Построение систем защиты информации для программных пакетов, используемых в монопольном доступе

Анализ и разработка методов защиты информации без использования вспомогательных аппаратных средств. Создание интегрируемого пакета программных модулей для защиты систем автоматизации дистанционного обучения (АСДО) вне доверенной вычислительной среды.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 11.08.2010
Размер файла 772,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2) Сложность создания универсальных средств для обхода системы защиты заключается в возможности генерации уникальных пакетов защищенного ПО. Создание универсального механизма взлома средств защиты затруднено при отсутствии исходного кода. В противном случае необходим глубокий, подробный и профессиональный анализ такой системы, осложняемый тем, что каждая система использует свои алгоритмы шифрования / расшифрования. А модификация отдельного экземпляра защищенного ПО интереса не представляет. Ведь основной упор сделан на защиту от ее массового взлома, а не на высокую надежность отдельного экземпляра пакета.

3) Легкая реализация системы асимметрического шифрования, хоть и является побочным эффектом, но очень полезна и важна. Она представляет собой следствие необходимости генерировать два разных алгоритма, один для шифрования, а другой для расшифрования. На основе асимметрического шифрования можно организовать богатый набор различных механизмов в защищаемом программном комплексе. Примеры такого применения будут даны в других разделах данной работы.

4) Возможность легкой, быстрой адаптации и усложнения такой системы. Поскольку для разработчиков система предоставляется в исходном коде, то у него есть все возможности для его изменения. Это может быть вызвано необходимостью добавления новой функциональности. При этом для такой функциональности может быть реализована поддержка со стороны измененной виртуальной машины. В этом случае работа новых механизмов может стать сложной для анализа со стороны. Также легко внести изменения с целью усложнения генератора полиморфного кода и увеличения блоков, из которых строятся полиморфные алгоритмы. Это, например, может быть полезно в том случае, если кем-то, не смотря на все сложности, будет создан универсальный пакет для взлома системы зашиты. Тогда совсем небольшие изменения в коде, могут свести на нет труды взломщика. Стоит отметить, что это является очень простым действием, и потенциально способствует защите, так как делает процесс создания взлома еще более нерациональным.

5) Поскольку программисту отдаются исходные коды система защиты, то он легко может воспользоваться существующей виртуальной машиной и расширить ее для собственных нужд. То же самое касается и генератора полиморфных алгоритмов. Например, он может встроить в полиморфный код ряд специфической для его системы функций. Сейчас имеется возможность ограничить возможность использования алгоритмов по времени. А где-то, возможно, понадобится ограничение по количеству запусков. Можно расширить только виртуальную машину с целью выполнения в ней критических действий. Например, проверку результатов ответа. Выполнение виртуального кода намного сложнее для анализа, а, следовательно, расширяя механизм виртуальной машины, можно добиться существенного повышения защищенности АСДО.

2.4 Функциональность системы защиты

Ранее были рассмотрены цели, для которых разрабатывается система защиты, а также методы, с использованием которых эта система будет построена. Сформулируем функции системы защиты, которые она должна будет предоставить программисту.

1. Генератор полиморфных алгоритмов шифрование и расшифрования.

2. Виртуальная машина в которой могут исполняться полиморфные алгоритмы. Отметим также, что виртуальная машина может быть легко адаптирована, с целью выполнения программ иного назначения.

3. Асимметричная система шифрования данных.

4. Ограничение использования полиморфных алгоритмов по времени.

5. Защита исполняемых файлов от модификации.

6. Контроль за временем возможности запуска исполняемых файлов.

7. Поддержка таблиц соответствий между именами зашифрованных файлов и соответствующих им алгоритмам шифрования/расшифрования.

8. Упаковка шифруемых данных.

