Искусственный интеллект и системы искусственного интеллекта
Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 05.06.2011 |
Размер файла | 436,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Во втором случае мы также можем кодировать все значения двоичными весами, но это будет нецелесообразно, т.к. набор возможных значений будет слишком неравномерным. В этом случае более правильным будет установка в соответствие каждому значению своего веса, отличающегося на 1 от веса соседнего значения. Так число 3 будет соответствовать возрасту 50-59лет. Таким образом возраст будет закодирован числами в диапазоне [0..4].
В принципе аналогично можно поступать и для неупорядоченных данных, поставив в соответствие каждому значению какое-либо число. Однако это вводит нежелательную упорядоченность, которая может исказить данные, и сильно затруднить процесс обучения. В качестве одного из способов решения этой проблемы можно предложить поставить в соответствие каждому значению одного из входов НС. В этом случае при наличии этого значения соответствующий ему вход устанавливается в 1 или в 0 при противном случае. К сожалению данный способ не является панацеей, ибо при большом количестве вариантов входного значения число входов НС. разрастается до огромного количества. Это резко увеличит затраты времени на обучение.
Преобразование числовых входных данных
Для НС. необходимо чтобы входные данные лежали в диапазоне [0..1], в то время как данные проблемной области могут лежать в любом диапазоне. Предположим что данные по одному из параметров лежат в диапазоне [Min..Max]. Тогда наиболее простым способом нормирования будет
где x- исходное значение параметра
-значение, подаваемое на вход НС.
К сожалению, этот способ кодирования не лишен недостатков. Так в случае если то распределение данных на входе может принять вид.
Рис 4
Из рисунка 4. видно, что распределение входных параметров будет крайне неравномерным, что приведет к ухудшению качества обучения. Поэтому в подобных ситуациях, а также в случае, когда значение входа лежит в диапазоне можно использовать нормировку с помощью функции вида
Нейронные сети Хопфилда и Хэмминга
Среди различных конфигураций искусственных нейронных сетей (НС.) встречаются такие, при классификации которых по принципу обучения, строго говоря, не подходят ни обучение с учителем, ни обучение без учителя. В таких сетях весовые коэффициенты синапсов рассчитываются только однажды перед началом функционирования сети на основе информации об обрабатываемых данных, и все обучение сети сводится именно к этому расчету. С одной стороны, предъявление информации можно расценивать, как помощь, но с другой - сеть фактически просто запоминает образцы до того, как на ее вход поступают реальные данные, и не может изменять свое поведение, поэтому говорить о звене обратной связи с "миром" не приходится. Из сетей с подобной логикой работы наиболее известны сеть Хопфилда и сеть Хэмминга, которые обычно используются для организации ассоциативной памяти. Далее речь пойдет именно о них.
Структурная схема сети Хопфилда (рис 5) состоит из единственного слоя нейронов, число которых является одновременно числом входов и выходов сети. Каждый нейрон связан синапсами со всеми остальными нейронами, а также имеет один входной синапс, через который осуществляется ввод сигнала. Выходные сигналы, как обычно, образуются на аксонах.
Рис 5
Задача, решаемая данной сетью в качестве ассоциативной памяти, как правило, формулируется следующим образом. Известен некоторый набор двоичных сигналов (изображений, звуковых оцифровок, прочих данных, описывающих некие объекты или характеристики процессов), которые считаются образцовыми. Сеть должна уметь из произвольного неидеального сигнала, поданного на ее вход, выделить ("вспомнить" по частичной информации) соответствующий образец (если такой есть) или "дать заключение" о том, что входные данные не соответствуют ни одному из образцов. Если, например, сигналы представляют собой некие изображения, то, отобразив в графическом виде данные с выхода сети, можно будет увидеть картинку, полностью совпадающую с одной из образцовых (в случае успеха) или же "вольную импровизацию" сети (в случае неудачи).
Как говорилось выше, иногда сеть не может провести распознавание и выдает на выходе несуществующий образ. Это связано с проблемой ограниченности возможностей сети. Кроме того, если два образа А и Б сильно похожи, они, возможно, будут вызывать у сети перекрестные ассоциации.
Рис 6
Когда нет необходимости, чтобы сеть в явном виде выдавала образец, то есть достаточно, скажем, получать номер образца, ассоциативную память успешно реализует сеть Хэмминга (рис 6). Данная сеть характеризуется, по сравнению с сетью Хопфилда, меньшими затратами на память и объемом вычислений, что становится очевидным из ее структуры.
