Всесвітня мережа Інтернет

Історія виникнення всесвітньої мережі. Інтернет як комплекс, що включає локальні мережі й автономні комп’ютери. Протоколи TCP/IP, рівні взаємодії між комп'ютерами, єдина система адресації, доменна система імен. Послуги провайдера та доступ до Інтернету.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык украинский
Дата добавления 09.03.2010
Размер файла 70,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4.1 Яким чином функціонує електронна пошта

Щоб обмінюватись кореспонденцією за допомогою електронної пошти потрібно мати спеціальну програму, яка називається mailer. Вона надає змоги редагувати текст, вводити адресу одержувача, надсилати повідомлення тощо.

Якщо немає повноцінного доступа до Інтернет, електронна пошта дуже корисна. Ви можете використовувати ту електронну пошту, яка є у Вашого поставника послуг. Як і в усіх програмах, між програмами електронної пошти існує різниця, різниця є і у інтерфейсі поштових пакетів. Проте, загальні функції у більшості пакетів однакові. До них відносяться:

підготовка тексту

читання і збереження кореспонденції

знищення кореспонденції

ввод адреси

коментування і пересилка інформації

функції імпорту для інших файлів.

Для обробки повідомлень, взагалі, можна користуватися будь-яким текстовим редактором, тому що текстовий редактор електронної пошти майже завжди не надає таких можливостей, як текстовий редактор. Якщо лист малий, то досить і редактора електронної пошти, коли лист великий краще зробити його у іншому редакторі та імпортувати цей файл.

Трохи інформації про текстові і двоїчні (бінарні) файли

Більшість програм електронної пошти забезпечує пересилку файлів як у коді ASCII (текстовий формат), так і у двоїчному форматі. Найменшою одиницею інформації, якою оперує комп'ютер, є біт, який є числом 0 або 1. Для кодування інформації 8 бітів обє'єднуються в один байт, в результаті чого є 256 комбінацій послідовностей 0 та 1.

Код ASCII (Amerucan Standert Code for Information Interchange)- американський стандартний код для обміну інформацією, який є таблицею, у якій кожну букву замінює відповідний числовий код. Наприклад, послідовність 01000001 означає букву "А". Цей код можуть читати всі комп'ютери. Проте, він дозволяє таким чином записувати тільки текст. Крім того, він не має спеціальних знаків для шрифтів, які притаманні національним мовам.

Файли в двоїчній системі зберігають таку інформацію, як форматування, характеристики шрифта тощо. Тому програми, які вміщують графічні та текстові частини, є двоїчними файлами.

Якщо Ви бажаєте підготувати листа до відправки його електронною поштою, потрібно користуватися файлами ASCII, крім тих випадків, коли ви повністю впевнені в тому, що Ваш адресат має відповідне програмне забезпечення щоб прочитати файл.

MIME - мультімедіа електронною поштою. Цей стандарт розроблений для того, щоб забезпечити в Інтернет передачу даних, які крім чистого тексту в форматі ASCII мають бінарні дані.

4.2 Електронна пошта між Інтернет та іншими мережами

Якщо Ви маєте вихід в Інтернет, то можете надсилати електронну пошту не тільки по адресам Інтернет. Багато мереж у світі надає своїм користувачам можливість надсилати свої повідомлення. Ці системи, як правило, працюють з протоколами, які відрізняються від TCP/IP Тому кожне повідомлення коли переходить із однієї системи до іншої, проходить через шлюз, де здійснюється перевід даних у формат, який ця система використовує.

4.3 Що ж таке сучасний пакет E-mail?

Сучасний пакет E-mail має добре організований інтерфейс користувача, який не потребує багато часу і сили для засвоєння, та забезпечує такі функції:

підписи;

адресні книги;

додатки;

поштові скриньки для листів, які входять і виходять;

фільтрацію/маршрутизацію.

