Операционные системы

Краткий очерк истории операционных систем. Классификация периферийных устройств и их архитектура. Характеристики файлов и архитектура файловых систем. Распределение памяти без использования виртуальных адресов. Драйверы устройств в Windows, UNIX.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 01.02.2011
Размер файла 418,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

все процессы равноправны.

Попробуйте сами найти такое решение. В книгах /3/ и /4/ можно найти несколько вариантов решения с анализом их ошибок.

В конце концов правильные алгоритмы решена задачи взаимного исключения предложили сначала Деккер (его алгоритм довольно запутанный, что часто случается с первыми решениями сложных задач), затем Питерсон, чей алгоритм проще и понятнее.

Для любознательных приводим решение Питерсона. В нем используются булевы переменные flagA, flagB, изначально равные false, и переменная перечисляемого типа turn: A..B.

Процесс A:

Процесс B:

. . .

flagA := true;

turn := B;

while flagB and turn = B do

;

(критическая секция A)

flagA := false;

. . .

. . .

flagB := true;

turn := A;

while flagA and turn = A do

;

(критическая секция B)

flagB := false;

. . .

Приведенный алгоритм действительно решает проблему, однако у него есть два существенных недостатка. Во-первых, если в конкуренции за критическую секцию участвуют не два процесса, а три или более, то программа становится очень громоздкой. Во-вторых, решение Питерсона основано на использовании активного ожидания.

Еще одним направлением в реализации взаимного исключения стало включение специальных машинных команд в наборы команд новых процессоров. Поскольку опасность, как мы видели, связана с разделением по времени операций проверки и присваивания, то были предложены команды, выполняющие одновременно проверку и присваивание. Такие команды есть, например, у процессоров Pentium. С их помощью действительно можно проще реализовать взаимное исключение, но для этого все равно требуется активное ожидание.

4.3.3. Двоичные семафоры Дейкстры

Совершенно иным образом подошел к проблеме взаимного исключения великий голландский ученый Э.Дейкстра (E.Dijkstra, 1966). Он предложил использовать новый вид программных объектов - семафоры. Здесь мы рассмотрим их простейший вариант - двоичные семафоры, они же мьютексы (mutex, от слов MUTual EXclusion - взаимное исключение).

Двоичным семафором называется переменная S, которая может принимать значения 0 и 1 и для которой определены только две операции.

P(S) - операция занятия (закрытия) семафора. Она ожидает, пока значение S не станет равным 1, и, как только это случится, присваивает S значение 0 и завершает свое выполнение. Очень важно: операция P по определению неделима, т.е. между проверкой и присваиванием не может вклиниться другой процесс, который бы изменил значение S.

V(S) - операция освобождения (открытия) семафора. Она просто присваивает S значение 0.

Чем переменная-семафор отличается от обычной булевой переменной? Тем, что для нее недопустимы никакие иные операции, кроме P и V. Нельзя написать в программе S:=1 или if(S)then ... , если S определена как семафор.

Чем операция P отличается от варианта с проверкой и присваиванием, который мы выше признали неудовлетворительным? Неделимостью. Но это «по определению», а как на практике добиться этой неделимости? Это отдельный, вполне решаемый вопрос.

Заслуга Дейкстры как раз в том, что он разделил проблему взаимного исключения на две независимые проблемы разных уровней:

на уровне реализации: как обеспечить работу семафоров в соответствии с их определением;

на уровне взаимодействия процессов: как написать корректно работающую программу, если в распоряжении программиста имеются семафоры.

Решать эти две задачи по отдельности легче, чем обе вместе, при этом решать их обычно должны разные люди: первую - разработчики ОС, а вторую - разработчики прикладной программы.

Рассмотрим сначала реализацию. Очевидно, функции P и V удобнее и надежнее один раз реализовать в ОС, чем каждый раз по-новому - в прикладных программах. (Названия этих функций могут в конкретных системах быть и иными, более выразительными.)

Системная функция P(S) должна проверить, свободен ли семафор S. Если свободен (S = 1), то система занимает его (S := 0) и на этом функция завершается. Если же семафор занят, то система блокирует процесс, вызвавший функцию P, и запоминает, что этот процесс блокирован по ожиданию освобождения семафора S. Таким образом, при реализации семафоров удается избежать активного ожидания.

Неделимость операции обеспечивается тем, что во время выполнения системой функции P переключение процессов запрещено. В крайнем случае, ОС имеет возможность для этого на короткое время запретить прерывания.

Системная функция V(S) - это, конечно, не просто присваивание S := 1. Кроме этого, система должна проверить, нет ли среди спящих процессов такого, который ожидает освобождения семафора S. Если такой процесс найдется, система разблокирует его, а переменная S в этом случае сохраняет значение 0 (семафор снова занят, теперь уже другим процессом).

Может ли случиться так, что несколько спящих процессов ждут освобождения одного и того же семафора? Да, так вполне может быть. Какой из этих процессов должен быть разбужен системой? С точки зрения корректности работы и соответствия определениям функций P и V - любой, но только один. С точки зрения эффективности работы - вероятно, надо разбудить самый приоритетный процесс, а в случае равенства приоритетов… ну, видимо, тот, который спит дольше.

Теперь, когда мы разобрались с реализацией семафоров, можно о ней забыть Но к экзамену вспомнить! и помнить только, что семафоры существуют и могут быть использованы при необходимости.

Рассмотрим теперь вторую половину задачи - использование семафоров для управления взаимодействием процессов. Как можно реализовать корректную работу процессов с критическими секциями, если использовать двоичный семафор? Да очень просто.

Процесс A:

Процесс B:

. . .

P(S);

(критическая секция A)

V(S);

. . .

. . .

P(S);

(критическая секция B)

V(S);

. . .

И все. Сложности ушли в реализацию семафоров. Надо только проследить, чтобы до начала работы процессов семафор S был открыт.

4.3.4. Средства взаимодействия процессов

Можно доказать, что использование двоичных семафоров позволяет корректно решить любые проблемы синхронизации процессов. Но вовсе не обязательно это решение окажется простым и удобным. В некоторых случаях использование семафоров должно все же сопровождаться нежелательным активным ожиданием.

За десятилетия, прошедшие после изобретения семафоров, были предложены различные средства синхронизации, более приспособленные для различных типовых задач. Рассмотрим некоторые из них.

