Определение и критерии идентификации систем искусственного интеллекта
Понятие и классификация систем искусственного интеллекта, цели и пути их создания. Информационная модель деятельности специалиста и место искусственного интеллекта в этой деятельности. Задачи формализации базовых когнитивных операций системного анализа.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.08.2010 |
Размер файла | 710,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Существует много различных подходов к классификации информационных систем. Сразу вполне закономерно возникают вопросы о том:
1. Чем обусловлено различие этих классификаций?
2. Какова классификация этих классификаций?
3. Каким образом выбрать ту классификацию, которая нам больше всего подходит в данном случае?
Попробуем ответить на эти вопросы.
Различия между этими классификациями определяются теми критериями, по которым производится классификация, например:
- по степени структурированности решаемых задач;
- по автоматизируемым функциям;
- по степени автоматизации реализуемых функций;
- по сфере применения и характеру использования информации, в частности, по уровням управления.
Известно, что при обучении людей существуют различные уровни предметной обученности: воспроизведение (память); решение стандартных задач (умения, навыки); решение нестандартных, творческих задач (знания, активное интеллектуальное понимание).
Интеллект может проявляется в различных областях, но мы рассмотрим его возможности в решении задач, т.к. эта область проявления является типичной для интеллекта. Задачи бывают стандартные и нестандартные. Для стандартных задач известны алгоритмы решения. Для нестандартных они неизвестны. Поэтому решение нестандартной задачи представляет собой проблему.
Само понятие "стандартности" задачи относительно, относительна сама "неизвестность": т.е. алгоритм может быть известен одним и неизвестен другим, или информация о нем может быть недоступной в определенный момент или период времени, и доступной - в другой. Поэтому для одних задача может быть стандартной, а для других нет. Нахождение или разработка алгоритма решения переводит задачу из разряда нестандартных в стандартные.
В математике и кибернетике задача считается решенной, если известен алгоритм ее решения. Тогда процесс ее фактического решения превращается в рутинную работу, которую могут в точности выполнить человек, вычислительная машина или робот, под управлением программы реализующей данный алгоритм, не имеющие ни малейшего представления о смысле самой задачи.
Разработка алгоритма решения задачи связано с тонкими и сложными рассуждениями, требующими изобретательности, опыта, высокой квалификации. Считается, что эта работа является творческой, существенно неформализуемой и требует участия человека с его "естественным" опытом и интеллектом.
Здесь необходимо отметить, что существует технология решения изобретательских задач (ТРИЗ), в которой сделана попытка, по мнению многих специалистов, довольно успешная, позволяющая в какой-то степени формализовать процедуру решения творческих задач.
Интеллектуальными считаются задачи, связанные с разработкой алгоритмов решения ранее нерешенных задач определенного типа.
Отличительной особенностью и одним из основных источников эффективности алгоритмов является то, что они сводят решение сложной задачи к определенной последовательности достаточно простых или даже элементарных для решения задач. В результате нерешаемая задача становится решаемой. Исходная информация поступает на вход алгоритма, на каждом шаге она преобразуется и в таком виде передается на следующий шаг, в результате чего на выходе алгоритма получается информация, представляющая собой решение задачи.
Алгоритм может быть исполнен такой системой, которая способна реализовать элементарные операции на различных шагах этого алгоритма.
Существует ряд задач, таких, как распознавание образов и идентификация, прогнозирование, принятие решений по управлению, для которых разбиение процесса поиска решения на отдельные элементарные шаги, а значит и разработка алгоритма, весьма затруднительны.
Из этих рассуждений вытекает следующее определение интеллекта: интеллект представляет собой универсальный алгоритма, способный разрабатывать алгоритмы решения конкретных задач.
С этой точки зрения профессия программиста является одной из самых творческих и интеллектуальных, т.к. продуктом деятельности программиста являются алгоритмы реализованные на некотором языке программирования (программы).
Исходя из вышесказанного можно сделать вывод о том, что в нашем случае наиболее подходит классификацией ИС, основанная на критерии, позволяющем оценить "степень интеллектуальности ИС", т.е. на критерии "степени структурированности решаемых задач" (рисунок 5).
Рисунок. Классификация информационных систем по степени структурированности решаемых задач
Определение и классификация систем искусственного интеллекта, цели и пути их создания
Тест Тьюринга и критерии "интеллектуальности" информационных систем. Может ли машина мыслить? Может ли искусственный интеллект превзойти своего создателя?
В 1950 году в статье "Вычислительные машины и разум" (Computing machinery and intelligence) выдающийся английский математики и философ Алан Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос "может ли машина мыслить?" на более определённый.
