Теории искусственных нейронных сетей

Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 17.01.2011
Размер файла 487,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, правило Хебба обеспечивает устойчивость сети Хопфилда на заданном наборе относительно небольшого числа ортогональных образов. В следующем пункте мы остановимся на особенностях памяти полученной нейронной сети.

Ассоциативность памяти и задача распознавания образов

Динамический процесс последовательной смены состояний нейронной сети Хопфилда завершается в некотором стационарном состоянии, являющемся локальным минимумом энергетической функции E(S). Невозрастание энергии в процессе динамики приводит к выбору такого локального минимума S, в бассейн притяжения которого попадает начальное состояние (исходный, предъявляемый сети образ) S0. В этом случае также говорят, что состояние S0 находится в чаше минимума S.

При последовательной динамике в качестве стационарного состояния будет выбран такой образ S, который потребует минимального числа изменений состояний отдельных нейронов. Поскольку для двух двоичных векторов минимальное число изменений компонент, переводящее один вектор в другой, является расстоянием Хемминга ? H(S,S0), то можно заключить, что динамика сети заканчивается в ближайшем по Хеммингу локальном минимуме энергии.

Пусть состояние S соответствует некоторому идеальному образу памяти. Тогда эволюцию от состояния S0 к состоянию S можно сравнить с процедурой постепенного восстановления идеального образа S по его искаженной (зашумленной или неполной) копии S0. Память с такими свойствами процесса считывания информации является ассоциативной. При поиске искаженные части целого восстанавливаются по имеющимся неискаженным частям на основе ассоциативных связей между ними.

Ассоциативный характер памяти сети Хопфилда качественно отличает ее от обычной, адресной, компьютерной памяти. В последней извлечение необходимой информации происходит по адресу ее начальной точки (ячейки памяти). Потеря адреса (или даже одного бита адреса) приводит к потере доступа ко всему информационному фрагменту. При использовании ассоциативной памяти доступ к информации производится непосредственно по ее содержанию, т.е. по частично известным искаженным фрагментам. Потеря части информации или ее информационное зашумление не приводит к катастрофическому ограничению доступа, если оставшейся информации достаточно для извлечения идеального образа.

Поиск идеального образа по имеющейся неполной или зашумленной его версии называется задачей распознавания образов. В нашей лекции особенности решения этой задачи нейронной сетью Хопфилда будут продемонстрированы на примерах, которые получены с использованием модели сети на персональной ЭВМ.

В рассматриваемой модели сеть содержала 100 нейронов, упорядоченных в матрицу 10 x 10. Сеть обучалась по правилу Хебба на трех идеальных образах - шрифтовых начертаниях латинских букв M, A и G (Рис. 8.3.). После обучения нейросети в качестве начальных состояний нейронов предъявлялись различные искаженные версии образов, которые в дальнейшем эволюционировали с последовательной динамикой к стационарным состояниям.

Рис. 8.3. Идеальные образы обучающей выборки. Темные квадратики соответствуют нейронам в состоянии +1, светлые -1.

Для каждой пары изображений на рисунках этой страницы, левый образ является начальным состоянием, а правый - результатом работы сети - достигнутым стационарным состоянием.

Рис. 8.4. (A) - Один из идеальных образов является стационарной точкой. (Б) - Образ, заданный другим шрифтом, удачно распознается.

Рис. 8.5. (A,Б) - Образы с информационным шумом удачно распознаются.

Рис. 8.6. Образ может быть распознан по небольшому фрагменту.

Рис. 8.7. (A) - Пример релаксации к ложному образу. (Б) - Добавление информации к левой картинке (А) приводит к правильному распознаванию.

Образ на Рис. 8.4.(А) был выбран для тестирования адекватности поведения на идеальной задаче, когда предъявленное изображение точно соответствует информации в памяти. В этом случае за один шаг было достигнуто стационарное состояние. Образ на Рис. 8.4.(Б) характерен для задач распознавания текста независимо от типа шрифта. Начальное и конечное изображения безусловно похожи, но попробуйте это объяснить машине!

Задания на Рис. 8.5 характерны для практических приложений. Нейросетевая система способна распознавать практически полностью зашумленные образы. Задачи, соответствующие Рис. 8.6. и 8.7.(Б), демонстрируют замечательное свойство сети Хопфилда ассоциативно узнавать образ по его небольшому фрагменту. Важнейшей особенностью работы сети является генерация ложных образов. Пример релаксации к ложному образу показан на Рис. 8.7.(А). Ложный образ является устойчивым локальным экстремумом энергии, но не соответствует никакому идеальному образу. Он является в некотором смысле собирательным образом, наследующим черты идеальных собратьев. Ситуация с ложным образом эквивалентна нашему "Где-то я уже это видел".

В данной простейшей задаче ложный образ является "неверным" решением, и поэтому вреден. Однако, можно надеяться, что такая склонность сети к обобщениям наверняка может быть использована. Характерно, что при увеличении объема полезной информации (сравните Рис. 8.7.(А) и (Б)), исходное состояние попадает в область притяжения требуемого стационарного состояния, и образ распознается.

Несмотря на интересные качества, нейронная сеть в классической модели Хопфилда далека от совершенства. Она обладает относительно скромным объемом памяти, пропорциональным числу нейронов сети N, в то время как системы адресной памяти могут хранить до 2N различных образов, используя N битов. Кроме того, нейронные сети Хопфилда не могут решить задачу распознавания, если изображение смещено или повернуто относительно его исходного запомненного состояния. Эти и другие недостатки сегодня определяют общее отношение к модели Хопфилда, скорее как к теоретическому построению, удобному для исследований, чем как повседневно используемому практическому средству.

На следующих лекциях мы рассмотрим развитие модели Хопфилда, модификации правила Хебба, увеличивающие объем памяти, а также приложения вероятностных обобщений модели Хопфилда к задачам комбинаторной оптимизации.

ЛЕКЦИЯ 9. Обобщения и применения модели Хопфилда

Вероятностные обобщения модели Хопфилда и статистическая машина Больцмана. Двунаправленная ассоциативная память Коско. Представление информации в сети Хопфилда, решающей задачу комбинаторной оптимизации. Нейровычисления и нейроматематика. Принципы организации вычислительных процессов в нейроЭВМ.