4.3.4.1. Целочисленные семафоры

В упомянутой работе Дейкстры, помимо двоичных семафоров, принимающих значения 0 и 1, был рассмотрен также более общий тип семафоров со значениями на интервале от 0 до некоторого N. Функция P(S) уменьшает положительное значение семафора на 1, а при нулевом значении переходит в ожидание, как и в случае двоичного семафора. Функция V(S) увеличивает значение семафора на 1, но не более N.

Область применения целочисленных семафоров несколько иная, чем у двоичных. Целочисленные семафоры применяются в задачах выделения ресурсов из ограниченного запаса. Величина N характеризует общее количество имеющихся единиц ресурса, а текущее значение переменной - количество свободных единиц. При запросе ресурса процесс вызывает функцию V(S), при освобождении - P(S).

Для целочисленных семафоров иногда удобно использовать модифицированную функцию V(S, k), вторым параметром которой является число одновременно запрашиваемых единиц ресурса. Такая функция блокирует процесс, если значение семафора меньше k.

4.3.4.2. Семафоры с множественным ожиданием

Возможна ситуация, когда процесс может выбрать один из нескольких путей дальнейшей работы, но на каждом пути он может быть заблокирован закрытым семафором. Разумно было бы ждать освобождения любого из семафоров и только тогда выбрать свободный путь. Но как это сделать? Вызвав P(S) для одного из семафоров, процесс обречен ждать освобождения именно этого семафора, а не любого из имеющихся.

Житейская ситуация: покупатель в супермаркете, выбирающий, к какой из касс занять очередь. Хорошо бы угадать очередь, которая пройдет быстрее…

Функция множественного ожидания P(S1, S2, … Sn) позволяет указать в качестве параметров несколько двоичных семафоров (или массив семафоров). Если хотя бы один из семафоров свободен, функция занимает его, в противном случае она ждет освобождения любого из семафоров.

Другой, не менее полезный вариант множественного ожидания, это ожидание момента, когда все указанные семафоры окажутся свободны. Это означает, что процесс может работать дальше только в том случае, если одновременно выполнены несколько условий, каждое из которых задано в виде двоичного семафора.

4.3.4.3. Сигналы

Сигнал - это нечто, что может быть послано процессу системой или другим процессом. С сигналом не связано никакой информации, кроме номера (кода), указывающего, какой именно тип сигнала посылается. При получении сигнала процесс прерывает свою текущую работу и переходит на выполнение функции, определенной как обработчик сигналов данного типа.

Таким образом, сигналы сильно похожи на прерывания, но только высокоуровневые, управляемые системой, а не аппаратурой.

Механизм сигналов позволяет решить, например, проблему критической секции иным способом, чем семафоры.

Подумайте самостоятельно, как это можно сделать.

4.3.4.4. Сообщения

Сообщения также посылаются процессу системой или другим процессом, однако отличаются от сигналов в двух отношениях.

Во-первых, сообщения не прерывают работу процесса-получателя. Вместо этого они становятся в очередь сообщений. Процесс должен сам вызвать функцию приема сообщения. Если очередь пуста, эта функция блокирует процесс до получения какого-нибудь сообщения.

Во-вторых, с сообщением, в отличие от сигнала, может быть связана информация, передаваемая получателю. Таким образом, сообщения - это средство не только синхронизации, но и обмена данными между процессами.

4.3.4.5. Общая память

Поговорим теперь еще об обмене данными. Самым простым и естественным способом такого обмена представляется возможность совместного доступа двух или более процессов к общей области памяти. Но поскольку обычно ОС стремится, наоборот, надежно разделить память разных процессов, то для выделения обшей памяти нужны специальные системные средства.

Общая память служит только средством обмена данными, но никак не решает проблем синхронизации. Участки программы, где происходит работа с общей памятью, часто следует рассматривать как критические секции и защищать семафорами.

4.3.4.6. Программные каналы

Другое часто используемое средство обмена данными - программный канал (pipe; иногда переводится как «трубопровод»). В этом случае для выполнения обмена используются не команды чтения/записи в память, а функции чтения/записи в файл. Программный канал «притворяется файлом», для работы с ним используются те же операции, что для последовательного доступа к файлу: открытие, чтение, запись, закрытие. Однако источником читаемых данных служит не файл на диске, а процесс, выполняющий запись «в другой конец трубы». Данные, записанные одним процессом, но пока не прочитанные другим, хранятся в системном буфере. Если же процесс пытается прочесть данные, которые пока не записаны другим процессом, то процесс-читатель блокируется до получения данных.

4.3.5. Проблема тупиков

Согласно определению из /7/, тупик - это состояние, в котором «некоторые процессы заблокированы в результате таких запросов на ресурсы, которые никогда не могут быть удовлетворены, если не будут предприняты чрезвычайные системные меры».

Как это прикажете понимать?

Прежде всего, давайте отметим, что процессу, действующему в одиночку, не под силам загнать приличную ОС в тупик. Требования процесса не будут удовлетворены, только если они превышают то, что есть у системы. Скажем, процесс требует 500 Мб оперативной памяти, когда у системы есть всего-то 256 Мб. Ну, так в этом случае процесс будет не блокирован, а беспощадно убит системой.

Иное дело, если в деле замешаны два или более процессов. Согласно другому определению, данному в /2/, «Группа процессов находится в тупиковой ситуации, если каждый процесс из группы ожидает события, которое может вызвать только другой процесс из той же группы».

Рассмотрим такой пример. Пусть каждый из процессов A и B собирается работать с двумя файлами, F1 и F2, причем не намерен разделять эти файлы с другим процессом. Программы же процессов слегка различаются, а именно

Процесс A:

Процесс B:

. . .

Открыть(F1);

Открыть(F2);

(работа процесса A с файлами);

Закрыть(F1);

Закрыть(F2);

. . .

. . .

Открыть(F2);

Открыть(F1);

(работа процесса B с файлами);

Закрыть(F1);

Закрыть(F2);

. . .

В этой ситуации все может пройти благополучно. Пусть, например, процесс A успеет открыть оба файла к тому моменту, когда процесс B попытается открыть F2. Эта попытка не увенчается успехом: процесс B либо будет заблокирован до освобождения файлов, либо получит сообщение об ошибке при открытии файла и, если процесс умный, через какое-то время попытается еще раз. В конце концов оба процесса получат требуемые ресурсы (в данном случае открытые файлы), хотя и не оба сразу.