Вместо того, чтобы отвлеченно спорить о критериях, позволяющих отличить живое мыслящее существо от машины, выглядящей как живая и мыслящая, он предложил реализуемый на практике способ установить это.
Судья-человек ограниченное время, например, 5 минут, переписывается в чате (в оригинале - по телеграфу) на естественном языке с двумя собеседниками, один из которых - человек, а другой - компьютер. Если судья за предоставленное время не сможет надёжно определить, кто есть кто, то компьютер прошёл тест.
Предполагается, что каждый из собеседников стремится, чтобы человеком признали его. С целью сделать тест простым и универсальным, переписка сводится к обмену текстовыми сообщениями.
Переписка должна производиться через контролируемые промежутки времени, чтобы судья не мог делать заключения исходя из скорости ответов. (Тьюринг ввел это правило потому, что в его времена компьютеры реагировали гораздо медленнее человека. Сегодня же это правило необходимо, наоборот, потому что они реагируют гораздо быстрее, чем человек).
Идею Тьюринга поддержал Джо Вайзенбаум, написавший в 1966 году первую "беседующую" программу "Элиза". Программа всего в 200 строк лишь повторяла фразы собеседника в форме вопросов и составляла новые фразы из уже использованных в беседе слов. Тем ни менее этого оказалось достаточно, чтобы поразить воображение тысяч людей.
А. Тьюринг считал, что компьютеры в конечном счёте пройдут его тест, т.е. на вопрос: "Может ли машина мыслить?" он отвечал утвердительно, но в будущем времени: "Да, смогут!"
Алан Тьюринг был не только выдающимся ученым, но и настоящим пророком компьютерной эры. Достаточно сказать, что в 1950 году (!!!), когда он писал, что к 2000 году, на столе у миллионов людей будут стоять компьютеры, имеющие оперативную память 1 миллиард бит (около 119 Мб) и оказался в этом абсолютно прав. Когда он писал это, все компьютеры мира вместе взятые едва ли имели такую память. Он также предсказал, что обучение будет играть важную роль в создании мощных интеллектуальных систем, что сегодня совершенно очевидно для всех специалистов по СИИ. Вот его слова: "Пытаясь имитировать интеллект взрослого человека, мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человека… Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения "программы-ребенка" и задачу "воспитания" этой программы".
Именно этот путь и используют практически все системы ИИ. Кроме того, именно на этом пути появляются и другие признаки интеллектуальной деятельности: накопление опыта, адаптация и т. д.
Против теста Тьюринга было выдвинуто несколько возражений.
1. Машина, прошедшая тест, может не быть разумной, а просто следовать какому-то хитроумному набору правил.
На что Тьюринг не без юмора отвечал: "А откуда мы знаем, что человек, который искренне считает, что он мыслит, на самом деле не следует какому-то хитроумному набору правил?"
2. Машина может быть разумной и не умея разговаривать, как человек, ведь и не все люди, которым мы не отказываем в разумности, умеют писать.
Могут быть разработаны варианты теста Тьюринга для неграмотных машин и судей.
3. Если тест Тьюринга и проверяет наличие разума, то он не проверяет сознание (consciousness) и свободу воли (intentionality), тем самым не улавливая весьма существенных различий между разумными людьми и разумными машинами.
Сегодня уже существуют многочисленные варианты интеллектуальных систем, которые не имеют цели, но имеют критерии поведения: генетические алгоритмы и имитационное моделирование эволюции. Поведение этих систем выглядит таким образом, как будто они имеют различные цели и добиваются их.
Ежегодно производится соревнование между разговаривающими программами, и наиболее человекоподобной, по мнению судей, присуждается приз Лебнера (Loebner).
Существует также приз для программы, которая, по мнению судей, пройдёт тест Тьюринга. Этот приз ещё ни разу не присуждался.
В заключение отметим, что и сегодня тест Тьюринга не потерял своей фундаментальности и актуальности, более того - приобрел новое звучание в связи с возникновением Internet, общением людей в чатах и на форумах под условными никами и появлением почтовых и других программ-роботов, которые рассылают спам (некорректную навязчивую рекламу и другую невостребованную информацию), взламывают пароли систем и пытаются выступать от имени их зарегистрированных пользователей и совершают другие неправомерные действия.
Таким образом, возникает задачи:
- идентификации пола и других параметров собеседника (на эту возможность применения своего теста указывал и сам Тьюринг);
- выявления писем, написанных и посланных не людьми, а также такого автоматического написания писем, чтобы отличить их от написанных людьми было невозможно. Так что антиспамовый фильтр на электронной почте тоже представляет собой что-то вроде теста Тьюринга.