5.Високошвидкісні локальні мережі

5.1 Мережа FDDI

Свою назву мережі FDDI одержали від Fiber distributed data interface (Оптоволоконный інтерфейс розподілених даних). З метою широкого впровадження високошвидкісних каналів передачі даних у 1985 р. комітетом ХЗТ9.5 Американського інституту національних стандартів (ANSI) був розроблений стандарт на оптоволоконний інтерфейс розподілених даних. Хоча цей стандарт офіційно називається стандартом ANSI ХЗТ9.5, за ним закріпилася назва FDDI. Згодом стандарт FDDI був прийнятий як міжнародний стандарт ISO 9314.3 метою підвищення ефективності передачі цифрових, звукових і відео даних реального часу в 1986 р. розробили стандарт FDDI II.

Слід підкреслити, що основна увага при розробленні стандарту приділялася питанням підвищення продуктивності і надійності мережі. Перше завдання вирішувалося за рахунок використання високошвидкісних (100 Мбіт/с) оптоволоконних каналів передачі даних і удосконалених протоколів доступу до передавального середовища. Так, на відміну від Ethernet, тут застосовується детермінований метод доступу, який виключає можливість конфліктів. У свою чергу, мережі FDDI застосовується більш ефективний, порівняно із стандартом IEEE 802.5, метод передачі даних, званий раннім звільненням маркера -- ETR (Early token Release). У мережі Token Ring маркер передається після підтвердження одержання даних, а в мережі FDDI станція, що передала дані, звільняє маркер, не чекаючи повернення свого кадру даних. Маркер надходить до наступної станції, дозволяючи їй передавати інформацію. Тобто у мережі FDDI одночасно може циркулювати декілька пакетів даних, переданих різними станціями.

Висока надійність мережі забезпечується здатністю мережі до динамічної реконфігурації своєї структури за рахунок використання подвійного кільця передачі даних і спеціальних процедур керування конфігурацією. Конфігурація змінюється шляхом обходження або ізоляції несправної ділянки мережі. Для реалізації цих можливостей визначається два типи станцій (адаптерів):

* одинарна станція (Single station) -- станція з одним портом вводу-виводу для підключення оптоволоконного кабелю, за допомогою якого може бути утворене тільки одне кільце;

* подвійна станція (Dual station) -- станція з двома портами вводу-виводу оптоволоконного каналу зв'язку, за допомогою яких утворюється два кільцевих тракти передачі сигналів.

Як правило, подвійні станції використовуються для утворення магістрального тракту передачі даних, а одинарні -- для радіального підключення абонентських систем (комп'ютерів).

У FDDI широко використовуються концентратори, які, як і станції, можуть бути з одним або з двома портами вводу-виводу для підключення до магістрального каналу. Подвійні концентратори використовуються на магістральній ділянці мережі, а одинарні концентратори підтримують деревоподібну структуру мережі. Підключення абонентських систем до концентраторів може здійснюватись як за допомогою оптоволоконних каналів, так і за допомогою витих пар провідників. У першому випадку проміжною ланкою виступають одинарні станції. В другому випадку -- спеціальний адаптер, подібний до адаптера мережі стандарту IEEE 802.5. Широкий набір пристроїв різних типів дозволяє підтримувати мережеві структури з різною топологією, від простої кільцевої до складної деревовидно-кільцевої.

Як і більшість стандартів на локальні комп'ютерні мережі, FDDI визначає два нижніх рівні еталонної моделі OSI. На підрівні LLC FDDI використовує стандарт ІЕЕЕ-802.2, що забезпечує сумісність мережі цього типу з іншими локальними мережами. На підрівні МАС FDDI можна розглядати як подальший розвиток стандарту ІЕЕЕ-802.5 на шляху підвищення ефективності використання передавального середовища і розширення функціональних можливостей передачі інформації. При цьому факультативні можливості стандарту ІЕЕЕ-802.5 з організації багаторівневої пріоритетної схеми керування доступом і режим раннього звільнення маркера переведені до розряду обов'язкових.