Совсем иное будет дело, если A успеет открыть только F1, после чего B откроет F2. Тут-то и получится тупик. Процесс A хочет открыть файл F2, но не сможет этого сделать раньше, чем B закроет этот файл. Но B не закроет F2 до того, как сумеет открыть файл F1, который занят процессом A. Каждый из процессов захватил один из ресурсов и не собирается его отдавать раньше, чем получит другой. Ситуация «двух баранов на мосту».

Подчеркнем: тупик - это не просто блокировка процесса, когда необходимый ему ресурс занят. Занят - ну и что, со временем, авось, освободится. Тупик - это взаимная блокировка, из которой нет выхода.

Еще пример. Пусть в системе имеется 100 Мб памяти, доступной для процессов. Процесс A при своем старте занимает 40 Мб, но позднее на короткое время требует еще 30 Мб, после чего завершается, освобождая всю память. Процесс B ведет себя точно таким же образом.

Каждый из процессов по отдельности не требует у системы ничего невозможного. В то же время понятно: если оба процесса сумеют стартовать и начать параллельную работу, то ни один из них никогда не получит дополнительные 30 Мб. Тупик.

Совсем грубый пример. Процесс A на каком-то этапе работы ждет сообщения от процесса B, после чего собирается послать ответное сообщение. В то же время процесс B ждет сообщения от A, чтобы потом ответить на него. Тупик неизбежен. В данном случае, в отличие от предыдущих, возникновение тупика связано с явной ошибкой в логике программы.

Может ли помочь в борьбе с тупиками использование семафоров и других подобных средств? Вряд ли, разве что в редких случаях. Семафор - это, скорее, дополнительный тормоз для процесса. Вещь полезная, но не способствующая продвижению.

Все известные способы борьбы с тупиками можно разделить на три группы:

исключение возможности тупиков путем анализа исходного текста программ;

предотвращение возникновения тупиков при работе ОС;

ликвидация возникших тупиков.

Что касается анализа текста - это, безусловно, нужная вещь, хотя и непростая. Определить по тексту программ процессов, могут ли они зайти в тупик - сложная задача. К тому же, если и могут, то совсем не обязательно зайдут, все может зависеть от конкретных исходных данных и от временных соотношений. Но главное - для анализа исходного текста программ нужно иметь в своем распоряжении этот текст. Реально ли это? Только в некоторых ситуациях. Например, при разработке встроенной системы исходные тексты всех прикладных программ обычно доступны разработчику ОС. Конечно, в этом случае анализ на возможность тупиков просто необходим. Другой пример - разработка сложного многопроцессного приложения, когда разработчик должен хотя бы выявить возможность взаимной блокировки между «своими» процессами.

Если тексты недоступны, то можно попытаться предотвращать тупики уже в ходе работы программ, отслеживая их запросы на ресурсы и блокируя либо прекращая те процессы, которые, по-видимому, «лезут в тупик».

Самый грубый из подобных подходов заключается в том, что каждый процесс должен захватывать все необходимые ему ресурсы сразу, при старте, после чего он может либо удерживать ресурсы в течение всего времени работы, либо освобождать ресурсы, которые больше не нужны. Такой подход, безусловно, в корне исключает возможность тупиков. К сожалению, на практике он почти исключает и многозадачную работу: многие ресурсы необходимы для работы большинства процессов (например, диски, принтер, системные файлы), поэтому пока один процесс удерживает все ресурсы, другие не смогут даже стартовать.

Чуть получше алгоритм нумерованных ресурсов. Он заключается в том, что все ресурсы, имеющиеся в системе, нумеруются целыми числами в произвольном порядке (хотя, вероятно, для повышения эффективности лучше всего пронумеровать их в порядке возрастания дефицитности ресурса). Далее применяется простое правило: запрос процесса на выделение ему ресурса с номером K удовлетворяется только в том случае, если процесс в данный момент не владеет никаким другим ресурсом с номером N K. Другими словами, запрос ресурсов следует выполнять только в порядке возрастания номеров. Нетрудно показать, что это правило является достаточным условием отсутствия тупиков. Но это условие слишком ограничивающее, оно отсекает много ситуаций, когда тупик на самом деле не возник бы.

Наиболее изящен алгоритм банкира, предложенный тем же Дейкстрой. В нем предполагается, что каждый процесс при старте должен объявить системе, на какие ресурсы и в каком максимальном количестве он может в будущем претендовать. Далее, вводится понятие безопасного (в отношении тупиков) состояния системы. Текущее состояние, в котором имеется набор процессов, каждый из которых владеет некоторыми ресурсами, считается безопасным, если имеющихся в наличии свободных ресурсов достаточно для того, чтобы ОС смогла в определенной последовательности удовлетворить максимальные запросы каждого процесса.

Это определение проще понять, если рассмотреть, как проверяется безопасность заданного состояния. Согласно алгоритму, среди имеющихся процессов ищется такой, чьи максимальные заявленные запросы система может удовлетворить, используя имеющиеся свободные ресурсы. Если хотя бы один такой процесс найден, то он вычеркивается из общего списка и все ресурсы, которые он уже успел занять, считаются свободными (т.е. считается, что система смогла завершить этот процесс). Далее, при увеличившихся свободных ресурсах, ищется следующий процесс, чьи запросы система может удовлетворить, и т.д. Если в результате удается вычеркнуть все процессы, то анализируемое состояние системы является безопасным.

Сам же алгоритм банкира можно теперь сформулировать очень просто: любой запрос процесса на выделение ему дополнительных ресурсов должен удовлетворяться только в том случае, если состояние, в которое перейдет система после этого выделения, будет безопасным.

Название алгоритма навеяно, видимо, образом осторожного банкира, который выдает кредит только в том случае, если после этого сможет выполнить все свои обязательства даже в худшем случае. Явно не российский банкир.

Хотя данный алгоритм красив и логичен, у него есть, по меньшей мере, два недостатка. Во-первых, в современных ОС не принято требовать от процессов, чтобы те заранее объявляли свои будущие потребности в ресурсах. Во-вторых, выполнять проверку безопасности состояния при каждом запросе любого из процессов - слишком трудоемкое удовольствие.

