Алгоритмы на графах. Методы приближенного решения задачи коммивояжера
Определение графа как конечного множества вершин и набора неупорядоченных и упорядоченных пар вершин. Выбор соответствующей структуры данных для представления графа при разработке алгоритмов. Метод локальной оптимизации, алгоритмы Эйлера и Кристофидеса.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Потоковое программирование |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Голубева А. |
Дата добавления | 11.03.2010 |
Размер файла | 82,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Методы поиска подмножеств множества вершин V графа G, удовлетворяющих определенным условиям и свойствам. Понятие независимых множеств и порядок их генерации. Определение доминирующего множества. Основные этапы решения задачи о наименьшем разбиении.
контрольная работа [32,1 K], добавлен 11.03.2010Определение понятия графа как набора вершин и связей между ними. Способы решения задач по программированию согласно теории графов на примерах заданий "Дороги", "Перекрестки", "Скрудж Мак-Дак", используя рекурсивные функции и рекуррентные соотношения.
курсовая работа [36,2 K], добавлен 10.03.2010Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.
реферат [39,6 K], добавлен 06.03.2010Способ представления графа в информатике. Алгоритмы поиска элементарных циклов в глубину в неориентированных графах. Описание среды wxDev-C++, последовательность создания проекта. Руководство пользователю программы поиска и вывода на экран простых циклов.
курсовая работа [783,2 K], добавлен 18.02.2013Разработка программной реализации решения задачи о минимальном покрывающем дереве графа (построение минимального остова), используя алгоритмы Прима и Крускала. Подсчет времени работы алгоритмов. Их программная реализация на практике с помощью Delphi 7.
курсовая работа [538,1 K], добавлен 29.08.2010Математические графы, области их применения. Способы раскраски вершин и ребер графов, задачи на их применение. Разработка алгоритма, работающего на основе операций с матрицей смежности. Описание логической структуры программы. Пример зарисовки графа.
курсовая работа [145,5 K], добавлен 27.01.2013Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.
курсовая работа [1,1 M], добавлен 26.06.2012Моделирование передвижения муравьев. Метод ветвей и границ, ближайшего соседа. Ограничения, накладываемые на агента в стандартной постановке задачи коммивояжера. Использование графа видимости в алгоритме муравья. Структура данных алгоритма муравья.
дипломная работа [1,7 M], добавлен 07.02.2013Способы построения остовного дерева (алгоритма поиска в глубину и поиска в ширину). Вид неориентированного графа. Понятие и алгоритмы нахождения минимальных остовных деревьев. Последовательность построения дерева графов по алгоритмам Крускала и Прима.
презентация [22,8 K], добавлен 16.09.2013Корректность определения кратчайших путей в графе и рёбра отрицательной длины. Анализ алгоритмов Дейкстры, Беллмана-Форда, Флойда-Уоршелла. Вычисление кратчайших расстояний между всеми парами вершин графа. Топологическая сортировка ориентированного графа.
презентация [449,3 K], добавлен 19.10.2014