Стандартом визначено два режими передачі даних: синхронний і асинхронний. У синхронному режимі станція при кожному надходженні маркера може передавати дані упродовж певного часу, незалежно від часу появи маркера. Цей режим звичайно використовується для додатків, чутливих до часових затримок, наприклад у системах оперативного керування та ін.

В асинхронному режимі тривалість передачі інформації пов'язана з приходом маркера і не може продовжуватися довше визначеного часу. Якщо до зазначеного моменту часу маркер не з'явився, передача асинхронних даних взагалі не провадиться. В асинхронному режимі додатково встановлюється декілька (до семи) рівнів пріоритету, для кожного з яких установлюється свій граничний час передачі інформації.

5.2 Мережа 100VG-AnyLAN

Мережа lOOVG-AnyLAN є локальною комп'ютерною мережею деревоподібної топології. Як проміжні вузли мережі використовуються концентратори (повторювачі), а кінцевими вузлами (абонентськими системами) є робочі станції і сервери. Для підтримки багаторівневої структури концентратори мають порти двох видів:

- порти спадних зв'язків, які використовуються для підключення пристроїв нижчих рівнів; до цих портів можуть підключатися як кінцеві вузли, так і концентратори;

- порти висхідних зв'язків, призначені для підключення до концентратора більш високого рівня. Залежно від місця розташування, концентратор може бути кореневим або концентратором рівня, на якому він

Відлік історії безпровідникової мережі слід розташований. Як і для більшості сучасних локальних комп'ютерних мереж, специфікаціями стандартів мережі lOOVG-AnyLAN визначаються канальний і фізичний рівні еталонної моделі OSI. На підрівні LLC використовується стандарт IEEE 802.2. Підрівень МАС і фізичний рівень визначаються за допомогою спеціально розробленого стандарту IEEE 802.12. Кожний з цих рівнів розбитий на два підрівня. Фізичний рівень включає підрівень передачі фізичних сигналів, призначений для полегшення схемної інтеграції з канальним рівнем. Цей підрівень є незалежним від фізичного середовища і часто називається РМІ (Physical Medium Independent). Пїдрівень модуля сполучення з середовищем у значній мірі залежний від характеру фізичного середовища і має іншу назву -- PMD (Physical Medium Dependent).

Відповідно, на фізичному рівні визначаються:

* інтерфейс, незалежний від середовища (МИ), розташований між підрівнями РМІ і PMD;

* інтерфейс, залежний від середовища (MDI), який є фізичним інтерфейсом з передавальним середовищем.

На фізичному рівні технологія мережі lOOVG-AnyLAN підтримує стандарти, прийняті в мережах Ethernet 10Base-T і Token Ring, що забезпечує можливість експлуатації існуючих кабельних інфраструктур цих мереж. Як передавальне середовище використовуються:

* неекранований кабель категорій 3, 4 і 5 (чотири витих пари);

* екранований кабель (дві виті пари);

* оптоволоконний кабель.

Канальний рівень складається з підрівнів LLC і МАС.

Як уже зазначалося, керування логічним каналом визначається стандартом IEEE 802.2, що дозволяє на цьому рівні забезпечити сумісність мережі lOOVG-AnyLAN з іншими локальними мережами, зокрема з Ethernet і Token Ring.

Підрівень LLC визначає два класи керування передачею:

* Class І, що підтримує передачу даних у режимі без встановлення з'єднання і підтвердження прийому;

* Class II, який визначає режим передачі даних із встановленням з'єднання.

Підрівень МАС включає протокол пріоритетів запитів DPP і визначає функції з підготовки каналу передачі даних і формування кадру даних.

Функції підрівня МАС в проміжних і кінцевих вузлах є різними. Зокрема, на кінцевому вузлі здійснюється:

* приєднання властивих підрівню полів до кадру перед пересиланням його на фізичний рівень;

* перевірка наявності помилок передачі в отриманих кадрах даних;

* ініціалізація керування для підрівня передачі фізичних сигналів;

* вилучення властивих підрівню полів після одержання кадру на фізичному рівні до пересилання його на мережевий рівень.