Глава 3. Реализация системы защиты

3.1 Выбор средств разработки и организации системы

Для разработки системы защиты необходим компилятор, обладающий хорошим быстродействием генерируемого кода. Требование к быстродействию обусловлено ресурсоемкостью алгоритмов шифрования и расшифрования. Также необходима среда с хорошей поддержкой COM. Желательно, чтобы язык был объектно ориентированный, что должно помочь в разработке достаточно сложного полиморфного генератора.

Естественным выбором будет использование Visual C++. Он отвечает всем необходимым требованиям. Также понадобится библиотека для сжатия данных. Наиболее подходящим кандидатом является библиотека ZLIB. Теперь рассмотрим по отдельности каждый из этих компонентов, с целью показать почему был сделан именно такой выбор. В рассмотрение войдут: язык С++, среда Visual C++, библиотека активных шаблонов (ATL), библиотека ZLIB.

3.1.1 Краткая характеристика языка программирования С++

Объектно-ориентированный язык С++ создавался как расширение языка Си. Разработанный Бьярном Страуструпом (Bjarne Stroustroup) из AT&T Bell Labs в начале 80-х, С++ получил широкое распространение среди программистов по четырем важным причинам.

· В языке С++ реализовано несколько дополнений к стандартному Си. Наиболее важным из этих дополнений является объектная ориентация, которая позволяет программисту использовать объектно-ориентированную парадигму разработки.

· Компиляторы С++ широко доступны, а язык соответствует стандартам ANSI.

· Большинство программ на С++ широко доступны, а язык соответствует стандартам ANSI.

· Большинство программ на Си без всяких изменений, либо с незначительными изменениями , можно компилировать с помощью компилятора С++. Кроме того, многие программисты, владеющие языком Си, могут сразу начать работать с компилятором С++, постепенно осваивая его новые возможности. При этом не нужно осваивать новый сложный объектно-ориентированный язык с нуля.

· Программы на С++ обычно сохраняют эффективность программ на Си. Поскольку разработчики С++ уделяли большое внимание эффективности генерируемого кода, С++ наилучшим образом подходит для задач, где быстродействие кода имеет важное значение.

Хотя большинство экспертов рассматривают С++ как самостоятельный язык, фактически С++ представляет собой развитое объектно-ориентированное расширение Си, или объектно-ориентированный «гибрид». Язык допускает смешанное программирование с использованием концепции программирования Си и объектно-ориентированной концепции, и это можно охарактеризовать как недостаток.

Объектно-ориентированное программирование (ООП) основная методология программирования 90-х годов. Она является результатом тридцатилетнего опыта и практики, которые берут начало в языке Simula 67 и продолжаются в языках Smalltalk, LISP, Clu и в более поздних Actor, Eiffel, Objective C, Java и С++. ООП это стиль программирования, который фиксирует поведение реального мира так, что детали разработки скрыты, а это позволяет тому, кто решает задачу, мыслить в терминах, присущих этой задаче, а не программирования. ООП это программирование, сфокусированное на данных, причем данные и поведение неразрывно связаны. Они вместе составляют класс, а объекты являются экземплярами класса.

С++ относительно молодой и развивающийся язык, только в 1998 году был утвержден стандарт ANSI, и еще не все компиляторы полностью соответствуют этому стандарту. Тем не менее язык очень популярен и распространен не меньше, чем Си.

Выбор был остановлен на языке С++ по следующим причинам. Поскольку будет использоваться среда Visual C++, то нет смысла отказываться от преимуществ языка С++, тем более, что программа достаточно сложная. Например, механизмы исключений могут быть весьма полезны. Еще одним преимуществом является возможность использовать умные указатели на COM интерфейсы, что часто бывает очень удобно. Использование библиотеки ATL тоже подразумевает необходимость языка С++, так как она написана именно на нем.

3.1.2 Краткая характеристика среды Visual C++

В связи с тем, что сегодня уровень сложности программного обеспечения очень высок, разработка приложений Windows с использованием только какого-либо языка программирования (например, языка C) значительно затрудняется. Программист должен затратить массу времени на решение стандартных задач по созданию многооконного интерфейса. Реализация технологии COM потребует от программиста еще более сложной работы.

