Решение оптимизационной задачи линейного программирования
Постановка задачи оптимизации. Обоснование и описание вычислительной процедуры: идея симлекс-метода. Решение задачи оптимизации на основе симплекс-таблиц, построение искусственного базиса. Анализ модели на чувствительность: статус и ценность ресурсов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 16.11.2010 |
Размер файла | 70,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Результаты оптимизации.
Базис Значение
X4 2.67
X5 5.33
X3 8.00
X6 0.00
Максимум функции равен 40.00
Вывод промежуточных результатов оптимизации.
+------------------------------------------------------------------------------------------------+
¦ N¦ БП ¦ X1 ¦ X2 ¦ X3 ¦ X4 ¦ X5 ¦ X6 ¦ X7 ¦ X8 ¦ X9 ¦Баз.Реш.¦
+--+----+-------+-------+--------+--------+--------+--------+--------+--------+--------+---
¦ 1¦ E ¦ 1.67¦ 1.67¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ 2.50¦ 2.50¦ 0.00¦ 40.00¦
¦ +----+--------+--------+--------+--------+--------+--------+--------+--------+--------+-
¦ ¦ X4 ¦ 0.44¦ 0.11¦ 0.00¦ 1.00¦ 0.00¦ 0.00¦ 0.17¦ 0.17¦ 0.00¦ 2.67¦
¦ ¦ X5 ¦ 0.22¦ 0.56¦ 0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.33¦ 0.33¦ 0.00¦ 5.33¦
¦ ¦ X3 ¦ 1.00¦ 1.00¦ 1.00¦ 0.00¦ 0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.00¦ 8.00¦
¦ ¦ X6 ¦ -0.67¦ -0.67¦ 0.00¦ 0.00¦ 0.00¦ 1.00¦ -0.50¦ 0.50¦ 0.00¦ 0.00¦
¦ ¦ X9 ¦ -0.44¦ -0.11¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ -0.17¦ -0.17¦ 1.00¦ -0.67¦
+-----------------------------------------------------------------------------------------------+
Ведущий элемент находится в 1 столбце и 5 строке.
Вывод промежуточных результатов оптимизации.
+-----------------------------------------------------------------------------------------------+
¦ N¦ БП ¦ X1 ¦ X2 ¦ X3 ¦ X4 ¦ X5 ¦ X6 ¦ X7 ¦ X8 ¦ X9 ¦Баз.Реш.¦
+--+----+--------+--------+-------+--------+--------+--------+--------+--------+--------+--
¦ 2¦ E ¦ -0.00¦ 1.25¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ 1.88¦ 1.88¦ 3.75¦ 37.50¦
¦ +----+--------+--------+--------+--------+--------+--------+--------+--------+--------+--
¦ ¦ X4 ¦ -0.00¦ -0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.00¦ -0.00¦ -0.00¦ 1.00¦ 2.00¦
¦ ¦ X5 ¦ -0.00¦ 0.50¦ 0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.25¦ 0.25¦ 0.50¦ 5.00¦
¦ ¦ X3 ¦ -0.00¦ 0.75¦ 1.00¦ 0.00¦ 0.00¦ 0.00¦ 0.62¦ -0.38¦ 2.25¦ 6.50¦
¦ ¦ X6 ¦ -0.00¦ -0.50¦ -0.00¦ -0.00¦ -0.00¦ 1.00¦ -0.25¦ 0.75¦ -1.50¦ 1.00¦
¦ ¦ X1 ¦ 1.00¦ 0.25¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.38¦ 0.38¦ -2.25¦ 1.50¦
+-----------------------------------------------------------------------------------------------+
Результаты оптимизации.
Базис Значение
X4 2.00
X5 5.00
X3 6.50
X6 1.00
X1 1.50
Максимум функции равен 37.50
Вывод промежуточных результатов оптимизации.
+------------------------------------------------------------------------------------------------+
¦ N¦ БП ¦ X1 ¦ X2 ¦ X3 ¦ X4 ¦ X5 ¦ X6 ¦ X7 ¦ X8 ¦ X9 ¦ X10 ¦Баз.Реш.¦
+--+----+-------+------+------+------+------+------+--------+--------+--------+--------+--
¦ 2¦ E ¦ -0.00¦ 1.25¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ 1.88¦ 1.88¦ 3.75¦ 0.00¦ 37.50¦
¦ +----+------+------+------+------+--------+--------+--------+--------+--------+--------+-
¦ ¦ X4 ¦ -0.00¦ -0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.00¦ -0.00¦ -0.00¦ 1.00¦ 0.00¦ 2.00¦
¦ ¦ X5 ¦ -0.00¦ 0.50¦ 0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.25¦ 0.25¦ 0.50¦ 0.00¦ 5.00¦
¦ ¦ X3 ¦ -0.00¦ 0.75¦ 1.00¦ 0.00¦ 0.00¦ 0.00¦ 0.62¦ -0.38¦ 2.25¦ 0.00¦ 6.50¦
¦ ¦ X6 ¦ -0.00¦ -0.50¦ -0.00¦ -0.00¦ -0.00¦ 1.00¦ -0.25¦ 0.75¦ -1.50¦ 0.00¦ 1.00¦
¦ ¦ X1 ¦ 1.00¦ 0.25¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.38¦ 0.38¦ -2.25¦ 0.00¦ 1.50¦
¦ ¦ X10¦ 0.00¦ -0.25¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ -0.38¦ -0.38¦ -2.25¦ 1.00¦ -0.50¦
+------------------------------------------------------------------------------------------------+
Ведущий элемент находится в 9 столбце и 6 строке.