Модификации правила Хебба.

Ограничения емкости синаптической памяти, а также проблема ложной памяти классической нейронной сети в модели Хопфилда, обученной по правилу Хебба, привели к появлению целого ряда исследований, целью которых было снятие этих ограничений. При этом главный упор делался на модификацию правил обучения.

Матрица Хебба с ортогонализацией образов.

На предыдущей лекции было установлено, что ортогональность образов обучающей выборки является весьма благоприятным обстоятельством, так как в этом случае можно показать их устойчивое сохранение в памяти. В случае точной ортогональности достигается максимальная емкость памяти, равная N - максимально возможному числу ортогональных образов из N компонент.

На этом свойстве ортогональных образов и основан один из наиболее часто используемых способов улучшения правила Хебба: перед запоминанием в нейронной сети исходные образы следует ортогонализовать. процедура ортогонализации приводит к новому виду матрицы памяти:

где B-1 - матрица, обратная к матрице B:

Такая форма матрицы памяти обеспечивает воспроизведение любого набора из p<N образов. Однако, существенным недостатком этого метода является его нелокальность: обучение связи между двумя нейронами требует знания состояний всех других нейронов. Кроме того, прежде чем начать обучение, необходимо наперед знать все обучающие образы. Добавление нового образа требует полного переобучения сети. Поэтому данный подход весьма далек от исходных биологических оснований сети Хопфилда-Хебба, хотя на практике приводит к заметным улучшениям ее функционирования.

Отказ от симметрии синапсов.

Другим подходом для улучшения правила Хебба является отказ от симметрии синаптических соединений. Матрица памяти может выбираться в следующей форме:

Элементы матрицы Pij из множества {0,1} управляют наличием или отсутствием связи от нейрона i к нейрону j.

Увеличение емкости памяти в такой модели в принципе может быть достигнуто за счет появления новых степеней свободы, связанных с матрицей P. В общем случае, однако, трудно предложить алгоритм выбора этой матрицы. Следует также отметить, что динамическая система с несимметричной матрицей не обязана быть устойчивой

Алгоритмы разобучения (забывания).

Возможность забывания ненужной, лишней информации является одним из замечательных свойств биологической памяти. Идея приложения этого свойства к искусственной нейросети Хопфилда “удивительно” проста: при запоминании образов обучающей выборки вместе с ними запоминаются и ложные образы. Их-то и следует “забыть”.

Соответствующие алгоритмы получили название алгоритмов разобучения. Суть их сводится к следующему.

На первой фазе происходит обучение сети по стандартному правилу Хебба. Память наполняется истинными образами и множеством ложной информации. На следующей фазе (фазе разобучения) сети предъявляется некоторый (случайный) образ ?(0). Сеть эволюционирует от состояния ?(0) к некоторому состоянию ?(f), которое при большом объеме обучающей выборки чаще всего оказывается ложным. Теперь матрица связей может быть поправлена, с целью уменьшить глубину минимума энергии, отвечающего этому ложному состоянию:

В качестве степени забывания ? выбирается некоторое малое число, что гарантирует незначительное ухудшение полезной памяти, если состояние ?(f) не окажется ложным. После нескольких “сеансов забывания” свойства сети улучшаются (J.J.Hopfield et al, 1983).

Данная процедура далека от формального теоретического обоснования, однако на практике приводит к более регулярной энергетической поверхности нейронной сети и к увеличению объема бассейнов притяжения полезных образов.

Двунаправленная ассоциативная память.

Дальнейшее развитие нейросетевые архитектуры ассоциативной памяти получили в работах Барта Коско (B.Kosko, 1987). Им была предложена модель гетероассоциативной памяти, в которой запоминаются ассоциации между парами образов. Запоминание происходит так, что при предъявлении сети одного из образов восстанавливается второй член пары.

Запоминание образов через ассоциаций между ними весьма характерно для памяти человека. Вспоминание (воспроизведение) нужной информации может происходить путем построения цепочки ассоциаций. Так, например, наблюдая на улице столб дыма из заводской трубы, вы вполне можете вспомнить, что оставили дома чайник на включенной плите.

Двунаправленная сеть в модели Коско состоит из двух слоев нейронов (слой A и слой B). Связи между слоями устроены таким образом, что каждый нейрон одного слоя связан с каждым нейроном другого слоя. Внутри слоев связи между нейронами отсутствуют, число нейронов на каждом слое может быть различным. Для запоминания предназначаются пары образов (?a, ?b)(?), ?=1..p. Обучение задается правилом Хебба:

Динамика системы является параллельной и происходит по формулам:

Здесь {aj}, j=1..Na - состояния активности нейронов слоя A, {bi}, i=1..Nb - слоя B. В качестве нейронной функции f может использоваться пороговая функция или сигмоид. В частном случае одинаковых слоев и одинаковых образов в обучающих парах сеть Коско полностью эквивалентна модели Хопфилда.

В процессе итерационной динамики состояния нейронов слоя A вызывают изменения состояний нейронов слоя B, те, в свою очередь, модифицируют состояния нейронов A, и так далее. Итерации, также как и в сети Хопфилда, сходятся, поскольку матрица связей симметрична. При предъявлении сети только образа на слое A будет восстановлен также и соответствующий образ на слое B, и наоборот.

Сеть Коско обладает также и свойством автоассоциативности: если одновременно известны некоторые фрагменты образов на слое A и B, то в процессе динамики будут одновременно восстановлены оба образа пары.

Детерминированная и вероятностная нейродинамика.

На предыдущей лекции была рассмотрена классическая модель Хопфилда с двоичными нейронами. Изменение состояний нейронов во времени описывалось детерминированными правилами, которые в заданный момент времени однозначно определяли степень возбуждения всех нейронов сети.

Эволюция в пространстве состояний сети Хопфилда завершается в стационарной точке - локальном минимуме энергии. В этом состоянии любые изменения активности любого нейрона запрещены, так как они приводят к увеличению энергии сети. Если продолжать проводить аналогию между классической нейродинамикой и статистическими (динамическими) системами в физике, то можно ввести понятие температуры статистического ансамбля нейронов. Поведение сети Хопфилда соответствует нулевой температуре (полному замерзанию) статсистемы.