Чтобы облегчить работу программиста практически все современные компиляторы с языка C++ содержат специальные библиотеки классов. Такие библиотеки включают в себя практически весь программный интерфейс Windows и позволяют пользоваться при программировании средствами более высокого уровня, чем обычные вызовы функций. За счет этого значительно упрощается разработка приложений, имеющих сложный интерфейс пользователя, облегчается поддержка технологии COM и взаимодействие с базами данных.

Современные интегрированные средства разработки приложений Windows позволяют автоматизировать процесс создания приложения. Для этого используются генераторы приложений. Программист отвечает на вопросы генератора приложений и определяет свойства приложения - поддерживает ли оно многооконный режим, технологию COM, трехмерные органы управления, справочную систему. Генератор приложений, создаст приложение, отвечающее требованиям, и предоставит исходные тексты. Пользуясь им как шаблоном, программист сможет быстро разрабатывать свои приложения.

Подобные средства автоматизированного создания приложений включены в компилятор Microsoft Visual C++ и называются MFC AppWizard. Заполнив несколько диалоговых панелей, можно указать характеристики приложения и получить его тексты, снабженные обширными комментариями. MFC AppWizard позволяет создавать однооконные и многооконные приложения, а также приложения, не имеющие главного окна, -вместо него используется диалоговая панель. Можно также включить поддержку технологии COM, баз данных, справочной системы.

Среда Visual C++ 6.0 была выбрана как одно из лучших средств разработки на языке С++ для ОС Microsoft Windows. Немаловажным фактором является ее поддержка такими утилитами, как Visual Assist, BoundsChecker, которые в свою очередь позволяют создавать программы более быстро и качественно. Компилятор Visual C++ генерирует достаточно оптимизированный код, что весьма важно для разрабатываемого приложения.

3.1.3 Краткая характеристика библиотеки ATL

Библиотека активных шаблонов (ATL) представляет собой основу для создания небольших СОМ - компонентов. В ATL использованы новые возможности шаблонов, добавленные в C++. Исходные тексты этой библиотеки поставляются в составе системы разработки Visual C++. Кроме того, в эту систему разработки введено множество мастеров Visual C++, что облегчает начальный этап создания ATL-проектов.

Библиотека ATL обеспечивает реализацию ключевых возможностей СОМ компонентов. Выполнения многих рутинных процедур, с которыми мы столкнулись при разработке последнего примера, можно избежать за счет использования классов шаблонов ATL. Приведем далеко не полный список функций ATL. Некоторые из них будут рассмотрены в этой главе.

§ Утилита AppWizard, предназначенная для создания первичного ATL-проекта.

§ Мастер объектов, используемый для добавления в проект компонентов различных типов.

§ Поддержка по умолчанию основных интерфейсов COM, таких как IUnknown и IClassFactory.

§ Поддержка механизма транспортировки пользовательского интерфейса.

§ Поддержка базового механизма диспетчеризации (автоматизации) и двунаправленного интерфейса.

§ Существенная поддержка разработки небольших элементов управления ActiveX.

Основной задачей ATL является облегчение создания небольших СОМ-компонентов. Задача MFC -- ускорение разработки больших Windows-приложений. Функции MFC и ATL несколько перекрываются, в первую очередь в области поддержки OLE и ActiveX.

Поскольку разрабатываемый модуль защиты не велик и не требует какой либо работы с графическим интерфейсом, то вполне естественно выбрать его, а не более тяжелый и излишний по функциональности MFC.

3.1.4 Краткая характеристика библиотеки ZLIB

Библиотека ZLIB представляет собой небольшую и удобную библиотеку на языке С. Ее назначение - упаковка и распаковка данных. Поскольку она распространяется в исходных кодах, то ее будет легко и удобно использовать в разрабатываемом модуле. Также отметим, что эта библиотека является свободно распространяемой, что не влечет за собой нарушения авторских прав.