Вывод промежуточных результатов оптимизации.
+------------------------------------------------------------------------------------------------+
¦ N¦ БП ¦ X1 ¦ X2 ¦ X3 ¦ X4 ¦ X5 ¦ X6 ¦ X7 ¦ X8 ¦ X9 ¦ X10 ¦Баз.Реш.¦
+--+----+------+------+------+------+------+--------+--------+--------+--------+--------+--
¦ 3¦ E ¦ -0.00¦ 0.83¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ 1.25¦ 1.25¦ -0.00¦ 1.67¦ 36.67¦
¦ +----+------+------+------+-------+--------+--------+--------+--------+--------+--------+-
¦ ¦ X4 ¦ -0.00¦ -0.11¦ 0.00¦ 1.00¦ 0.00¦ 0.00¦ -0.17¦ -0.17¦ -0.00¦ 0.44¦ 1.78¦
¦ ¦ X5 ¦ -0.00¦ 0.44¦ 0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.17¦ 0.17¦ -0.00¦ 0.22¦ 4.89¦
¦ ¦ X3 ¦ -0.00¦ 0.50¦ 1.00¦ 0.00¦ 0.00¦ 0.00¦ 0.25¦ -0.75¦ -0.00¦ 1.00¦ 6.00¦
¦ ¦ X6 ¦ -0.00¦ -0.33¦ -0.00¦ -0.00¦ -0.00¦ 1.00¦ -0.00¦ 1.00¦ -0.00¦ -0.67¦ 1.33¦
¦ ¦ X1 ¦ 1.00¦ 0.50¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.75¦ 0.75¦ -0.00¦ -1.00¦ 2.00¦
¦ ¦ X9 ¦ -0.00¦ 0.11¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.17¦ 0.17¦ 1.00¦ -0.44¦ 0.22¦
+------------------------------------------------------------------------------------------------+
Результаты оптимизации.
Базис Значение
X4 1.78
X5 4.89
X3 6.00
X6 1.33
X1 2.00
X9 0.22
Максимум функции равен 36.67
Вывод промежуточных результатов оптимизации.
+------------------------------------------------------------------------------------------------+
¦ N¦ БП ¦ X1 ¦ X2 ¦ X3 ¦ X4 ¦ X5 ¦ X6 ¦ X7 ¦ X8 ¦ X9 ¦ X10 ¦ X11 ¦Баз.Реш.¦
+--+----+------+------+------+------+------+------+------+------+------+------+-------+--
¦ 3¦ E ¦ -0.00¦ 0.83¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ 1.25¦ 1.25¦ -0.00¦ 1.67¦ 0.00¦ 36.67¦
¦ +----+------+------+------+------+------+------+------+------+------+--------+--------+-
¦ ¦ X4 ¦ -0.00¦ -0.11¦ 0.00¦ 1.00¦ 0.00¦ 0.00¦ -0.17¦ -0.17¦ -0.00¦ 0.44¦ 0.00¦ 1.78¦
¦ ¦ X5 ¦ -0.00¦ 0.44¦ 0.00¦ 0.00¦ 1.00¦ 0.00¦ 0.17¦ 0.17¦ -0.00¦ 0.22¦ 0.00¦ 4.89¦
¦ ¦ X3 ¦ -0.00¦ 0.50¦ 1.00¦ 0.00¦ 0.00¦ 0.00¦ 0.25¦ -0.75¦ -0.00¦ 1.00¦ 0.00¦ 6.00¦
¦ ¦ X6 ¦ -0.00¦ -0.33¦ -0.00¦ -0.00¦ -0.00¦ 1.00¦ -0.00¦ 1.00¦ -0.00¦ -0.67¦ 0.00¦ 1.33¦
¦ ¦ X1 ¦ 1.00¦ 0.50¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.75¦ 0.75¦ -0.00¦ -1.00¦ 0.00¦ 2.00¦
¦ ¦ X9 ¦ -0.00¦ 0.11¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.17¦ 0.17¦ 1.00¦ -0.44¦ 0.00¦ 0.22¦
¦ ¦ X11¦ 0.00¦ -0.44¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ -0.17¦ -0.17¦ 0.00¦ -0.22¦ 1.00¦ -0.89¦
+------------------------------------------------------------------------------------------------+
Ведущий элемент находится в 2 столбце и 7 строке.
Вывод промежуточных результатов оптимизации.