При строго нулевой температуре (T=0) статистический Больцмановский фактор ?exp(-?E/T) делает невозможным увеличение энергии. Переход к ненулевым температурам (T>0) значительно обогащает динамику системы, которая теперь может с ненулевой вероятностью делать переходы с возрастанием E и посещать новые статистические состояния.

Вернемся к нейронным сетям. Для некоторого нейрона возможность перехода в состояние с большей энергией означает отказ от следования детерминированному закону изменения состояний. При ненулевых температурах состояние нейрона определяется вероятностным образом:

Si(t+1) = sign( hi(t)-?), с вероятностью Pi

Si(t+1) = - sign( hi(t)-?), с вероятностью (1-Pi)

Вероятность перехода в состояние с возрастанием энергии тем меньше, чем больше разница в энергиях конечного E2 и начального E1 состояний. В статистических системах эта вероятность определяется формулой Больцмана:

Нетрудно заметить, что в пределе низких температур (T?0) вероятность P стремится к единице, и динамика переходит в обычную детерминированную нейродинамику.

При высоких температурах (T >> ? E) вероятность P=1/2, т.е. изменение состояния нейрона никак не связано ни с его предыдущим состоянием, ни со значением “нейронного поля” h(t). Состояния сети меняются полностью хаотично, и ситуация ничем не напоминает систему с памятью.

Динамика нейронной системы при ненулевых температурах уже не является Ляпуновской, так как энергия сети не обязана теперь уменьшаться со временем. При этом, вообще говоря, полной стабилизации состояния сети не происходит - состояние будет продолжать испытывать изменения, при которых ?E ?T.

Если теперь постепенно уменьшать температуру сети, большое увеличение энергии становится все менее вероятным, и система замерзает в окрестности минимума. Очень важно отметить, что замерзание с большой вероятностью будет происходить в чаше самого глубокого и широкого минимума, т.е. сеть преимущественно достигает глобального минимума энергии.

Процесс медленного остывания и локализации состояния в области низких энергий аналогичен процессу отжига металлов, применяемому в промышленности для их закалки, поэтому он получил название имитации отжига.

Введение отличной от нуля температуры в динамику нейросети улучшает свойства памяти, так как система перестает “чувствовать” мелкие локальные минимумы, отвечающие ложным образам. Однако за это приходится платить неточностями при воспроизведении образов вследствие отсутствия полной стабилизации системы в точке минимума.

Применения сети Хопфилда к задачам комбинаторной оптимизации.

Ассоциативность памяти нейронной сети Хопфилда не является единственным ее достоинством, которое используется на практике. Другим важным свойством этой архитектуры является уменьшение ее функции Ляпунова в процессе нейродинамики. Следовательно, нейросеть Хопфилда можно рассматривать, как алгоритм оптимизации целевой функции в форме энергии сети.

Класс целевых функций, которые могут быть минимизированы нейронной сетью достаточно широк: в него попадают все билинейные и квадратичные формы с симметричными матрицами. С другой стороны, весьма широкий круг математических задач может быть сформулирован на языке задач оптимизации. Сюда относятся такие традиционные задачи, как дифференциальные уравнения в вариационной постановке; задачи линейной алгебры и системы нелинейных алгебраических уравнений, где решение ищется в форме минимизации невязки, и другие.

Исследования возможности использования нейронных сетей для решения таких задач сегодня сформировали новую научную дисциплину - нейроматематику.

Применение нейронных сетей для решения традиционных математических задач выглядит весьма привлекательным, так нейропроцессоры являются системами с предельно высоким уровнем параллельности при обработке информации. В нашей книге мы рассмотрим использование нейро-оптимизаторов для несколько иных задач, а именно, задач комбинаторной оптимизации.

Многие задачи оптимального размещения и планирования ресурсов, выбора маршрутов, задачи САПР и иные, при внешней кажущейся простоте постановки имеют решения, которые можно получить только полным перебором вариантов. Часто число вариантов быстро возрастает с числом структурных элементов N в задаче (например, как N! - факториал N), и поиск точного решения для практически полезных значений N становится заведомо неприемлемо дорогим. Такие задачи называют неполиномиально сложными или NP-полными. Если удается сформулировать такую задачу в терминах оптимизации функции Ляпунова, то нейронная сеть дает весьма мощный инструмент поиска приближенного решения.

Рассмотрим классический пример NP-полной проблемы - так называемую задачу коммивояжера (бродячего торговца). На плоскости расположены N городов, определяемые парами их географических координат: (xi,yi), i=1..N. Некто должен, начиная с произвольного города, посетить все эти города, при этом в каждом побывать ровно один раз. Проблема заключается в выборе маршрута путешествия с минимально возможной общей длиной пути.

Полное число возможных маршрутов равно , и задача поиска кратчайшего из них методом перебора весьма трудоемка. Приемлемое приближенное решение может быть найдено с помощью нейронной сети, для чего, как уже указывалось, требуется переформулировать задачу на языке оптимизации функции Ляпунова (J.J.Hopfield, D.W.Tank, 1985).

Обозначим названия городов заглавными буквами (A, B, C, D...). Произвольный маршрут может быть представлен в виде таблицы, в которой единица в строке, отвечающей данному городу, определяет его номер в маршруте.

Таб. 9.1. Маршрут B-A-C-D ...

Номер

Город

1

2

3

4

...

A

0

1

0

0

...

B

1

0

0

0

...

C

0

0

1

0

...

D

0

0

0

1

...

...

...

...

...

...

...

Сопоставим теперь клетке таблицы на пересечении строки X и столбца i нейрон Sxi из {0,1}. Возбужденное состояние данного нейрона сигнализирует о том, что город X в маршруте следует посещать в i-тую очередь. Составим теперь целевую функцию E(S) задачи поиска оптимального маршрута. Она будет включать 4 слагаемых:

Первые три слагаемых отвечают за допустимость маршрута: каждый город должен быть посещен не более чем один раз (в каждой строке матрицы имеется не более одной единицы), под каждым номером должно посещаться не более одного города (в каждом столбце - не более одной единицы) и, кроме того, общее число посещений равно числу городов N (в матрице всего имеется ровно N единиц):

Видно, что каждое из этих трех слагаемых обращается в нуль на допустимых маршрутах, и принимает значения больше нуля на недопустимых. Последнее, четвертое слагаемое минимизирует длину маршрута:

Здесь за dXY обозначено расстояние между городами X и Y. Заметим, что отрезок пути X-Y включается в сумму только тогда, когда город Y является относительно города X либо предыдущим, либо последующим. Множители ? , ? , ? и ? имеют смысл относительных весов слагаемых.