5.3 Мережа Fast Ethernet

Мережа Fast Ethernet є подальшим розвитком мережі Ethernet за рахунок збільшення у 10 разів частоти швидкості передачі. При цьому основні аспекти побудови мережі Ethernet залишилися незмінними. Насамперед це стосується механізму (методу) доступу і формату кадру. Основні відмінності спостерігаються на фізичному рівні і пов'язані з використовуваним передавальним середовищем.

Згідно із стандартом IEEE 802.3u, прийнятим 1995 року, для технології Fast Ethernet залежності від застосовуваного кабелю визначено такі три найменування: 100Base-TX і 100Base-T4 -- для витої пари провідників і 100Base-FX -- для оптоволоконного кабелю.

У системі 100Base-TX використовуються дві пари проводів: одна для передачі, друга-для прийому даних. Специфікація стандарту на фізичне середовище передачі даних ANSI TP-PMD, на якому грунтується застосування витої пари в 100Base-TX, допускає використання неекранованої (UTP) і екранованої (STP) витих пар категорії 5.

Найпоширенішим середовищем є неекранована вита пара. У цьому кабелі пари провідників мають бути завиті уздовж усього кабелю, за винятком його країв, де кабель підключається до роз'ємів. Довжина невитої ділянки не повинна перевищувати 1-1,5 см. Довжина сегментів мережі 100Base-TX на кабелі UTP категорії 5 з хвильовим опором 100 Ом не повинна перевищувати 100 м. Це обмеження зумовлене допустимим часом затримки поширення сигналу в передавальному середовищ і є досить жорстким. З метою зниження впливу перешкод використовується біполярна передача: по одному з проводів передається позитивний, по другому -- негативний потенціал. На відміну від стандарту ANSI TP-PMD у 100Base-TX використовується така ж розпайка, як і в 10Base-T. Це дозволяє заміняти інтер-фейсні плати без перепаювання або заміни кабелю.

Стандартом 100Base-TX передбачене використання екранованої витої пари з хвильовим опором 150 Ом і стандартних дев'яти штиркових конвекторів D-типу.

Специфікацією 100Base-T4 також визначена довжина кабелю: до 100 м. При цьому допускається використання кабелів UTP категорій 3, 4 і 5, проте рекомендується використання кабелю категорії 5. З чотирьох пар, що використовуються, дві призначені для односпрямо-ваної передачі, а дві інші -- для двоспрямованої передачі. Пари позначаються таким чином:

* ТХ -- для односпрямованої передачі даних; RX -- для односпрямованого прийому;

* ВІ -- інші дві пари для обміну даними в обох напрямках.

З метою зниження рівня перешкод при підключенні кабелю 100Base-T4 необхідно дотримуватися правила перехресного з'єднання пар провідників. Обидві специфікації обмежують діаметр мережі (максимальна відстань між будь-якими двома абонентами) величиною 200 м.

Специфікація на оптоволоконний інтерфейс 100Base-FX визначає довжину сегмента до 100 м, проте допустимий діаметр мережі дорівнює 412 м. За специфікацією 100Base-FX для кожного з'єднання необхідний двожильний багатомодовий оптоволоконний кабель, сигнал у якому передається одним волокном, а приймається другим. Ці волокна мають перехресне з'єднання і тому позначаються як RX і ТХ. Існує багато видів волоконно-оптичних кабелів, від простих двоволоконних до спеціальних багатоволоконних. Найчастіше в сегментах 100Base-FX використовується багатомодовий кабель MMF з оптоволокном товщиною 62,5 мікрона і зовнішньою ізоляцією завтовшки 125 мікрон і позначається як 62,5/125.