Рассмотрим, наконец, третий подход - ликвидацию уже возникших тупиков, без попыток предотвратить их возникновение. В книге /2/ этот подход назван «алгоритмом страуса».

Здесь, прежде всего, возникает вопрос: как убедиться, что система действительно в тупике? Внешним признаком этого является длительное отсутствие какой-либо активности двух или более процессов. Но это недостоверный признак, процессы могли просто надолго задуматься над каким-нибудь трудоемким вычислением. Есть алгоритмы, которые анализируют текущее состояние процессов и ресурсов, наличие заблокированных запросов, и на этой основе ставят диагноз тупика. В принципе, такой алгоритм мог бы быть встроен в ОС. Однако в литературе нет сведений о том, чтобы это было осуществлено на практике. Обычно полагаются на волевое решение оператора или администратора системы.

Но пусть даже точно известно, что тупик есть. Как можно его устранить? Как «растащить баранов с моста»? Как правило, для этого применяется радикальное решение: принудительно прекратить один из тупиковых процессов (сбросить одного барана в реку). Если не помогло - утопить следующего барана. И т.д.

В литературе рассматриваются и более гуманные, но сложные способы. В принципе, можно регулярно запоминать состояние всех или только наиболее ответственных процессов в определенных контрольных точках или через определенные периоды времени. Тогда, вместо полного прекращения процесса, его можно вернуть к одной из последних контрольных точек и придержать там, пока другой баран не перейдет через реку.

Завершая рассмотрение проблемы тупиков, следует признать, что в настоящее время ее практическое значение значительно меньше, чем хотелось бы теоретикам. Во-первых, совсем не легко загнать в тупик современную ОС, работающую на компьютере с огромными ресурсами. В примере мы рассмотрели тупик, возникший из-за 100 Мб памяти, но если учесть еще несколько гигабайт, которые можно использовать в файле подкачки, то запросы процессов должны быть уж очень велики, чтобы привести к тупику. А, скажем, такое устройство, как принтер, в современных ОС вообще не может стать причиной тупика, т.к. система не отдает его во владение ни одному процессу даже на время.

Во-вторых, хотя тупик в принципе остается возможным, пользователь вряд ли даже заметит его. Скорее, он скажет «Опять Windows зависла!» и перезагрузит систему.

Предотвращение тупиков остается действительно важным, например, при разработке встроенной системы, которая должна длительное время безотказно работать без вмешательства человека.

4.4. Управление процессами в MS-DOS

4.4.1. Процессы в MS-DOS

Как говорилось выше, управление процессами в однозадачных ОС, к которым относится MS-DOS, является сравнительно тривиальной задачей.

Загрузка ОС завершается запуском программы командного интерпретатора COMMAND.COM, в задачи которого входит:

чтение и анализ команд, вводимых пользователем с клавиатуры;

выполнение внутренних команд системы, таких, как команда выдачи содержания каталога, команды копирования, удаления и переименования файлов и т.п.;

запуск на выполнение системных и прикладных программ;

обработка критических ошибок, происшедших в ходе выполнения системных функций MS-DOS;

завершение работы программы с освобождением всех ресурсов, занимавшихся программой.

Запуская программу пользователя, COMMAND.COM не завершает собственную работу, а фактически переходит в состояние сна. После завершения запущенной программы COMMAND.COM возобновляет работу, выдавая приглашение к вводу следующей команды. Таким же образом программа пользователя может запустить другую программу и ожидать ее завершения. Количество одновременно присутствующих в системе процессов ограничено только размером памяти системы (не более 640 Кб на всех), однако только последняя запущенная программа может быть в активном (работающем) состоянии. Если же и эта программа блокируется на выполнении системной функции (например, ожидает ввода с клавиатуры), то в системе не остается активных процессов. Таким образом, термин «однозадачная ОС» в данном случае следует понимать как «ОС, допускающая не более одной активной задачи». Системе не приходится заниматься разделением процессорного времени и другими «многозадачными» проблемами, за исключением только сохранения и восстановления контекста родительской программы.

Некоторым исключением из правила «одна активная задача» являются резидентные программы MS-DOS, рассмотренные в п. 4.4.5.

4.4.2. Среда программы

Среда программы (environment; другой перевод - «окружение») представляет собой текстовый массив, состоящий из строк вида

"переменная=значение", 0

Здесь переменная и значение - любые (в разумных пределах) текстовые величины, байт 0 завершает каждую строку.

Понятие среды было введено в системе UNIX и позаимствовано оттуда в MS-DOS и Windows без особых изменений.

Имеется несколько стандартных (системных) переменных среды, из которых наиболее известны PATH (определяет пути к каталогам, в которых система ищет исполняемый файл) и PROMPT (задает вид подсказки при диалоге с ОС). Кроме того, многие прикладные программы требуют для правильной работы, чтобы были заданы специфические переменные среды, описывающие, например, размещение рабочих каталогов программы, способ работы с расширенной памятью или какие-то иные характеристики режима работы программы.

Можно рассматривать переменные среды как своего рода параметры, передаваемые программе при ее запуске, аналогично тому, как подпрограмма получает параметры при вызове. Интерпретатор команд COMMAND.COM также имеет свою среду, которую называют корневой средой. Для создания переменных корневой среды, их удаления и изменения значений может использоваться системная команда SET. Когда COMMAND.COM запускает программу пользователя или одна программа запускает другую, создается порожденный процесс, который получает собственный экземпляр блока среды, при этом по умолчанию создается точная копия среды родителя, однако можно создать совершенно иную среду.

4.4.3. Запуск программы

Одной из основных задач, которые должна решать система, является запуск программ на выполнение. Для этого предназначена системная функция Exec, которая может быть вызвана либо программой COMMAND.COM, выполняющей команду пользователя, либо непосредственно программой пользователя, через программное прерывание int 21h.

Функция Exec требует указания ряда параметров, из которых важны:

Имя файла запускаемой программы. Если имя не содержит пути к каталогу, то файл ищется в текущем каталоге, а также в каталогах, перечисленных в переменной PATH.

Командная строка. Так принято называть строку параметров, передаваемых программе. При запуске программы по команде пользователя командная строка задается после имени программы, она отделена от имени пробелом. Анализ содержимого командной строки полностью возлагается на запускаемую программу, система лишь передает эту строку программе.

