее цель, задачи, алгоритмы; использование искусственных нейронных сетей для кластеризации данных. Сеть Кохонена, самоорганизующиеся нейронные сети: структура, архитектура; моделирование кластеризации данных в MATLAB NNT.
дипломная работа [3,1 M], добавлен 21.03.2011Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
лабораторная работа [36,1 K], добавлен 05.10.2010Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа [728,4 K], добавлен 10.07.2017Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа [3,9 M], добавлен 22.10.2012Особенности кластеризации социальных сетей, методы распознавания сообществ. Особенности локального прореживания графа. Разработка рекомендаций по выбору метода кластеризации для выделенных классов задач. Оптимизация процесса дальнейшей обработки данных.
курсовая работа [1,8 M], добавлен 30.06.2017Алгоритмы кластеризации данных, отбора факторов, построения множественной линейной регрессии, оценки параметров процесса на скользящем постоянном интервале. Решение задач анализа данных на нейронных сетях и результаты моделирования нелинейных функций.
контрольная работа [1,5 M], добавлен 11.01.2016Обзор методов реализации алгоритмов искусственного интеллекта. Примеры интеллектуальных систем, основанных на алгоритмах самообучения и кластеризации данных. Создание общей структурной схемы. Выбор языков программирования и инструментальных средств.
дипломная работа [1,6 M], добавлен 20.08.2017Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа [1,1 M], добавлен 06.12.2010