Не исключено, что скоро подобные проблемы (идентификации: человек или программа) могут возникнуть и в чатах. Что мешает сделать сетевых роботов типа программы "Элиза", но значительно более совершенных (все же сейчас не 1966, а 2004 год), которые будут сами регистрироваться в чатах и форумах участвовать в них с использованием слов и модифицированных предложений других участников? Простейший вариант - дублирование тем с других форумов и перенос их с форума на форум без изменений, что мы уже иногда наблюдаем в Internet (например: сквозная тема про "Чакра-муни").
На практике чтобы на входе системы определить, кто в нее входит, человек или робот, достаточно при входе предъявить для решения простенькую для человека, но требующую огромных вычислительных ресурсов и системы типа неокогнитрона Фукушимы, задачку распознавания случайных наборов символов, представленных в нестандартных начертаниях, масштабах и поворотах на фоне шума (Vladimir Maximenko). Решил, - значит стучится человек-пользователь, не решил, - значит на входе робот, лазающий по мировой сети с неизвестными, чаще всего неблаговидными целями.
Классификация систем искусственного интеллекта
В данном учебном пособии мы будем рассматривать следующие классы систем искусственного интеллекта:
1. Системы с интеллектуальной обратной связью и интеллектуальными интерфейсами.
2. Автоматизированные системы распознавания образов.
3. Автоматизированные системы поддержки принятия решений
4. Экспертные системы (ЭС).
5. Нейронные сети.
6. Генетические алгоритмы и моделирование эволюции.
7. Когнитивное моделирование.
8. Выявление знаний из опыта (эмпирических фактов) и интеллектуальный анализ данных (data mining).
Этими классами системы СИИ не исчерпываются, но мы вынуждены ограничится ими, как основными, в связи с ограниченностью объема учебного пособия.
Система искусственного интеллекта в качестве существенной своей части включает базу знаний, которая является результатом обобщения опыта эксплуатации данной системы в определенных конкретных условиях. Это значит, что программистом может быть разработана только "пустая оболочка" системы искусственного интеллекта, которая превращается в работоспособную систему в результате процесса обучения, который, таким образом, является необходимым технологическим этапом создания подобных систем. Можно провести аналогию между такой системой и ребенком: ребенок не может идти работать, т.к. ему для этого предварительно требуется длительное обучение в школе, а затем часто и в вузе, чтобы он смог выполнять определенные виды работ.
Информационная модель деятельности специалиста и место систем искусственного интеллекта в этой деятельности
Информационная модель деятельности специалиста, представленная на рисунке 6, разработана на основе модели, впервые предложенной В.Н. Лаптевым (1984).
Рисунок. Информационная модель деятельности специалиста и место систем искусственного интеллекта в этой деятельности
На вход системы поступает задача или проблема. Толкование различия между ними также дано В.Н. Лаптевым и состоит в следующем.
Ситуация, при которой фактическое состояние системы не совпадает с желаемым (целевым) называется проблемной ситуацией и представляет собой:
- задачу, если способ перевода системы из фактического состояния в желаемое точно известен, и необходимо лишь применить его;
- проблему, если способ перевода системы из фактического состояния в желаемое не известен, и необходимо сначала его разработать и лишь затем применить его.
Таким образом, можно считать, что проблема - это задача, способ решения которой неизвестен. Это означает, что если этот способ разработать, то этим самым проблема сводится к задаче, переводится в класс задач. Проще говоря, проблема - это сложная задача, а задача - это простая проблема.
Но и проблемы различаются по уровню сложности:
- для решения одних достаточно автоматизированной системы поддержки принятия решений;
- для решения других - обязательным является творческое участие людей: специалистов, экспертов.
Рассмотрим информационную модель деятельности специалиста, представленную на рисунке 6.
Блок 1. На вход системы поступает задача или проблема. Что именно неясно, т.к. чтобы это выяснить необходимо идентифицировать ситуацию и обратиться к базе данных стандартных решений с запросом, существует ли стандартное решение для данной ситуации.
Блок 2. Далее осуществляется идентификация проблемы или задачи и прогнозирование сложности ее решения. На этом этапе применяется интеллектуальная система, относящаяся к классу систем распознавания образов, идентификации и прогнозирования или эта функция реализуется специалистом самостоятельно "вручную".
Блок 3. Если в результате идентификации задачи или проблемы по ее признакам установлено, что точно имеется стандартное решение, то это означает, что на вход системы поступила точно такая же задача, как уже когда-то ранее встречалась. Для установления этого достаточно информационно-поисковой системы, осуществляющей поиск по точному совпадению параметров запроса и в применении интеллектуальных систем нет необходимости. Тогда происходит переход на блок 7, а иначе на блок 4.