Общий вид функции Ляпунова сети Хопфилда дается выражением (см. предыдущую лекцию):

Полученная целевая функция из четырех слагаемых представляется в форме функции Ляпунова, если выбрать значения весов и порогов сети в следующем виде:

Теперь можно заменить обучение Хебба прямым заданием указанных весов и порогов для нейросети, и динамика полученной системы будет приводить к уменьшению длины маршрута коммивояжера. В этой задаче целесообразно использовать вероятностную динамику с имитацией отжига, так как наибольший интерес представляет глобальный минимум энергии.

Хопфилдом и Тэнком изложенная модель была опробована в вычислительном эксперименте. Нейронной сети удавалось находить близкие к оптимальным решения за приемлемые времена даже для задач с несколькими десятками городов. В дальнейшем последовало множество публикаций о разнообразных применениях нейросетевых оптимизаторов. В завершении лекции рассмотрим одно из таких применений - задачу о расшифровке символьного кода.

Пусть имеется некоторое (достаточно длинное) текстовое сообщение, написанное на некотором языке с использованием алфавита A, B, C ... z и символа “пробел”, отвечающего за промежуток между словами. Данное сообщение закодировано таким образом, что каждому символу, включая пробел, сопоставлен некоторый символ из ряда i,j,k, .... Требуется расшифровать сообщение.

Данная задача также относится к числу NP-полных, общее число ключей шифра имеет факториальную зависимость от числа символов в алфавите. Приближенное нейросетевое решение может быть основано на том факте, что частоты появления отдельных символов и конкретных пар символов в каждом языке имеют вполне определенные значения (например, в русском языке частота появления буквы “а” заметно превосходит частоту появления буквы “у”, слог “во” появляется довольно часто, а, например, сочетание “йщ” вовсе не возможно).

Частоты появления символов Pi и их пар Pij в закодированном сообщении можно вычислить непосредственно. Имея, далее, в распоряжении значения PA частот появления символов языка и их пар PAB , следует отождествить их с вычисленными значениями для кода. Наилучшее совпадение и даст требуемый ключ.

Целевая функция этой задачи содержит пять слагаемых. Первые три слагаемых полностью совпадают с тремя первыми членами в выражении для энергии в задаче о коммивояжере. Они определяют допустимость ключа (каждому символу языка соответствует один символ кода). Остальные слагаемые отвечают за совпадение частот отдельных символов и частот пар в коде и языке.

Полное выражение для целевой функции имеет вид:

Целевая функция также, как и для задачи коммивояжера, приводится к виду функции Ляпунова, после чего нейронная сеть выполняет требуемую расшифровку.

Задачи

1. Непосредственным вычислением убедиться, что все образы обучающей выборки являются устойчивыми состояниями сети с ортогонализацией матрицы Хебба.

2. Для задачи коммивояжера получить представление E(S) целевой функции в форме функции Ляпунова.

3. Вывести энергетическую функцию сети Хопфилда для задачи оптимального размещения смесей кода и данных в многопроцессорной архитектуре “гиперкуб”.

Решение (Терехов С.А., Олейников П.В., 1994). В многопроцессорной ЭВМ этой архитектуры процессоры расположены в вершинах многомерного куба. Каждый процессор связан с ближайшими к нему узлами. На каждый процессор назначается некоторый фрагмент кода программы и локальные данные. В процессе вычислений процессоры обмениваются информацией, при этом скорость выполнения программ замедляется. Время, затрачиваемое на пересылку сообщения тем больше, чем дальше обменивающиеся процессоры расположены друг от друга. Требуется так разместить смеси кода и данных по реальным процессорам, чтобы максимально снизить потери на обмены информацией.

Как и в задаче коммивояжера, обозначим процессоры заглавными буквами, а номера смесей - латинскими индексами. Если dXY - расстояние между процессорами, измеренное вдоль ребер гиперкуба (Хеммингово расстояние), а Dij - объем передаваемой информации между смесями i и j, то искомое решение должно минимизировать сумму SUMdXYDij. Поэтому целевая функция представляется в виде:

E(S) = E1 + E2 + E3 + (?/2) SUMi SUMj SUMX SUMY (SXiSYj dXY Dij)

Это выражение далее приводится к форме функции Ляпунова. Численные эксперименты с гиперкубами размерности 3, 4 и 5 показывают, что применение нейросетевого подхода позволяет получить уменьшение числа информационных обменов (и, соответственно, повысить производительность ЭВМ) для некоторых задач до 1,5 раз.

ЛЕКЦИЯ 10. НЕОКОГНИТРОН Фукушимы

КОГНИТРОН и НЕОКОГНИТРОН Фукушимы. Правила обучения. Инвариантное распознавание образов НЕОКОГНИТРОНОМ.

В этой лекции мы переходим к рассмотрению некоторых относительно новых современных архитектур, среди которых прежде всего следует отметить НЕОКОГНИТРОН и его модификации. В следующей лекции будут обсуждаться варианты сетей, построенных на теории адаптивного резонанса (АРТ).

КОГНИТРОН: самоорганизующаяся многослойная нейросеть.

Создание КОГНИТРОНА (K.Fukushima, 1975) явилось плодом синтеза усилий нейрофизиологов и психологов, а также специалистов в области нейрокибернетики, совместно занятых изучением системы восприятия человека. Данная нейронная сеть одновременно является как моделью процессов восприятия на микроуровне, так и вычислительной системой, применяющейся для технических задач распознавания образов.

КОГНИТРОН состоит из иерархически связанных слоев нейронов двух типов - тормозящих и возбуждающих. Состояние возбуждения каждого нейрона определяется суммой его тормозящих и возбуждающих входов. Синаптические связи идут от нейронов одного слоя (далее слоя 1) к следующему (слою 2). Относительно данной синаптической связи соответствующий нейрон слоя 1 является пресинаптическим, а нейрон второго слоя - постсинаптическим. Постсинаптические нейроны связаны не со всеми нейронами 1-го слоя, а лишь с теми, которые принадлежат их локальной области связей. Области связей близких друг к другу постсинаптических нейронов перекрываются, поэтому активность данного пресинаптического нейрона будет сказываться на все более расширяющейся области постсинаптических нейронов следующих слоев иерархии.