Адрес массива, содержащего параметры среды программы. Если он не задан, то для запускаемой программы создается копия среды программы-родителя.

В MS-DOS используются два формата выполняемых программ.

Файл формата COM содержит только коды позиционно-независимой программы, которая может быть без изменения загружена для исполнения по любому свободному адресу памяти. Все программа должна помещаться в единственном сегменте, поэтому размер файла ограничен 64 Кб.

Файл формата EXE представляет собой перемещаемую программу. Файл состоит из заголовка, словаря перемещений и собственно кода. Информация в заголовке позволяет указать размер части файла, которая должна загружаться в память при запуске программы, максимальный и минимальный размер памяти, дополнительно резервируемой для размещения данных, начальный адрес стека, адрес запуска программы. Размер файла практически не ограничен, но размер загружаемой части должен быть в пределах, предоставляемых DOS, т.е. примерно 500 - 550 Кб.

Первые два байта EXE-файла содержат сигнатуру (признак) файла формата EXE, в качестве которой используются две буквы 'MZ' Одно и то же расширение EXE означает различные форматы программ для MS-DOS и для Windows разных версий. Каждый из этих форматов имеет собственную сигнатуру. Например, для EXE-файлов современной Windows используется сигнатура 'PE'.. Считается, что это инициалы программиста Марка Збиковского, который участвовал в разработке MS-DOS.

При запуске программы система выполняет следующие действия:

Выделяет два непрерывных блока памяти: для параметров среды (блок среды) и для самой программы (блок PSP). Для программы, как правило, выделяется максимально возможный непрерывный блок памяти, если только в заголовке EXE-файла не задан меньший размер.

Определяет размер загружаемой части программы (для COM-файла это весь файл), и считывает из файла коды программы.

Для EXE-файла выполняет настройку программы на адрес загрузки, прибавляя этот адрес к тем местам программы, которые перечислены в словаре перемещений.

Формирует в начале блока программы массив, который называется PSP (Program Segment Prefix). В PSP содержатся, в частности, адрес блока среды, адрес возврата в родительскую программу, адрес и размер таблицы JFT, сама эта таблица, командная строка программы.

Заполняет первые 5 элементов таблицы JFT (стандартные хэндлы), копируя их из JFT родительской программы.

Заносит начальные значения в регистры процессора.

Запоминает адрес PSP программы в качестве идентификатора текущего процесса (PID, Process IDentifier).

Наконец, выполняет переход на адрес запуска программы. Для COM-файла этот адрес следует сразу за PSP, для EXE-файла в заголовке может быть указан любой адрес.

4.4.4. Завершение работы программы

Завершение программы обычно включает в себя следующие действия системы:

Закрываются все файлы, открытые программой.

Освобождаются все блоки памяти, отведенные для программы и ее среды.

Восстанавливаются стандартные обработчики описанных ниже прерываний int 23h и int 24h, которые могли быть изменены отработавшей программой.

Управление передается родительской программе.

В MS-DOS определены 4 возможные причины, которые могут вызвать завершение работы программы.

Нормальное завершение. Оно происходит, когда программа вызывает системную функцию Terminate. В качестве аргумента этой функции программа передает код завершения - число, уточняющее причину завершения. Обычно код завершения 0 означает, что программа проработала благополучно, а ненулевые значения указывают на различные неприятности (отсутствие файла для обработки, неверный формат данных и т.п.).

Завершение по запросу пользователя. Оно происходит, если пользователь нажимает одну из комбинаций клавиш Ctrl+C или Ctrl+Break. Система не торопится прекращать работу программы, пока не вызовет программное прерывание int 23h. В зависимости от результата, возвращаемого обработчиком этого прерывания, программа либо будет завершена, либо продолжит работу. По умолчанию система сама обрабатывает прерывание и сама себе отвечает: «Завершить программу». Однако программа может взять обработку прерывания на себя и ответить системе: «Продолжаем работать». Так обычно и поступают все серьезные программы MS-DOS.

Завершение по критической ошибке. Критической считается ошибка, происшедшая в ходе выполнения какой-либо системной функции MS-DOS и имеющая аппаратный характер (точнее, обнаруженная драйвером устройства). Например, отсутствие файла не является критической ошибкой, а ошибка чтения с диска - является. Система вызывает программное прерывание int 24h, передавая как аргументы подробное описание ошибки (на каком устройстве, при какой операции и т.п.). В ответ система хочет получить от обработчика указание, как реагировать на ошибку. Имеется 4 вида реакции: Ignore - игнорировать ошибку; Retry - повторно выполнить операцию, вызвавшую ошибку; Abort - завершить программу; Fail - вернуть код ошибки программе пользователя. Системный обработчик прерывания запрашивает требуемую реакцию у пользователя. Однако программа и в данном случае может взять обработку прерывания на себя и попытаться автоматически выбрать желаемую реакцию на основании описания ошибки.

Завершение с установкой резидента. Оно похоже на нормальное завершение, но отличается двумя важными особенностями. Во-первых, файлы, открытые программой, не закрываются. Во-вторых, системе возвращается не вся память, занимаемая завершившейся программой. Некоторая часть памяти остается скрытой от системы и может быть использована для размещения резидентных программ, описанных в следующем пункте.

Имеется системная функция, с помощью которой родительская программа может проверить причину и код завершения программы-потомка.

4.4.5. Перехват прерываний и резидентные программы

Большая часть всех функциональных возможностей MS-DOS заключается в обработке разнообразных аппаратных и особенно программных прерываний. В частности, обращение к многочисленным системным функциям MS-DOS выполняется с помощью вызова программного прерывания int 21h.

Тем важнее оказывается тот факт, что в MS-DOS программа пользователя имеет возможность перехватить любое прерывание, т.е. установить свой обработчик этого прерывания. Фактически для этого достаточно записать адрес нового обработчика по соответствующему адресу памяти. Имеются системные функции для запоминания адреса прежнего обработчика и установки нового.

Перехват аппаратных прерываний позволяет программе оперативно реагировать на различные события. Особенно часто перехватываются прерывания от таймера, что позволяет выполнять некоторое действие регулярно, через заданный интервал времени, (скажем, отображать текущее время) или же выполнить его один раз в заранее запланированный момент, а также прерывания от клавиатуры, позволяющие выполнить действие при нажатии определенной комбинации клавиш. Например, одно время были популярны резидентные калькуляторы, которые появлялись на экране при нажатии заданных клавиш. Еще один пример такого рода - программы, переключающие русский/латинский регистры клавиатуры.