+------------------------------------------------------------------------------------------------+
¦ N¦ БП ¦ X1 ¦ X2 ¦ X3 ¦ X4 ¦ X5 ¦ X6 ¦ X7 ¦ X8 ¦ X9 ¦ X10 ¦ X11 ¦Баз.Реш.¦
+--+----+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--
¦ 4¦ E ¦ -0.00¦ -0.00¦ 0.00¦ 0.00¦ 0.00¦ 0.00¦ 0.94¦ 0.94¦ -0.00¦ 1.25¦ 1.88¦ 35.00¦
¦ +----+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+
¦ ¦ X4 ¦ -0.00¦ -0.00¦ -0.00¦ 1.00¦ -0.00¦ -0.00¦ -0.12¦ -0.12¦ -0.00¦ 0.50¦ -0.25¦ 2.00¦
¦ ¦ X5 ¦ -0.00¦ -0.00¦ 0.00¦ 0.00¦ 1.00¦ 0.00¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 1.00¦ 4.00¦
¦ ¦ X3 ¦ -0.00¦ -0.00¦ 1.00¦ 0.00¦ 0.00¦ 0.00¦ 0.06¦ -0.94¦ -0.00¦ 0.75¦ 1.13¦ 5.00¦
¦ ¦ X6 ¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 1.00¦ 0.12¦ 1.12¦ -0.00¦ -0.50¦ -0.75¦ 2.00¦
¦ ¦ X1 ¦ 1.00¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.56¦ 0.56¦ -0.00¦ -1.25¦ 1.12¦ 1.00¦
¦ ¦ X9 ¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.12¦ 0.12¦ 1.00¦ -0.50¦ 0.25¦ 0.00¦
¦ ¦ X2 ¦ -0.00¦ 1.00¦ -0.00¦ -0.00¦ -0.00¦ -0.00¦ 0.38¦ 0.38¦ -0.00¦ 0.50¦ -2.25¦ 2.00¦
+------------------------------------------------------------------------------------------------+
Результаты оптимизации.
Базис Значение
X4 2.00
X5 4.00
X3 5.00
X6 2.00
X1 1.00
X9 0.00
X2 2.00
Максимум функции равен 35.00
Подобные документы
Построение математической модели. Выбор, обоснование и описание метода решений прямой задачи линейного программирования симплекс-методом, с использованием симплексной таблицы. Составление и решение двойственной задачи. Анализ модели на чувствительность.
курсовая работа [100,0 K], добавлен 31.10.2014Алгоритм решения задач линейного программирования симплекс-методом. Построение математической модели задачи линейного программирования. Решение задачи линейного программирования в Excel. Нахождение прибыли и оптимального плана выпуска продукции.
курсовая работа [1,1 M], добавлен 21.03.2012Решение задачи линейного программирования симплекс-методом: постановка задачи, построение экономико-математической модели. Решение транспортной задачи методом потенциалов: построение исходного опорного плана, определение его оптимального значения.
контрольная работа [118,5 K], добавлен 11.04.2012Математические основы оптимизации. Постановка задачи оптимизации. Методы оптимизации. Решение задачи классическим симплекс методом. Графический метод. Решение задач с помощью Excel. Коэффициенты целевой функции. Линейное программирование, метод, задачи.
реферат [157,5 K], добавлен 21.08.2008Теоретическая основа линейного программирования. Задачи линейного программирования, методы решения. Анализ оптимального решения. Решение одноиндексной задачи линейного программирования. Постановка задачи и ввод данных. Построение модели и этапы решения.
курсовая работа [132,0 K], добавлен 09.12.2008Методы решения задач линейного программирования: планирования производства, составления рациона, задачи о раскрое материалов и транспортной. Разработка экономико-математической модели и решение задачи с использованием компьютерного моделирования.
курсовая работа [607,2 K], добавлен 13.03.2015Общие задачи линейного программирования. Описание алгоритма симплекс-метода, записанного в канонической форме с односторонними ограничениями. Алгоритм построения начального опорного плана для решения задачи. Расширенный алгоритм искусственного базиса.
курсовая работа [142,9 K], добавлен 24.10.2012Постановка задачи линейного программирования. Решение системы уравнений симплекс-методом. Разработка программы для использования симплекс-метода. Блок-схемы основных алгоритмов. Создание интерфейса, инструкция пользователя по применению программы.
курсовая работа [1,7 M], добавлен 05.01.2015Построение базовой аналитической модели оптимизации распределения затрат на рекламу и ее времени между радио и телевидением. Разработка приложения для решения оптимизационной задачи с помощью симплекс-метода. Испытание модели на чувствительность.
курсовая работа [3,2 M], добавлен 11.02.2014Описание симплекс метода решения задачи линейного программирования. Решение задачи методом Литла на нахождение кратчайшего пути в графе, заданном графически в виде чертежа. Из чертежа записываем матрицу расстояний и поэтапно находим кратчайший путь.
задача [390,4 K], добавлен 10.11.2010