Далее приведена тестовая программа для проверки сети (рис 7). Здесь конструируется сеть со вторым слоем из пяти нейронов, выполняющая распознавание пяти входных образов, которые представляют собой схематичные изображения букв размером 5 на 6 точек. Обучение сети фактически сводится к загрузке и запоминанию идеальных изображений. Затем на ее вход поочередно подаются зашумленные на 8/30 образы из файла, которые она успешно различает.
Рис 7
Рис 8
Следует отметить, что обучение сети Хэмминга представляет самый простой алгоритм из всех рассмотренных до настоящего времени алгоритмов.
Обсуждение сетей, реализующих ассоциативную память, было бы неполным без хотя бы краткого упоминания о двунаправленной ассоциативной памяти (ДАП) (рис 8). Она является логичным развитием сети Хопфилда, к которой для этого достаточно добавить второй слой. Сеть способна запоминать пары ассоциированных друг с другом образов.
Сети Хопфилда, Хэмминга и ДАП позволяют просто и эффективно разрешить задачу воссоздания образов по неполной и искаженной информации. Невысокая емкость сетей (число запоминаемых образов) объясняется тем, что, сети не просто запоминают образы, а позволяют проводить их обобщение, например, с помощью сети Хэмминга возможна классификация по критерию максимального правдоподобия. Вместе с тем, легкость построения программных и аппаратных моделей делают эти сети привлекательными для многих применений.
Применение нейронных сетей
Сеть можно применять в ситуации, когда имеется определенная информация, и требуется из нее получить некоторую неизвестную информацию. Вот некоторые важные примеры задач, в которых были успешно решены нейросетевые методы.
1. Распознавание состояния больного.
Применение классических статистических методов описано еще в работах Неймана. С помощью медицинской аппаратуры можно наблюдать за различными показателями состояния здоровья человека (например, частотой пульса, содержанием различных веществ в крови, частотой дыхания). Стадии возникновения некоторой болезни может соответствовать определенная и весьма сложная (например, нелинейная и взаимозависимая) комбинация изменений наблюдаемых переменных, которая может быть обнаружена с помощью нейросетевой модели.
2. Прогнозирование на фондовом рынке.
Колебания цен на акции и фондовых индексов еще один пример сложного, многомерного, но, в определенных ситуациях, частично прогнозируемого явления. Многие финансовые аналитики используют нейронные сети для прогнозирования цен акций на основе многочисленных факторов, например, прошлого поведения цен этих и других акций в совокупности с различными другими экономическими показателями. В качестве альтернативных вариантов здесь применяются модели авторегрессии и технический анализ.
3. Предоставление кредита.
Как правило, у банка имеется большой набор сведений о человеке, обратившемся с просьбой о предоставлении кредита. Это могут быть его возраст, образование, род занятий и многие другие данные. Обучив нейронную сеть на уже имеющихся данных, аналитик может определить наиболее существенные характеристики, и на их основе отнести данного клиента к категории с высоким или низким кредитным риском. Заметим, сто для решения подобных задач можно параллельно использовать и классические методы, такие как дискриминантный анализ и деревья классификации.
4. Системы слежения за состоянием оборудования.
Нейронные сети оказались полезны как средство контроля состояния механизмов. Нейронная сеть может быть обучена так, чтобы отличить звук, который издает машина при нормальной работе (ложная тревога) от того, который является предвестником неполадок. После такого обучения нейронная сеть может предупреждать инженеров об угрозе поломки до того, как она случится, и тем самым исключать неожиданные и дорогостоящие простои.
5. Управление работой двигателя. Нейронные сети используются для анализа сигналов от датчиков, установленных на двигателях. С помощью нейронной сети можно управлять различными параметрами работы двигателя, чтобы достичь определенной цели, например, уменьшить потребление горючего.
6. Нейросети в искусственном интеллекте.
Работы по созданию интеллектуальных систем ведутся в двух направлениях Сторонники первого направления, составляющие сегодня абсолютное большинство среди специалистов в области искусственного интеллекта, исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и проистекающие в ней процессы, присущие биологическим системам. Важно лишь то, что теми или иными средствами удается добиться тех же результатов в поведении, какие характерны для человека и других биологических систем. Сторонники второго направления считают, что на чисто информационном уровне этого не удастся сделать. Феномены человеческого поведения, его способность к обучению и адаптации, по мнению этих специалистов, есть следствие именно биологической структуры и особенностей её функционирования.