Перехват программных прерываний позволяет программе модифицировать выполнение любой функции MS-DOS. Выше говорилось об использовании перехвата прерываний для определения реакции программы на нажатие Ctrl+Break и на критические ошибки. Еще одним примером может служить системная программа SHARE.EXE, которая обеспечивает корректное разделение файлов между процессами. Эта программа перехватывает основные файловые функции MS-DOS, чтобы отследить все открытия и закрытия файлов и установку/снятие блокировок. На основании этой информации модифицированные функции открытия, чтения и записи файла определяют, разрешена ли запрошенная операция.

Программы, использующие перехват прерываний, можно разбить на два класса.

Нерезидентные программы, которые после завершения своей работы возвращают управление и всю занимаемую память системе. Такие программы перехватывают прерывания только на время своей работы и должны обязательно восстановить стандартную обработку прерываний при своем завершении. Это требование касается не только нормального завершения, но и завершения по Ctrl+Break и по критической ошибке. В противном случае при последующем возникновении прерывания управление будет передано по адресу уже не существующего в памяти обработчика, а это крах.

Резидентные программы представляют собой обработчики прерываний, остающиеся в памяти и после завершения загрузившего их процесса, вплоть до перезагрузки системы. Таким образом, резидентные программы могут оказывать влияние на работу MS-DOS и всех запускаемых программ.

К какому классу должна принадлежать упомянутая выше программа SHARE.EXE?

Не будет ошибкой сказать, что резидентные программы в некоторой степени превращают однозадачную MS-DOS в многозадачную систему. В данном случае реализуется примитивная форма фоново-оперативной диспетчеризации, в которой резидентные программы играют роль оперативных процессов, а обычная работа MS-DOS осуществляется в фоновом режиме.

К сожалению, в MS-DOS нет надежных, поддерживаемых системой средств для создания оперативных процессов. Вместо этого есть только возможность перехвата прерываний и еще некоторые полезные, но разрозненные функции, которые дают прикладному программисту возможность «вручную» реализовать многозадачность, но не гарантируют корректности результата.

Среди проблем, которые приходится решать разработчику резидентных программ, можно назвать несколько наиболее типичных.

При установке резидентной программы следует проверить, не была ли она уже установлена, поскольку двукратный перехват прерываний одной и той же программой обычно приводит к неверной работе программы. Такую проверку можно выполнить различными способами. Чаще всего используют вызов определенного программного прерывания, которое должно вернуть характерный результат, если оно уже перехвачено.

В MS-DOS нет понятия контекста программы и тем более нет средств переключения контекста. Если работа резидентной программы может привести к изменению таких системных данных, как текущие диск и каталог, информация о последней случившейся ошибке, идентификатор текущего процесса и т.п., то эта программа должна позаботиться о сохранении и восстановлении этих данных, чтобы не помешать нормальной работе фонового процесса.

Почти все функции MS-DOS нереентерабельны, причем даже не по отдельности, а в совокупности, т.е. вызов одной из этих функций при незавершенном выполнении другой может привести к краху системы. Это не вызывает затруднений, пока MS-DOS работает как однозадачная система. Однако активизация резидентной программы может произойти во время выполнения функции DOS, вызванной из фоновой программы. Если резидентная программа также вызовет какую-либо системную функцию (а без этого невозможно, например, работать с файлами), то последствия будут плачевны. Способы обойти это затруднение существуют, но по своей запутанности они больше похожи на рецепты алхимиков.

4.5. Управление процессами в Windows

В отличие от «полуторазадачной» MS-DOS, которая оставляет прикладному программисту всю работу (и весь риск) организации параллельного функционирования процессов, многозадачные ОС предоставляют программисту более или менее удобный и богатый набор системных функций, позволяющих запустить несколько параллельных процессов и организовать их взаимодействие (синхронизацию процессов, обмен данными, взаимное исключение и т.п.). При этом ОС обязана гарантировать корректную и эффективную организацию переключения процессов, разделения между ними процессорного времени, памяти и других ресурсов.

Сложность проблемы организации взаимодействия параллельных процессов существенно разная для систем, использующих вытесняющую и невытесняющую диспетчеризацию процессов. При вытесняющей диспетчеризации процесс может быть прерван диспетчером практически в любой момент. Помимо задачи сохранения и последующего восстановления контекста процесса (см. п. 4.2.5), которая должна решаться самой ОС, возникают еще и задачи обеспечения взаимного исключения при выполнении критических секций в многозадачных приложениях. Только разработчик программы может решить, какие части текста его программы являются критическими секциями и должны быть защищены семафорами.

В системе с невытесняющей диспетчеризацией программисту достаточно проверить, что критические секции не содержат вызовов блокирующих и вытесняющих функций. При этом можно гарантировать, что в ходе выполнения критической секции не произойдет переключения процессов.

Все версии Windows от 1.0 до 3.11 представляли собой достаточно мощные многозадачные системы с невытесняющей диспетчеризацией. Версии, начиная с Windows NT и Windows 95, используют вытесняющую диспетчеризацию.

4.5.1. Понятие объекта в Windows

В ОС Windows широко используется понятие системного объекта. По сути, любой объект представляет собой некоторую структуру данных, расположенную в адресном пространстве системы. Поскольку приложения не могут иметь доступа к этой памяти, то для работы с объектом приложение должно получить хэндл объекта - некоторое условное число, которое будет представлять данный объект при обращении к API-функциям. Процесс получает хэндл, как правило, при вызове функции CreateXxx (здесь Xxx - название объекта), которая может либо создать новый объект, либо открыть существующий объект, созданный другим процессом. Функции вида OpenXxx позволяют только открыть существующий объект.

Объекты Windows делятся на объекты ядра (KERNEL), позволяющие управлять процессами, объекты USER, описывающие работу с окнами, и объекты GDI, задающие графические ресурсы Windows. В данном курсе рассматриваются только объекты ядра. Процессы, нити и открытые файлы являются примерами объектов ядра.