Вход возбуждающего постсинаптического нейрона (на Рис. 10.1 - нейрон i) определяется отношением суммы E его возбуждающих входов (a1, a2 и a3) к сумме I тормозящих входов (b1 и вход от нейрона X):

где u - возбуждающие входы с весами a, v-тормозящие входы с весами b. Все веса имеют положительные значения. По значениям E и I вычисляется суммарное воздействие на i-й нейрон: neti =((1+E)/(1+I))-1 . Его выходная активность ui затем устанавливается равной neti, если neti > 0. В противном случае выход устанавливается равным нулю. Анализ формулы для суммарного воздействия показывает, что при малом торможении I оно равно разности возбуждающего и тормозящего сигналов. В случае же когда оба эти сигнала велики, воздействие ограничивается отношением. Такие особенности реакции соответствуют реакциям биологических нейронов, способных работать в широком диапазоне воздействий.

Рис. 10.1. Постсинаптический нейрон i слоя 2 связан с тремя нейронами в области связей (1,2 и 3) слоя 1 и двумя тормозящими нейронами (показаны темным цветом). Тормозящий нейрон X реализует латеральное торможение в области конкуренции нейрона i.

Пресинаптические тормозящие нейроны имеют ту же область связей, что и рассматриваемый возбуждающий постсинаптический нейрон i. При этом веса таких тормозящих нейронов (c1, c2 и c3) являются заданными и не изменяются при обучении. Их сумма равна единице, таким образом, выход тормозного пресинаптического нейрона равен средней активности возбуждающих пресинаптических нейронов в области связей:

Обучение весов возбуждающих нейронов происходит по принципу "победитель забирает все" в области конкуренции - некоторой окрестности данного возбуждающего нейрона. На данном шаге модифицируются только веса ai нейрона с максимальным возбуждением:

где cj - тормозящий вес связи нейрона j в первом слое, uj - состояние его возбуждения, q - коэффициент обучения. Веса тормозящего нейрона i второго слоя модифицируются пропорционально отношению суммы возбуждающих входов к сумме тормозящих входов:

В случае, когда победителя в области конкуренции (на слое 2) нет, как это имеет место, например в начале обучения, веса подстраиваются по другим формулам:

Данная процедура обучения приводит к дальнейшему росту возбуждающих связей активных нейронов и торможению пассивных. При этом веса каждого из нейронов в слое 2 настраиваются на некоторый образ, часто предъявляемый при обучении. Новое предъявление этого образа вызовет высокий уровень возбуждения соответствующего нейрона, при появлении же других образов, его активность будет малой и будет подавлена при латеральном торможении.

Веса нейрона X, осуществляющего латеральное торможение в области конкуренции, являются немодифицируемыми, их сумма равна единице. При этом во втором слое выполняются итерации, аналогичные конкурентным итерациям в сети Липпмана-Хемминга, рассмотренной нами в 7 лекции.

Отметим, что перекрывающиеся области конкуренции близких нейронов второго слоя содержат относительно небольшое число других нейронов, поэтому конкретный нейрон-победитель не может осуществить торможение всего второго слоя. Следовательно, в конкурентной борьбе могут выиграть несколько нейронов второго слоя, обеспечивая более полную и надежную переработку информации.

В целом КОГНИТРОН представляет собой иерархию слоев, последовательно связанных друг с другом, как было рассмотрено выше для пары слой 1 - слой 2. При этом нейроны слоя образуют не одномерную цепочку, как на Рис. 10.1, а покрывают плоскость, аналогично слоистому строению зрительной коры человека. Каждый слой реализует свой уровень обобщения информации. Входные слои чувствительны к отдельным элементарным структурам, например, линиям определенной ориентации или цвета. Последующие слои реагируют уже на более сложные обобщенные образы. В самом верхнем уровне иерархии активные нейроны определяют результат работы сети - узнавание определенного образа. Для каждого в значительной степени нового образа картинка активности выходного слоя будет уникальной. При этом она сохранится и при предъявлении искаженной или зашумленной версии этого образа. Таким образом, обработка информации КОГНИТРОНОМ происходит с формированием ассоциаций и обобщений.

Автором КОГНИТРОНА Фукушимой эта сеть применялась для оптического распознавания символов - арабских цифр. В экспериментах использовалась сеть с 4-мя слоями нейронов, упорядоченными в матрицы 12 x 12 с квадратной областью связей каждого нейрона размером 5 x 5 и областью конкуренции в форме ромба с высотой и шириной 5 нейронов. Параметры обучения были равны q=16, q'=2. В результате было получено успешное обучение системы на пяти образах цифр (аналогичных картинкам с буквами, которые мы рассматривали для сети Хопфилда), при этом потребовалось около 20 циклов обучения для каждой картинки.

Рис. 10.2. Смещенные друг относительно друга "одинаковые" образы требуют для установления их "одинаковости" инвариантного относительно произвольных сдвигов характера распознавания.

Несмотря на успешные применения и многочисленные достоинства, как то соответствие нейроструктуры и механизмов обучения биологическим моделям, параллельность и иерархичность обработки информации, распределенность и ассоциативность памяти и др., КОГНИТРОН имеет и свои недостатки. По-видимому, главным из них является не способность этой сети распознавать смещенные или повернутые относительно их исходного положения образы. Так, например, две картинки на Рис. 10.2 с точки зрения человека несомненно являются образами одной и той же цифры 5, однако КОГНИТРОН не в состоянии уловить это сходство.

О распознавании образов независимо от их положения, ориентации, а иногда и размера и других деформации, говорят как об инвариантном относительно соответствующих преобразований распознавании. Дальнейшие исследования группы под руководством К.Фукушимы привели к развитию КОГНИТРОНА и разработке новой нейросетевой парадигмы - НЕОКОГНИТРОНА, который способен к инвариантному распознаванию.

НЕОКОГНИТРОН и инвариантное распознавание образов.