3.2 Полиморфный генератор алгоритмов шифрования

Рассмотрим построение генератора полиморфных алгоритмов шифрования и расшифрования. Эти алгоритмы всегда генерируются парами, механизм их генерации весьма схож и осуществляется одним кодом. Разница только в том, что используются блоки, производящие обратные преобразования. Вначале рассмотрим, как вообще выглядят общий алгоритм шифрования/расшифрования. Затем покажем, как выглядит готовый код алгоритма шифрования/расшифрования, и расскажем о виртуальной машине, в которой он выполняется. Также будет приведет отладочный вывод виртуальный машины, демонстрирующий работу алгоритмов шифрования/расшифрования. Затем будет рассмотрен непосредственно сам алгоритм построения полиморфного кода, и подсчитана вероятность генерации одинаковых алгоритмов и пути повышения сложности полиморфных алгоритмов.

3.2.1 Общие принципы работы полиморфных алгоритмов шифрования и расшифрования

Представим генерируемые алгоритмы шифрования/расшифрования в общем виде. Они состоят из 8 функциональных блоков, некоторые из которых могут повторяться. На рисунке 5 приведена абстрактная схема работы алгоритма шифрования/расшифрования. Повторяющиеся блоки обозначены эллипсами, находящимися под квадратами. Количество таких блоков выбирается случайно при генерации каждой новой пары алгоритмов. Функциональные блоки и их номер отмечены числом в маленьком прямоугольнике, расположенным в правом верхнем углу больших блоков.

Сразу отметим, что при своей работе виртуальная машина использует виртуальные регистры и память. Начальное содержимое виртуальной памяти, как и сам сгенерированный алгоритм, хранится в файле. Например, именно в виртуальной памяти может быть записано, сколько байт необходимо расшифровать. Некоторые виртуальные регистры и виртуальные ячейки памяти содержат мусор и не используются или используются в холостых блоках. Холостые блоки состоят из одной или более базовых инструкций виртуальной машины. Они не являются функциональными блоками, и их описание будет опушено. Холостым блокам будет уделено внимание в следующем разделе. На схеме произвольные регистры/ячейки памяти обозначаются как буква А с цифрой. Полиморфный генератор случайным образом выбирает, какой же именно регистр или ячейка памяти будет задействована в каждом конкретном алгоритме шифрования/расшифрования. Рассмотрим теперь каждый из функциональных блоков более подробно.

Рисунок 5. Алгоритм шифрования/расшифрования в общем виде

Блок 1 заносит в виртуальный регистр или переменную (обозначим ее как A1) адрес шифруемого / расшифруемого блока данных. Для виртуальной машины этот адрес на самом деле всегда является нулем. Дело в том, что когда происходит выполнение виртуальной инструкции модификации данных, то виртуальная машина добавляет к этому адресу настоящий адрес в памяти и уже с ним производит операции. Можно представить A1 как индекс в массиве шифруемых / расшифруемых данных, адресуемых с нуля.

Блок 2 заносит в виртуальный регистр или переменную (обозначим ее как A2) размер блока данных. А2 выполняет роль счетчика в цикле преобразования данных. Заметим, что ее значение всегда в 4 раза меньше, чем настоящий размер шифруемых / расшифруемых данных. Это связано с тем, что полиморфные алгоритмы всегда работают с блоками данных, кратных по размеру 4 байтам. Причем, операции преобразования выполняются над блоками, кратными 4 байтам. О выравнивании данных по 4 байта заботятся более высокоуровневые механизмы, использующие виртуальную машину и полиморфные алгоритмы для шифрования и расшифрования данных. Возникает вопрос, откуда алгоритму "знать", какого размера блок ему необходимо зашифровать, ведь при его генерации такой информации просто нет. Необходимое значение он просто берет из ячейки памяти. Виртуальная машина памяти знает именно об этой ячейке памяти и перед началом выполнения полиморфного алгоритма заносит туда необходимое значение.