Одной из отличительных особенностей объектов ядра являются атрибуты защиты, которые можно указать при создании объекта. Эти атрибуты определяют права доступа к объекту для различных пользователей и групп. Кроме того, при создании объекта ядра можно задать его имя, которое используется для того, чтобы другие процессы могли открыть тот же объект, зная его имя.

Хэндл объекта может быть использован только тем процессом, который создал или открыл этот объект. Нельзя просто переслать значение хэндла другому процессу, оно не будет действовать в другом контексте. Имеется, однако, функция DuplicateHandle, которая создает корректную копию хэндла, требуя указать для этого, какой процесс создает копию, какого именно хэндла и для какого процесса предназначена копия.

Если хэндл объекта больше не нужен данному процессу, его следует закрыть с помощью функции CloseHandle, общей для разных типов объектов.

Объект существует до тех пор, пока не будут закрыты все хэндлы, указывающие на него.

4.5.2. Процессы и нити

Общее понятие процесса, рассмотренное выше в п. 4.2.1, для ОС Windows как бы распадается на два понятия: собственно процесса и нити (thread; в некоторых книгах используется термин поток). При этом нить является единицей работы, она участвует в конкуренции за процессорное время, изменяет свое состояние и приоритет, как было описано выше для процесса. Что же касается процесса в Windows, то он может состоять из нескольких нитей, использующих общую память, открытые файлы и другие ресурсы, принадлежащие процессу. В двух словах: процесс - владеет (памятью, файлами), нити - работают, при этом совместно используя ресурсы своего процесса. Правда, нить тоже кое-чем владеет: окнами, очередью сообщений, стеком.

Процесс создается при запуске программы (EXE-файла). Одновременно создается одна нить процесса (должен же кто-то работать!). Создание процесса выполняется с помощью API-функции CreateProcess. Основными параметрами при вызове этой функции являются следующие.

Имя файла запускаемой программы.

Командная строка, передаваемая процессу при запуске.

Атрибуты защиты для создаваемых процесса и нити. И процесс, и нить являются объектами ядра Windows и в этом качестве могут быть защищены от несанкционированного доступа (например, от попыток других процессов вмешаться в работу данного процесса).

Различные флаги, уточняющие режим создания процесса. Среди них следует отметить класс приоритета процесса, флаг отладочного режима (при этом система будет уведомлять процесс-родитель о действиях порожденного процесса), а также флаг создания приостановленного процесса, который не начнет работать, пока не будет вызвана функция возобновления работы.

Блок среды процесса.

Текущий каталог процесса.

Параметры первого окна, которое будет открыто при запуске процесса.

Адрес блока информации, через который функция возвращает родительскому процессу четыре числа: идентификатор созданного процесса, идентификатор нити, хэндл процесса и хэндл нити.

Если процесс успешно создан, функция CreateProcess возвращает ненулевое значение.

Класс приоритета процесса используется при определении приоритетов его нитей. Подробнее об этом в п. 4.5.3.

Хэндл объекта ядра Windows (в данном случае процесса или нити) позволяет выполнять различные операции с этим объектом. Подробнее о хэндлах и идентификаторах см. п. 4.5.4.

После создания процесса его единственная нить начинает выполнять программу процесса, работая параллельно с нитями других запущенных процессов. Если логика работы программы предполагает параллельное выполнение каких-либо действий в рамках одного процесса, то могут быть созданы дополнительные нити. Для этого используется функция CreateThread. Ее основные параметры следующие:

атрибуты защиты для создаваемой нити;

размер стека нити;

стартовый адрес нити (обычно нить связывается с выполнением одной из функций, описанных в программе процесса, при этом в качестве стартового адреса указывается имя функции);

параметр-указатель, позволяющий передать нити при запуске некоторое значение в качестве аргумента;

флаг создания нити в приостановленном состоянии;

указатель на переменную, в которой функция должна возвратить идентификатор созданной нити.

Возвращаемым значением функции CreateThread является хэндл созданной нити либо NULL, если создать нить не удалось.

Прекрасным примером многонитевой программы является Microsoft Word. В то время как основная нить обрабатывает ввод с клавиатуры, отдельная нить может динамически рассчитывать разбиение текста на страницы, еще одна нить может в это же время выполнять печать документа или его сохранение.

Для завершения работы нити используется вызов функции ExitThread. Для завершения работы всего процесса любая из его нитей может вызвать функцию ExitProcess. Единственным параметром каждой из этих функций является код завершения нити или процесса.

Завершение процесса приводит к освобождению всех ресурсов, которыми владел процесс: памяти, открытых файлов и т.п.

При завершении процесса завершаются все его нити. И наоборот, при завершении последней нити процесса завершается и сам процесс.

Не слишком широко известно, что нить не является самой мелкой единицей организации вычислений. На самом деле Windows позволяет создать внутри нити несколько волокон (fiber), которые в обычной терминологии могут быть описаны как сопрограммы или как задачи с невытесняющей диспетчеризацией, работающие в рамках одной и той же задачи с вытесняющей диспетчеризацией. Переключение волокон выполняется только явно, с помощью функции SwitchToFiber. Об использовании сопрограмм см. /15/.

4.5.3. Планировщик Windows

Задачей планировщика является выбор очередной нити для выполнения. Планировщик вызывается в трех случаях:

если истекает квант времени, выделенный текущей нити;

если текущая нить вызвала блокирующую функцию (например, WaitForMultipleObjects или ReadFile) и перешла в состояние ожидания;

если нить с более высоким приоритетом пробудилась от ожидания или была только что запущена.

Для выбора нити используется алгоритм приоритетной очереди. Для каждого уровня приоритета система ведет очередь активных нитей (т.е. нитей, находящихся в состоянии готовности). Для выполнения выбирается очередная нить из непустой очереди с самым высоким приоритетом.

Очереди активных нитей пополняются за счет нитей, проснувшихся после состояния ожидания и нитей, вытесненных планировщиком. Как правило, нить помещается в конец очереди. Исключение делается для нити, вытесненной до истечения ее кванта времени более приоритетной нитью. Такая «обиженная» нить ставится в голову очереди.

Значение кванта времени для серверных установок Windows равно обычно 120 мс, для рабочих станций - 20 мс.

Как вы думаете, почему для серверов квант времени больше?

Теперь подробнее о приоритетах. Хотя общая схема их назначения одинакова для всех версий Windows, детали могут разниться. Дальнейшее изложение ориентировано на Windows NT 4.0.