Новая работа Фукушимы была опубликована в 1980 г. НЕОКОГНИТРОН хотя и имеет много общих черт с его прародителем КОГНИТРОНОМ, но одновременно он претерпел значительные изменения и усложнения, в соответствии с появлением новых нейробиологических данных (Hubel D.H., Wiesel T.N., 1977, и др.).

НЕОКОГНИТРОН состоит из иерархии нейронных слоев, каждый из которых состоит из массива плоскостей. Каждый элемент массива состоит из пары плоскостей нейронов. Первая плоскость состоит из так называемых простых нейроклеток, которые получают сигналы от предыдущего слоя и выделяют определенные образы. Эти образы далее обрабатываются сложными нейронами второй плоскости, задачей которых является сделать выделенные образы менее зависимыми от их положения.

Нейроны каждой пары плоскостей обучаются реагировать на определенный образ, представленный в определенной ориентации. Для другого образа или для нового угла поворота образа требуется новая пара плоскостей. Таким образом, при больших объемах информации, НЕОКОГНИТРОН представляет собой огромную структуру с большим числом плоскостей и слоев нейронов.

Простые нейроны чувствительны к небольшой области входного образа, называемой рецептивной областью (или что тоже самое, областью связей). Простой нейрон приходит в возбужденное состояние, если в его рецептивной области возникает определенный образ. Рецептивные области простых клеток перекрываются и покрывают все изображение. Сложные нейроны получают сигналы от простых клеток, при этом для возбуждения сложного нейрона достаточно одного сигнала от любого простого нейрона. Тем самым, сложная клетка регистрирует определенный образ независимо от того, какой из простых нейронов выполнил детектирование, и, значит, независимо от его расположения.

По мере распространения информации от слоя слою картинка нейронной активности становится все менее чувствительной к ориентации и расположению образа, и, в определенных пределах, к его размеру. Нейроны выходного слоя выполняют окончательное инвариантное распознавание.

Рис. 10.3. Общая схема НЕОКОГНИТРОНА. Области связей показаны большими белыми кружками, а области конкуренции - маленькими темными.

Обучение НЕОКОГНИТРОНА аналогично уже рассмотренному обучению КОГНИТРОНА. При изменяются только синаптические веса простых клеток. Тормозящие нейроны вместо средней активности нейронов в области связей используют квадратный корень из взвешенной суммы квадратов входов:

Такая формула для активности тормозящей клетки менее чувствительна к размеру образа. После выбора простого нейрона, веса которого будут обучаться, он рассматривается в качестве представителя слоя, и веса всех остальных нейронов будут обучаться по тем же правилам. Таким образом, все простые клетки обучаются одинаково, выдавая при распознавании одинаковую реакцию на одинаковые образы.

Для уменьшения объема обрабатываемой информации рецептивные поля нейронов при переходе со слоя на слой расширяются, а число нейронов уменьшается. В выходном слое на каждой плоскости остается только один нейрон, рецептивное поле которого покрывает все поле образа предыдущего слоя. В целом функционирование НЕОКОГНИТРОНА происходит следующим образом. Копии входного изображения поступают на все плоскости простых клеток первого слоя. Далее все плоскости функционируют параллельно, передавая информацию следующему слою. По достижении выходного слоя, в котором каждая плоскость содержит один нейрон, возникает некоторое окончательное распределение активности. На результат распознавания указывает тот нейрон, активность которого оказалась максимальной. При этом существенно разным входным изображениям будут соответствовать разные результаты распознавания.

НЕОКОГНИТРОН успешно проявил себя при распознавании символов. Нужно отметить, что структура этой сети необычайно сложна, и объем вычислений очень велик, поэтому компьютерные модели НЕОКОГНИТРОНА будут слишком дорогими для промышленных приложений. Возможной альтернативой является, конечно, переход на аппаратные или оптические реализации, однако их рассмотрение находится за рамками этой книги.

ЛЕКЦИЯ 11. Теория адаптивного резонанса

Проблема стабильности - пластичности при распознавании образов. Принцип адаптивного резонанса Стефана Гроссберга и Гейл Карпентер. Нейросетевые архитектуры AРT.

Дилемма стабильности-пластичности восприятия.

Проблема стабильности-пластичности является одной из самых сложных и трудно решаемых задач при построении искусственных систем, моделирующих восприятие. Характер восприятия внешнего мира живыми организмами (и, прежде всего, человеком) постоянно связан с решением дилеммы, является ли некоторый образ "новой" информацией, и следовательно реакция на него должна быть поисково-познавательной, с сохранением этого образа в памяти, либо этот образ является вариантом "старой", уже знакомой картиной, и в этом случае реакция организма должна соответствовать ранее накопленному опыту. Специальное запоминание этого образа в последнем случае не требуется. Таким образом, восприятие одновременно пластично, адаптировано к новой информации, и при этом оно стабильно, то есть не разрушает память о старых образах.

Рассмотренные на предыдущих лекциях нейронные системы не приспособлены к решению этой задачи. Так например, многослойный персептрон, обучающийся по методу обратного распространения, запоминает весь пакет обучающей информации, при этом образы обучающей выборки предъявляются в процессе обучения многократно. Попытки затем обучить персептрон новому образу приведут к модификации синаптических связей с неконтролируемым, вообще говоря, разрушением структуры памяти о предыдущих образах. Таким образом, персептрон не способен к запоминанию новой информации, необходимо полное переобучение сети.

Аналогичная ситуация имеет место и в сетях Кохонена и Липпмана-Хемминга, обучающихся на основе самоорганизации. Данные сети всегда выдают положительный результат при классификации. Тем самым, эти нейронные сети не в состоянии отделить новые образы от искаженных или зашумленных версий старых образов.

Исследования по проблеме стабильности-пластичности, выполненные в Центре Адаптивных Систем Бостонского университета под руководством Стефана Гроссберга, привели к построению теории адаптивного резонанса (АРТ) и созданию нейросетевых архитектур нового типа на ее основе. Мы переходим к рассмотрению общих положений АРТ, выдвинутых С.Гроссбергом в 1976 г. и подробно изложенных в основополагающей работе 1987 г (S.Grossberg, G.Carpenter, 1987).

Принцип адаптивного резонанса.