Блок 3 помещает в виртуальный регистр или переменную (обозначим ее как A3) константу, участвующую в преобразовании. Эта константа, возможно, затем и не будет использована для преобразования данных, все зависит от того, какой код будет сгенерирован. Блок 3 может быть повторен несколько раз. Над данными осуществляется целый набор различных преобразований, и в каждом из них участвуют различные регистры/переменные, инициализированные в блоке 3.

Блок 4 можно назвать основным. Именно он, а, точнее сказать, набор этих блоков производит шифрование / расшифрование данных. Количество этих блоков случайно и равно количеству блоков номер 3. При преобразованиях не обязательно будет использовано значение из A3. Например, вместо A3 может использоваться константа или значение из счетчика. На данный момент полиморфный генератор поддерживает 3 вида преобразований: побитовое "исключающее или" (XOR), сложение и вычитание. Набор этих преобразование можно легко расширить, главное, чтобы такое преобразование имело обратную операцию.

Блок 5 служит для увеличения A1 на единицу. Как и во всех других блоках, эта операция может быть выполнена по-разному, то есть с использованием различных элементарных инструкций виртуальной машины.

Блок 6 организует цикл. Он уменьшает значение A2 на единицу, и если результат не равен 0, то виртуальная машина переходит к выполнению четвертого блока. На самом деле управление может быть передано на один из холостых блоков между блоком 3 и 4, но с функциональной точки зрения это значения не имеет.

Блок 7 производит проверку ограничения по времени использования алгоритма. Код по проверке на ограничение по времени относится к холостым командам и, на самом деле, может присутствовать и выполнятся в коде большое количество раз. То, что он относится к холостым блокам кода вовсе не значит, что он не будет нести функциональной нагрузки. Он будет действительно проверять ограничение, но он, как и другие холостые блоки, может располагаться произвольным образом в пустых промежутках между функциональными блоками. Поскольку этот блок может теоретически никогда не встретиться среди холостых блоков, то хоть один раз его следует выполнить. Именно поэтому он и вынесен как один из функциональных блоков. Если же при генерации алгоритма от генератора не требуется ограничение по времени, то в качестве аргумента к виртуальной команде проверки времени используется специальное число.

Блок 8 завершает работу алгоритма.

3.2.2 Виртуальная машина для выполнения полиморфных алгоритмов

Для начала приведем список инструкций, поддерживаемых на данный момент виртуальной машиной. Коды этих инструкций имеют тип E_OPERATION и определены в файле p_enums.h следующим образом:

enum E_OPERATION // Инструкции

{

EO_ERROR = -1, // Недопустимая инструкция

EO_EXIT_0, EO_EXIT_1, EO_EXIT_2, // Конец работы

EO_NOP_0, EO_NOP_1, EO_NOP_2, EO_NOP_3, // Пустые команды

EO_TEST_TIME_0, EO_TEST_TIME_1, // Контроль времени

EO_MOV, EO_XCHG, // Пересылка данных

EO_PUSH, EO_POP, // Работа со стеком

EO_XOR, EO_AND, EO_OR, EO_NOT, // Логические операции

EO_ADD, EO_SUB, EO_MUL, EO_DIV, EO_NEG, // Арифметические операции

EO_INC, EO_DEC,

EO_TEST, EO_CMP, // Операции сравнения // (влияют на флаги)

EO_JMP, EO_CALL, EO_RET, // Операторы безусловного перехода

EO_JZ, EO_JNZ, EO_JA, EO_JNA, // Условные переходы

};

В таблице 1 приведена информация по этим инструкциям и перечислены их аргументы.

Таблица 1.

Описание инструкций виртуальной машины

Название

Действие

EO_EXIT_0

EO_EXIT_1

EO_EXIT_2

Команды завершения работы. После ее выполнения виртуальная машина остановится, и управление будет передано выше. Данные инструкции аргументов не имеют.