Все уровни приоритета нитей пронумерованы от 0 (самый низкий приоритет) до 31 (самый высокий). Уровни от 16 до 31 называются приоритетами реального времени, они предназначены для выполнения критичных по времени системных операций. Только сама система или пользователь с правами администратора могут использовать приоритеты из этой группы. Уровни от 0 до 15 называются динамическими приоритетами.

В Windows используется двухступенчатая схема назначения приоритетов. При создании процесса ему назначается (а впоследствии может быть изменен самой программой или пользователем) один из четырех классов приоритета, с каждым из которых связано базовое значение приоритета:

Realtime (базовый приоритет 24) - высший класс приоритета, допустимый только для системных процессов, занимающих процессор на очень короткое время;

High (базовый приоритет 13) - класс высокоприоритетных процессов;

Normal (базовый приоритет 8) - обычный класс приоритета, к которому относится большая часть запускаемых прикладных процессов;

Idle (базовый приоритет 4) - низший (буквально - «холостой» или «простаивающий») класс приоритета, характерный для экранных заставок, мониторов производительности и других программ, которые не должны мешать жить более важным программам. Собственно приоритет связывается не с процессом, а с каждой его нитью. Приоритет нити определяется базовым приоритетом процесса, к которому прибавляется относительный приоритет нити - величина от -2 до +2. Относительный приоритет назначается нити при ее создании и может при необходимости изменяться. Имеется также возможность назначить нити критический приоритет (31 для процессов реального времени, 15 для остальных) или холостой приоритет (16 для процессов реального времени, 0 для остальных).

Для нитей процессов реального времени приоритеты являются статическими в том смысле, что система не пытается их изменять по своему усмотрению. Предполагается, что для этой группы процессов соотношение приоритетов должно быть именно таким, как задумал программист.

Для процессов трех низших классов их приоритеты не случайно называются динамическими. Планировщик может изменять приоритеты, а заодно и кванты времени для нитей в ходе их выполнения, чтобы достичь более справедливого распределения процессорного времени. Правила изменения динамических приоритетов следующие.

Когда заблокированная нить дождалась нужного ей события, к приоритету нити прибавляется величина, зависящая от причины ожидания. Эта прибавка может достигать 6 единиц (но приоритет не должен превысить 15), если нить разблокирована вследствие нажатия клавиши или кнопки мыши. Таким способом система стремится уменьшить время реакции на действия пользователя. Всякий раз, когда нить полностью использует свой квант времени, прибавка уменьшается на 1, пока приоритет нити не вернется к своему заданному значению.

Если нить владеет окном переднего плана (т.е. тем, с которым работает пользователь), то ради уменьшения времени реакции планировщик может увеличить квант времени для этой нити с 20 мс до 40 или 60 мс, в зависимости от настроек системы.

Если планировщик обнаруживает, что некоторая нить пребывает в очереди более 3 с, то он повышает ее приоритет аж до 15 и удваивает ее квант. Но эта благотворительность разовая: когда Золушка-нить израсходует увеличенный квант или заблокируется, ее приоритет и квант возвращаются к прежним значениям. Смысл акции понятен: система пытается обеспечить хоть какое-то продвижение даже для низкоприоритетных нитей.


Подобные документы

  • Проектирование ОС Windows 2000, ее архитектура. Процессы и потоки. Уровни запросов на прерывания. Менеджер объектов. Распределение виртуальной памяти. Трансляция виртуальных адресов в физические. Локальный вызов процедуры. Структура сообщения LPC.

    презентация [1,5 M], добавлен 24.01.2014

  • Сущность и принцип работы операционной системы, правила и преимущества ее использования. Возможности различных операционных систем, их сильные и слабые стороны. Сравнительная характеристика систем Unix и Windows NT, их потенциал и выполняемые задачи.

    реферат [10,5 K], добавлен 09.10.2009

  • Три группы компонентов в составе современной операционной системы: ядро (планировщик и драйверы устройств), системные библиотеки, оболочка с утилитами. Типы архитектур ядер операционных систем: монолитное, модульное, гибридное, микро-, экзо-, наноядро.

    курсовая работа [22,1 K], добавлен 27.05.2014

  • Важность операционной системы для мобильных устройств. Популярность операционных систем. Доля LINUX на рынке операционных систем. История OS Symbian, BlackBerry OS, Palm OS. Отличия смартфона от обычного мобильного телефона. Учет ограничений по памяти.

    презентация [477,3 K], добавлен 01.12.2015

  • Назначение и функции операционных систем компьютера. Аппаратные и программные ресурсы ЭВМ. Пакетные ОС. Системы с разделением времени: Multics, Unix. Многозадачные ОС для ПК с графическим интерфейсом: Windows, Linux, Macintosh. ОС для мобильных устройств.

    курсовая работа [53,4 K], добавлен 05.12.2014

  • Характеристика, функции, типы, виды и состав операционных систем. Первая коммерческая система unix system. Операционные системы, основанные на графическом интерфейсе, пи–система, семейство unix. История и основные предпосылки появления ОС Windows.

    курсовая работа [66,9 K], добавлен 18.01.2011

  • Основные классификации операционных систем. Операционные системы семейства OS/2, UNIX, Linux и Windows. Разграничение прав доступа и многопользовательский режим работы. Пользовательский интерфейс и сетевые операции. Управление оперативной памятью.

    реферат [22,8 K], добавлен 11.05.2011

  • Разграничение прав пользователя в операционной системе. Предварительная настройка операционной системы с последующей установкой драйверов для периферийных устройств и системных комплектующих. Классификация операционных систем и периферийных устройств.

    реферат [2,1 M], добавлен 26.10.2022

  • Основные понятия об операционных системах. Виды современных операционных систем. История развития операционных систем семейства Windows. Характеристики операционных систем семейства Windows. Новые функциональные возможности операционной системы Windows 7.

    курсовая работа [60,1 K], добавлен 18.02.2012

  • Эволюция и классификация ОС. Сетевые операционные системы. Управление памятью. Современные концепции и технологии проектирования операционных систем. Семейство операционных систем UNIX. Сетевые продукты фирмы Novell. Сетевые ОС компании Microsoft.

    творческая работа [286,2 K], добавлен 07.11.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.