Блок 4. Если установлено, что точно такой задачи не встречалось, но встречались сходные, аналогичные, которые могут быть найдены в результате обобщенного (нечеткого) поиска системой распознавания образов, то решение может быть найдено с помощью автоматизированной системы поддержки принятия решений путем решения обратной задачи прогнозирования. Это значит, что на вход системы поступила не задача, а проблема, имеющая количественную новизну по сравнению с решаемыми ранее (т.е. не очень сложная проблема). В этом случае осуществляется переход на блок 9, иначе - на блок 5.
Блок 5. Если установлено, что сходных проблем не встречалось, то необходимо качественно новое решение, поиск которого требует существенного творческого участия человека-эксперта. В этом случае происходит переход на блок 12, а иначе - на блок 6.
Блок 6. Переход на этот блок означает, что возможности поиска решения или выхода из проблемной ситуации системой исчерпаны и решения не найдено. В этом случае система обычно терпит ущерб целостности своей структуре и полноте функций, вплоть до разрушения и прекращения функционирования.
Блок 7. На этом этапе осуществляется реализация стандартного решения, соответствующего точно установленной задаче, а затем проверяется эффективность решения на блоке 8.
Блок 8. Если стандартное решение оказалось эффективным, это означает, что на этапах 2 и 3 идентификация задачи и способа решения осуществлены правильно и система может переходить к разрешению следующей проблемной ситуации (переход на блок 1). Если же стандартное решение оказалось неэффективным, то это означает, что проблемная ситуация идентифицирована как стандартная задача неверно и необходимо продолжить попытки ее разрешения с использованием более общих подходов, основанных на применении систем искусственного интеллекта (переход на блок 4), например, систем поддержки принятия решений.
Блок 9. Применяется автоматизированная система поддержки принятия решений, обеспечивающая решение обратной задачи прогнозирования. Отличие подобных систем от информационно-поисковых состоит в том, что они способны производить обобщение, выявлять силу и направление влияния различных факторов на поведение системы, и, на основе этого, по заданному целевому состоянию вырабатывать рекомендации по системе факторов, которые могли бы перевести систему в это состояние (обратная задача прогнозирования).
Блок 10. Если решение, полученное с помощью системы поддержки принятия решений, оказалось неэффективным, то это означает, что проблемная ситуация идентифицирована как аналогичная ранее встречавшимся неверно. Следовательно, что на вход системы поступила качественно новая, по сравнению с решаемыми ранее, т.е. сложная проблема. В этом случае необходимо продолжить попытки разрешения проблемы с использованием творческих неформализованных подходов с участием человека-эксперта и перейти на блок 5, иначе - на блок 11.
Блок 11. Информация об условиях и результатах решения проблемы заносится в базу знаний, т.е. стандартизируется. После чего база знаний количественно (не принципиально) изменяется, т.е. осуществляется ее адаптация. В результате адаптации при встрече в будущем точно таких же проблемных ситуаций, как разрешенная, система уже будет разрешать ее не как проблему, а как стандартную задачу.
Блок 12. На этом этапе с использованием неформализованных творческих подходов осуществляется поиск качественно нового решения проблемы, не встречавшейся ранее, после чего управление передается блоку 13.
Блок 13. Если решение, полученное экспертами с помощью неформализованных подходов, оказалось неэффективным, то это означает, что система терпит крах (осуществляется переход на блок 6). Если же адекватное решение найдено, то происходит переход на блок 14.
Блок 14. Стандартизация качественно нового решения, проблемы и пересинтез модели. Информация об условиях и результатах творческого решения проблемы заносится в базу знаний, т.е. стандартизируется. После этого база знаний качественно, принципиально изменяется, т.е. фактически осуществляется ее пересоздание (пересинтез). В результате пересинтеза базы знаний при встрече в будущем проблемных ситуаций, аналогичных разрешенной, система уже будет реагировать на них как проблемы, решаемые автоматизированными системами поддержки принятия решений.
Блоки, в которых используются системы искусственного интеллекта, на рисунке 6 показаны затемненными:
- блоки 2 и 12: система распознавания образов, идентификации и прогнозирования;
- блоки 9, 11, 12 и 14: автоматизированная система поддержки принятия решений.
В заключение раздела, с целью повышения настроения читателей-студентов, приведем шуточный алгоритм решения проблем (рисунок 7).