Привлекательной особенностью нейронных сетей с адаптивным резонансом является то, что они сохраняют пластичность при запоминании новых образов, и, в то же время, предотвращают модификацию старой памяти. Нейросеть имеет внутренний детектор новизны - тест на сравнение предъявленного образа с содержимым памяти. При удачном поиске в памяти предъявленный образ классифицируется с одновременной уточняющей модификацией синаптических весов нейрона, выполнившего классификацию. О такой ситуации говорят, как о возникновении адаптивного резонанса в сети в ответ на предъявление образа. Если резонанс не возникает в пределах некоторого заданного порогового уровня, то успешным считается тест новизны, и образ воспринимается сетью, как новый. Модификация весов нейронов, не испытавших резонанса, при этом не производится.

Важным понятием в теории адаптивного резонанса является так называемый шаблон критических черт (critical feature pattern) информации. Этот термин показывает, что не все черты (детали), представленные в некотором образе, являются существенными для системы восприятия. Результат распознавания определяется присутствием специфичных критических особенностей в образе. Рассмотрим это на примере.

Рис. 11.1. Иллюстрация к понятию критических черт образа.

Обе пары картинок на Рис. 11.1 имеют общее свойство: в каждой из пар черная точка в правом нижнем углу заменена на белую, а белая точка левом нижнем углу - на черную. Такое изменение для нижней пары картинок (на рисунке - пара (b)), очевидно, является не более чем шумом, и оба образа (b) являются искаженными версиями одного и того же изображения. Тем самым, измененные точки не являются для этого образа критическими.

Совершенно иная ситуация имеет место для верхней пары картинок (a). Здесь такое же изменение точек оказывается слишком существенным для образа, так что правая и левая картинки являются различными образами. Следовательно, одна и та же черта образа может быть не существенной в одном случае, и критической в другом. Задачей нейронной сети будет формирование правильной реакции в обоих случаях: "пластичное" решение о появлении нового образа для пары (a) и "стабильное" решение о совпадении картинок (b). При этом выделение критической части информации должно получаться автоматически в процессе работы и обучения сети, на основе ее индивидуального опыта.

Отметим, что в общем случае одного лишь перечисления черт (даже если его предварительно выполнит человек, предполагая определенные условия дальнейшей работы сети) может оказаться недостаточно для успешного функционирования искусственной нейронной системы, критическими могут оказаться специфические связи между несколькими отдельными чертами.

Вторым значительным выводом теории выступает необходимость самоадаптации алгоритма поиска образов в памяти. Нейронная сеть работает в постоянно изменяющихся условиях, так что предопределенная схема поиска, отвечающая некоторой структуре информации, может в дальнейшем оказаться неэффективной при изменении этой структуры. В теории адаптивного резонанса это достигается введением специализированной ориентирующей системы, которая самосогласованно прекращает дальнейший поиск резонанса в памяти, и принимает решение о новизне информации. Ориентирующая система также обучается в процессе работы.

В случае наличия резонанса теория АРТ предполагает возможность прямого доступа к образу памяти, откликнувшемуся на резонанс. В этом случает шаблон критических черт выступает ключем-прототипом для прямого доступа.

Эти и другие особенности теории адаптивного резонанса нашли свое отражение в нейросетевых архитектурах, которые получили такое же название - АРТ.

Нейронная сеть AРT-1.

Имеется несколько разновидностей сетей АРТ. Исторически первой явилась сеть, в дальнейшем получившая название АРТ-1 (S.Grossberg, G.Carpenter, 1987). Эта сеть ориентирована на обработку образов, содержащих двоичную информацию. Дальнейший шаг - архитектура АРТ-2, опубликованная в том же 1987 году (S.Grossberg, G.Carpenter, 1987) - ориентирована на работу как с двоичными, так и с аналоговыми образами. В появившемся относительно недавно сообщении о системе АРТ-3 (G.Carpenter, 1990) говорится о распространении адаптивной резонансной теории Гроссберга и Карпентер на многослойные нейроархитектуры. В нашей лекции мы остановимся на классической сети АРТ-1.

Нейросистема АРТ-1 является классификатором входных двоичных образов по нескольким сформированным сетью категориям. Решение принимается в виде возбуждения одного из нейронов распознающего слоя, в зависимости от степени похожести образа на шаблон критических черт данной категории. Если эта степень похожести невелика, т.е. образ не соответствует ни одной из имеющихся категорий, то для него формируется новый класс, который в дальнейшем будет модифицироваться и уточняться другими образами, формируя свой шаблон критических признаков. Для описания новой категории отводится новый, ранее не задействованный нейрон в слое распознавания.

Полное описание структуры сети адаптивного резонанса и теории ее работы, представленное в оригинальной публикации Гроссберга и Карпентер, является весьма громоздким, поэтому в своем изложении мы будем следовать более поздней книге Ф.Уоссермена , дополнив ее общим описанием особенностей АРТ-2 и новой архитектуры АРТ-3.

Сеть АРТ-1 состоит из пяти функциональных модулей (Рис. 11.2): двух слоев нейронов - слоя сравнения и слоя распознавания, и трех управляющих специализированных нейронов - сброса, управления 1 и управления 2.

Рис. 11.2. Общая схема нейронной сети АРТ-1.

Начальное значение нейрона управления 1 полагается равным единице: G1=1. Входной двоичный вектор X поступает на слой сравнения, который первоначально пропускает его без изменения, при этом выходной вектор слоя сравнения C=X. Это достигается применением так называемого правила 2/3 для нейронов слоя сравнения. Каждый из нейронов этого слоя имеет три двоичных входа - сигнал от соответствующей компоненты вектора X, сигнал от нейрона управления 1 и сигнал обратной связи из слоя распознавания P (который в начальный момент равен нулю). Для активации нейрона в слое сравнения требуется, чтобы по крайней мере два из трех сигналов были равны единице, что и достигается в начальный момент входом от управления 1 и активными компонентами вектора X.

Выработанный слоем сравнения сигнал C поступает на входы нейронов слоя распознавания. Каждый нейрон слоя распознавания имеет вектор весов bj - действительных чисел, при этом возбуждается только один нейрон этого слоя, вектор весов которого наиболее близок к C. Это может быть достигнуто, например, за счет механизма латерального торможения типа "Победитель забирает все" (Лекция 7). Выход нейрона-победителя устанавливается равным единице, остальные нейроны полностью заторможены. Сигнал обратной связи от нейрона-победителя поступает обратно в слой сравнения через синаптические веса T. Вектор T, по существу, является носителем критических черт категории, определяемой выигравшим нейроном.