EO_TEST_TIME_0 EO_TEST_TIME_1

Команды контроля времени. Имеют один аргумент - последний доступный день использования.

EO_MOV

Команда пересылки данных. Имеет два аргумента - источник и получатель.

EO_XCHG

Данная команда обменивает значения двух регистров или ячеек памяти, переданных в двух аргументах.

EO_PUSH

Сохраняет переданный аргумент в стеке.

EO_POP

Снимает значение с вершины стека и помещает в указанную ячейку памяти или регистр.

EO_XOR

Логическая операция XOR. Имеет два аргумента. Результат помещается в ячейку памяти или регистр, переданный в качестве первого аргумента.

Название

Действие

EO_AND

Логическая операция AND. Имеет два аргумента. Результат помещается в ячейку памяти или регистр, переданный в качестве первого аргумента.

EO_OR

Логическая операция OR. Имеет два аргумента. Результат помещается в ячейку памяти или регистр, переданный в качестве первого аргумента.


Подобные документы

  • Вопросы защиты информации, стоящие перед автоматизированными системами дистанционного обучения. Криптосистема Ривеста-Шамира-Эйделмана, основанная на эллиптических кривых. Адаптированный метод асимметричного шифрования. Язык программирования С++.

    диссертация [713,4 K], добавлен 15.01.2009

  • Семиуровневая архитектура, основные протоколы и стандарты компьютерных сетей. Виды программных и программно-аппаратных методов защиты: шифрование данных, защита от компьютерных вирусов, несанкционированного доступа, информации при удаленном доступе.

    контрольная работа [25,5 K], добавлен 12.07.2014

  • Определение назначения и характеристика видов систем защиты информации. Описание структур систем по защите накапливаемой, обрабатываемой и хранимой информации, предупреждение и обнаружение угроз. Государственное регулирование защиты информационных сетей.

    реферат [43,6 K], добавлен 22.05.2013

  • Пути несанкционированного доступа, классификация способов и средств защиты информации. Анализ методов защиты информации в ЛВС. Идентификация и аутентификация, протоколирование и аудит, управление доступом. Понятия безопасности компьютерных систем.

    дипломная работа [575,2 K], добавлен 19.04.2011

  • Особенности защиты информации при построении локальных сетей государственных учреждений, анализ схемы незащищенной сети и выявление потенциальных угроз информационной безопасности, особенности программных средств защиты, реализующих технологию VPN.

    курсовая работа [762,8 K], добавлен 21.06.2011

  • Пути несанкционированного доступа, классификация способов и средств защиты информации. Каналы утечки информации. Основные направления защиты информации в СУП. Меры непосредственной защиты ПЭВМ. Анализ защищенности узлов локальной сети "Стройпроект".

    дипломная работа [1,4 M], добавлен 05.06.2011

  • Краткое описание, сведения производителя, функции, технические характеристики среды выполнения программных средств защиты информации. Сравнительный анализ программ по параметрам: доступность дистрибутивов и установка, документация и возможности.

    курсовая работа [1,5 M], добавлен 13.04.2014

  • Рассмотрение основных понятий защиты информации в сетях. Изучение видов существующих угроз, некоторых особенностей безопасности компьютерных сетей при реализации программных злоупотреблений. Анализ средств и методов программной защиты информации.

    дипломная работа [1,5 M], добавлен 19.06.2015

  • Анализ системы обеспечения информационной безопасности и защиты информации. Выбор и обоснование способа приобретения информационных систем для автоматизации задачи. Описание программных модулей. Обоснование методики расчета экономической эффективности.

    дипломная работа [905,3 K], добавлен 24.12.2023

  • Основные положения теории защиты информации. Сущность основных методов и средств защиты информации в сетях. Общая характеристика деятельности и корпоративной сети предприятия "Вестел", анализ его методик защиты информации в телекоммуникационных сетях.

    дипломная работа [1,1 M], добавлен 30.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.