Рисунок. Шуточный алгоритм решения проблем (Internet-фольклор)
Жизненный цикл системы искусственного интеллекта и критерии перехода между этапами этого цикла
Жизненный цикл систем искусственного интеллекта сходен с жизненным циклом другого программного обеспечения и включает этапы и критерии перехода между ними, представленные в таблице 2.
Таблица- ЭТАПЫ ЖИЗНЕННОГО ЦИКЛА СИСТЕМ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА И КРИТЕРИИ ПЕРЕХОДА МЕЖДУ НИМИ
№ |
Наименование этапа |
Критерии перехода к следующему этапу |
|
1 |
Разработка идеи и концепции системы |
Появление (в результате проведения маркетинговых и рекламных мероприятий) заказчика или спонсора, заинтересовавшегося системой |
|
2 |
Разработка теоретических основ системы |
Обоснование выбора математической модели по критериям или обоснование необходимости разработки новой модели |
|
3 |
Разработка математической модели системы |
Детальная разработка математической модели |
|
4 |
Разработка методики численных расчетов в системе: |
||
4.1 |
- разработка структур данных |
детальная разработка структур входных, промежуточных и выходных данных |
|
4.2 |
- разработка алгоритмов обработки данных |
разработка обобщенных и детальных алгоритмов, реализующих на разработанных структурах данных математическую модель |
|
5 |
Разработка структуры системы и экранных форм интерфейса |
Разработка иерархической системы управления системой, структуры меню, экранных форм и средств управления на экранных формах |
|
6 |
Разработка программной реализации системы |
Разработка исходного текста программы системы, его компиляция и линковка. Исправление синтаксических ошибок в исходных текстах |
|
7 |
Отладка системы |
Поиск и исправление логических ошибок в исходных текстах на контрольных примерах. На контрольных примерах новые ошибки не обнаруживаются. |
|
8 |
Экспериментальная эксплуатация |
Поиск и исправление логических ошибок в исходных текстах на реальных данных без применения результатов работы системы на практике. На реальных данных новые ошибки практически не обнаруживаются, но считаются в принципе возможными. |
|
9 |
Опытная эксплуатация |
Поиск и исправление логических ошибок в исходных текстах на реальных данных с применением результатов работы системы на практике. На реальных данных новые ошибки не обнаруживаются и считаются недопустимыми. |
|
10 |
Промышленная эксплуатация |
Основной по длительности период, который продолжается до тех пор, пока система функционально устраивает Заказчика. У Заказчика появляется необходимость внесения количественных (косметических) изменений в систему на уровне п.5 (т.е. без изменения математической модели, структур данных и алгоритмов) |
|
11 |
Заказные модификации системы |
У Заказчика формируется потребность внесения качественных (принципиальных) изменений в систему на уровне п.3 и п.4, т.е. с изменениями в математической модели, структурах данных и алгоритмах |
|
12 |
Разработка новых версий системы |
Выясняется техническая невозможность или финансовая нецелесообразность разработки новых версий системы |
|
13 |
Снятие системы с эксплуатации |
Литература
1. Луценко Е.В. Теоретические основы и технология адаптивного семантического анализа в поддержке принятия решений (на примере универсальной автоматизированной системы распознавания образов "ЭЙДОС-5.1"). - Краснодар: КЮИ МВД РФ, 1996. - 280с.
2. Луценко Е. В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). - Краснодар: КубГАУ. 2002. - 605 с.
3. Кива Владимир, сайт: http://vlak.webzone.ru/rus/it/knowledge.html.
Подобные документы
Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.
презентация [3,0 M], добавлен 28.05.2015Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.
контрольная работа [27,9 K], добавлен 07.12.2009Характеристика сущности искусственного интеллекта. Проблема создания искусственного интеллекта. Базовые положения, методики и подходы построения систем ИИ (логический, структурный, эволюционный, имитационный). Проблемы создания и реализация систем ИИ.
реферат [43,1 K], добавлен 19.07.2010Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?
реферат [49,0 K], добавлен 19.05.2006Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.
реферат [40,8 K], добавлен 17.08.2015Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.
реферат [70,7 K], добавлен 18.11.2010Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.
реферат [24,7 K], добавлен 05.01.2010Общая характеристика дисциплины "Основы искусственного интеллекта". Ее предмет, цели и задачи. Особенности и расшифровка ряда понятийных терминов, характеризующих сущность кибернетики. Методы и алгоритмы анализа данных для получения знаний и обучения.
презентация [10,9 K], добавлен 03.01.2014История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.
реферат [45,1 K], добавлен 20.11.2009Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.
курсовая работа [41,3 K], добавлен 29.08.2013