Выход нейрона управления 1 равен единице, только когда входной образ X имеет ненулевые компоненты, то есть этот нейрон выполняет функцию детекции факта поступления образа на вход. Однако, когда возникает ненулевой отклик нейронов слоя распознавания R, значение управления 1 зануляется G1=0.

Сигнал нейрона управления 2 также устанавливается на единицу при ненулевом векторе X. Задачей этого нейрона является погашение активность на слое распознавания, если в сеть не поступило никакой информации.

Итак, при генерации отклика R слоя распознавания выход G1=0, и теперь нейроны слоя сравнения активируются сигналами образа X и отклика R. Правило двух третей приводит к активации только тех нейронов слоя сравнения, для которых и X, и R являются единичными. Таким образом, выход слоя сравнения C теперь уже не равен в точности X, а содержит лишь те компоненты X, которые соответствуют критическим чертам победившей категории. Этот механизм в теории АРТ получил название адаптивной фильтрации образа X.

Теперь задачей системы является установить, достаточен ли набор этих критических черт для окончательного отнесения образа X к категории нейрона-победителя. Эту функцию осуществляет нейрон сброса, который измеряет сходство между векторами X и C. выход нейрона сброса определяется отношением числа единичных компонент в векторе C к числу единичных компонент исходного образа X. Если это отношение ниже некоторого определенного уровня сходства, нейрон выдает сигнал сброса, означающий что уровень резонанса образа X с чертами предлагаемой категории не достаточен для положительного заключения о завершении классификации. Условием возникновения сигнала сброса является соотношение

,

где ? < 1 - параметр сходства.

Сигнал сброса выполняет полное торможение нейрона-победителя-неудачника, который не принимает в дальнейшем участия в работе сети.

Опишем последовательно события, происходящие в сети АРТ в процессе классификации.

Начальное состояние сети.

Нулевые значения компонент входного вектора X устанавливают сигнал нейрона управления 2 в нуль, одновременно устанавливая в нуль выходы нейронов слоя распознавания. При возникновении ненулевых значений X, оба сигнала управления (G1 и G2) устанавливаются равными единице. При этом по правилу двух третей выходы нейронов слоя сравнения C в точности равны компонентам X.

Вектор C поступает на входы нейронов слоя распознавания, которые в конкурентной борьбе определяют нейрон-победитель, описывающий предполагаемый результат классификации. В итоге выходной вектор R слоя распознавания содержит ровно одну единичную компоненту, остальные значения равны нулю. Ненулевой выход нейрона-победителя устанавливает в нуль сигнал управления 1: G1=0. По обратной связи нейрон-победитель посылает сигналы в слой сравнения, и начинается фаза сравнения.

Фаза сравнения.

В слое сравнения веер сигналов отклика слоя распознавания сравнивается с компонентами вектора X. Выход слоя сравнения C теперь содержит единичные компоненты только в тех позициях, в которых единицы имеются и у входного вектора X и у вектора обратной связи P. Если в результате сравнения векторов C и X не будет обнаружено значительных отличий, то нейрон сброса остается неактивным. Вектор C вновь вызовет возбуждение того же нейрона-победителя в слое распознавания, что и удачно завершит процесс классификации. В противном случае будет выработан сигнал сброса, который затормозит нейрон-победитель в слое распознавания, и начнется фаза поиска.

Фаза поиска.

В результате действия тормозящего сигнала сброса все нейроны слоя распознавания получат нулевые выходы, и, следовательно, нейрон управления 1 примет единичное значение активности. Снова выходной сигнал слоя сравнения C установится равным в точности X, как и в начале работы сети. Однако теперь в конкурентной борьбе в слое распознавания предыдущий нейрон-победитель не участвует, и будет найдена новая категория - кандидат. После чего опять повторяется фаза сравнения.

Итерационный процесс поиска завершается двумя возможными способами.

1. Найдется запомненная категория, сходство которой с входным вектором X будет достаточным для успешной классификации. После этого происходит обучающий цикл, в котором модифицируются веса bi и ti векторов B и T возбужденного нейрона, осуществившего классификацию.

2. В процессе поиска все запомненные категории окажутся проверенными, но ни одна из них не дала требуемого сходства. В этом случае входной образ X объявляется новым для нейросети, и ему выделяется новый нейрон в слое распознавания. Весовые вектора этого нейрона B и T устанавливаются равными вектору X.

Важно понимать, почему вообще требуется фаза поиска и окончательный результат классификации не возникает с первой попытки. Внимательный читатель вероятно уже обнаружил ответ на это вопрос. Обучение и функционирование сети АРТ происходит одновременно. Нейрон-победитель определяет в пространстве входных векторов ближайший к заданному входному образу вектор памяти, и если бы все черты исходного вектора были критическими, это и было бы верной классификацией. Однако множество критических черт стабилизируется лишь после относительно длительного обучения. На данной фазе обучения лишь некоторые компоненты входного вектора принадлежат актуальному множеству критических черт, поэтому может найтись другой нейрон-классификатор, который на множестве критических черт окажется ближе к исходному образу. Он и определяется в результате поиска.


Подобные документы

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Изучение сути искусственных нейронных сетей. Векторные пространства. Матрицы и линейные преобразования векторов. Биологический нейрон и его кибернетическая модель. Теорема об обучении персептрона. Линейная разделимость и персептронная представляемость.

    курсовая работа [239,7 K], добавлен 06.06.2012

  • Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.

    реферат [347,6 K], добавлен 17.12.2011

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа [814,6 K], добавлен 29.09.2014

  • Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.

    реферат [158,2 K], добавлен 16.03.2011

  • Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.

    презентация [582,1 K], добавлен 25.06.2013

  • Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.

    лабораторная работа [1,1 M], добавлен 05.10.2010

  • Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.

    контрольная работа [135,5 K], добавлен 30.11.2015

  • Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.

    дипломная работа [4,6 M], добавлен 22.09.2011

  • Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.

    реферат [162,9 K], добавлен 30.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.