У сторонников первого информационного направления есть реально действующие макеты и программы, моделирующие те или иные стороны интеллекта. Одна из наиболее ярких работ, представляющих первое направление, это программа Общий решатель задач А. Ньюэлла, И. Шоу и Г. Саймона. Развитие информационного направления шло от задачи о рационализации рассуждений путем выяснения общих приемов быстрого выявления ложных и истинных высказываний в заданной системе знаний. Способность рассуждать и находить противоречия в различных системах взаимосвязанных ситуаций, объектов, понятий является важной стороной феномена мышления, выражением способности к дедуктивному мышлению. Результативность информационного направления бесспорна в области изучения и воспроизведения дедуктивных мыслительных проявлений. Для некоторых практических задач этого достаточно. Информационное направление наука точная, строгая, вобравшая в себя основные результаты изысканий кибернетики и математическую культуру. Главные проблемы информационного направления ввести в свои модели внутреннюю активность и суметь представить индуктивные процедуры. Одна из центральных проблем, это Проблема активных знаний, порождающих потребности в деятельности системы из-за тех знаний, которые накопились в памяти системы.
У сторонников второго биологического направления результатов пока существенно меньше, чем надежд. Одним из родоначальников биологического направления в кибернетике является У. Мак-Каллок. В нейрофизиологии установлено, что целый ряд функций и свойств у живых организмов реализованы с помощью определенных нейронных структур. На основе воспроизведения таких структур в ряде случаев получены хорошие модели, в особенности это касается некоторых сторон работы зрительного тракта.
Создание нейрокомпьютеров, моделирующих нейронные сети (НС.), в настоящее время рассматривается как одно из наиболее перспективных направлений в решении проблем интеллектуализации вновь создаваемых ЭВМ и информационно-аналитических систем нового поколения. В большей части исследований на эту тему НС. представляется как совокупность большого числа сравнительно простых элементов, топология соединений которых зависит от типа сети. Практически все известные подходы к проектированию НС. связаны в основном с выбором и анализом некоторых частных структур однородных сетей на формальных нейронах с известными свойствами (сети Хопфилда, Хемминга, Гроссберга, Кохоннена и др.) и некоторых описанных математически режимов их работы. В этом случае термин нейронные сети метафоричен, поскольку он отражает лишь то, что эти сети в некотором смысле подобны живым НС., но не повторяют их во всей сложности. Вследствие такой трактовки нейронные ЭВМ рассматриваются в качестве очередного этапа высокопараллельных супер-ЭВМ с оригинальной идеей распараллеливания алгоритмов решения разных классов задач. Сам термин нейронная ЭВМ нейрокомпьютер, как правило, никак не связан с какими-то ни было свойствами и характеристиками мозга человека и животных. Он связан только с условным наименованием порогового логического элемента как формального нейрона с настраиваемыми или фиксированными весовыми коэффициентами, который реализует простейшую передаточную функцию нейрона-клетки.
Исследования в области создания нейроинтеллекта ведутся на различных уровнях: теоритический инструментарий, прототипы для прикладных задач, средства программного обеспечения НС., структуры аппаратных средств. Основными этапами на пути создания мозгоподобного компьютера являются выяснение принципов образования межэлементных связей и мозгоподобных системах адаптивных сетях с большим числом элементов, создание компактного многовходового адаптивного элемента аналога реального нейрона, исследование его функциональных особенностей, разработка и реализация программы обучения мозгоподобного устройства.
Одним из наиболее существенных путей расширения функционального диапазона НС., а также повышения их эффективности для традиционных задач является более целенаправленное использование в моделях механизмов и принципов организации мозга. Обоснованием этого служит достаточно экономная реализация функций в мозге, пока не доступная для самых совершенных супер-ЭВМ. В мозге, как и в любой сложной системе, процесс функционирования представляет собой совокупный результат работы его элементов и способов их взаимодействия. Оба эти фактора находят свое отражение в системной работе мозга.
В настоящее время становится очевидным, что успех разработки нейрокомпьютеров и интеллектуализации ЭВМ нового поколения в значительной степени определяется успехом работы над созданием нового класса базовых элементов с использованием данных о работе мозга. В первую очередь, это касается усложнения архитектуры, пространственно-временного распределения процессов в самом базовом элементе и расширении его функциональных возможностей. Поэтому актуальна необходимость в новом взгляде на перераспределение основных функций обработки информации между самими базовыми элементами нейрокомпьютера и сетевыми ресурсами в сторону увеличения логической нагрузки на базовые элементы.
Это связано с тем, что только в самое последнее время, на основе данных практической нейрофизиологии появилась возможность выделить из огромного числа процессов в мозге небольшое их количество наиболее значимых для переработки информации и выполнения сложных функций принятия конечных решений. Минимально необходимый набор структур, обеспечивающих эти процессы, значительно сузился и вследствие установленных ограничений существующих ЭВМ, которые не могут быть преодолены в настоящее время без использования свойств работы мозга. Кроме того, широко практикуемые однородные структуры искусственных НС. на формальных нейронах не используют в полной мере возможностей реальных нейронов: их разнотипность, свойства распределенной и параллельной работы, многоуровневую иерархическую структурированность и соподчиненность в организации базовых структур головного мозга.
Из огромного числа данных о деятельности мозга, по-видимому, наиболее близко к решению проблемы интеллектуализации разрабатываемых ЭВМ относятся факты о механизмах и принципах элементной и сетевой организации процессов и функций в коре больших полушарий (КБП). Это определяется ее функциональной значимостью и уровнем современных данных о конкретных механизмах ее работы. Известно, что КБП является основным субстратом выполнения высших функций, определяющим уровень интеллекта личности. В настоящее время накоплен и в значительной мере систематизирован экспериментальный и теоретический материал об элементарной организации корковых функций. Все это дает основания предполагать, что данные о работе высшего отдела мозга могут иметь существенное значение и для идеологии создания нейрокомпьютеров, и для конструктивных решений отдельных их блоков. В плане общего подхода к моделированию нейрокомпьютера существенно то, что по мере накопления фактов о морфологии, цитохимии и нейрофизиологии появляется все больше путей для перехода от вероятностных к детерминированным сетям корковой деятельности, основанных на данных об архитектурных принципах организации КБП. На основе этих данных все четче прослеживается связь особенностей функций КБП с конкретной спецификой ее элементов и связей. Это позволяет уже на исходной стадии моделирования решать принципиальный вопрос о соотношении функциональных нагрузок отдельного элемента и сети в целом, определяющим саму стратегию разработки нейрокомпьютера. На практике этот выбор связан, прежде всего, с определением набора функций и свойств базового элемента и зависит как от уровня технической базы, так и от конструкторского решения их реализации.
СПИСОК ЛИТЕРАТУРЫ
1. Ф. Уоссермен, Нейрокомпьютерная техника, М., Мир, 1992.
2. Е. Монахова, "Нейрохирурги" с Ордынки, PC Week/RE, №9, 1995.
3. Итоги науки и техники: физические и математические модели нейронных сетей, том 1, М., изд. ВИНИТИ, 1990.
4. С. Короткий, Нейронные сети: основные положения.
Размещено на Allbest.ru
Подобные документы
Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.
презентация [3,0 M], добавлен 28.05.2015Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.
реферат [78,9 K], добавлен 22.01.2015История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.
реферат [45,1 K], добавлен 20.11.2009Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?
реферат [49,0 K], добавлен 19.05.2006Характеристика сущности искусственного интеллекта. Проблема создания искусственного интеллекта. Базовые положения, методики и подходы построения систем ИИ (логический, структурный, эволюционный, имитационный). Проблемы создания и реализация систем ИИ.
реферат [43,1 K], добавлен 19.07.2010История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.
реферат [85,7 K], добавлен 20.12.2011Может ли искусственный интеллект на данном уровне развития техники и технологий превзойти интеллект человека. Может ли человек при контакте распознать искусственный интеллект. Основные возможности практического применения искусственного интеллекта.
презентация [511,2 K], добавлен 04.03.2013Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.
реферат [1,2 M], добавлен 24.05.2015Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.
реферат [70,7 K], добавлен 18.11.2010История развития искусственного интеллекта в странах дальнего зарубежья, в России и в Республике Казахстан. Разработка проекта эффективного внедрения и адаптации искусственного интеллекта в человеческом социуме. Интеграция искусственного в естественное.
научная работа [255,5 K], добавлен 23.12.2014