5.4Безпровідні мережі

Починати з 2001 р. логічніше всього почати з домінуючої технології 802.11, точніше, з численного сімейства технологій, що останнім часом ховається за цими цифрами. Нагадаю, що в 1999 р. зусилля однієї з робочих груп інституту IEEE завершилися прийняттям відразу двох конкуруючих стандартів, що прийшли на зміну базової специфікації 802.11, давно реалізованої в безлічі комерційних продуктів. У стандарті 802.11b були визначені параметри безпровідних мереж для роботи в частотному діапазоні 2,4 Ггц із максимальною швидкістю модуляції 11 Мбіт/з, причому спостерігається в реальних мережах «корисна» пропускна здатність виявляється майже вдвічі нижче. Більш «просунутий» стандарт 802.11a розрахований на використання трьох частотних смуг шириною 100 Мгц у діапазоні 5 Ггц. Найбільша швидкість модуляції в мережах 802.11a складає 54 Мбіт/с, однак і цього разу значення пропускної здатності, з якими прийдеться мати справа користувачам, навряд чи перевищать половину даної величини.

Як можна бачити навіть із приведеної короткої характеристики, два появившихся стандарти несумісні один з одним. (Недарма перед твердженням остаточних специфікацій члени кожного з підкомітетів у складі IEEE 802.11 Task Group не утомлювалися критикувати представників протилежного «табору».) Ця несумісність обумовлена не тільки розбіжністю діапазонів робочих частот, але і розходженням використовуваних методів кодування. Щоб забезпечити приблизно 20-кратний ріст пропускної здатності в порівнянні з «старими добрими» мережами 802.11, розроблювачам специфікацій 802.11a довелося відмовитися від перевіреного методу розширення спектра і замінити її на схему кодованого ортогонального частотного мультиплексирования (Coded Orthogonal Frеquеnсу Division Multiplexing, COFDM), коли одна високочастотна несуща розділяється на трохи піднесуть.

Ряд обставин привів до того, що устаткування стандарту 802.11b (інше позначення -- Wi-Fi, від англійського Wireless Fidelity) значно випередило в скоренні ринку продукти, що задовольняють специфікаціям 802.11a. Свою роль зіграли велика пропрацьованність технології, готовність елементної бази, ціновий фактор і, нарешті, нечисленність організацій, де дійсно необхідні швидкості передачі трафика по радиоефиру, вимірювані десятками мегабит у секунду. У результаті вже через лічені місяці після прийняття двох конкуруючих стандартів ринок виявився буквально затоплений устаткуванням для мереж 802.11b. Сьогодні його випускають десятки компаній, причому з'являються всі нові і нові моделі. За деякими оцінками, у світі установлено вже близько 15 млн систем 802.11b.

Поступово була вирішена і проблема несумісності продуктів різних виробників, що для безпровідних мереж передачі даних коштує не менш гостро, чим для більш традиційних провідних мереж. Дозволяти виникаючі тут протиріччя покликаний консорціум сумісності безпровідного Ethernet (Wireless Ethernet Compatibility Alliance, WECA), для чого їм розроблена спеціальна програма сертифікації устаткування 802.11b. Судячи з інформації, опублікованої на сайті Web цієї організації в січні поточного року, сертифікат Wi-Fi вже одержали більш 250 пристроїв різних компаній.

На думку багатьох аналітиків, домінування мереж 802.11b протриває ще кілька років. Проте перший дисонанс у сформовану ідилічну картину був внесений у вересні 2001 р., коли мало кому відома американська компанія Atheros Communications оголосила про початок оптових постачань комплекту з двох мікросхем AR5000, на основі яких можна створювати устаткування для безпровідних локальних мереж 802.11а. Її пропозицією не преминули скористатися деякі виробники готових мережних пристроїв: уже через пару місяців після згаданого анонса продукти стандарту 802.11a випустили Actiontec Electronics, Intel, Intermec, Proxim, SMC і TDK. Є всі підстави думати, що цей список поповниться новими іменами в самий найближчий час. У всякому разі свої плани почати постачання устаткування 802.11a ще до настання літніх місяців обнародували D-Link, NetGear, UltraDevices і інші компанії.

Цікаво, що найбільші виробники мережного устаткування, включаючи Agere System, Cisco Systems і Enterasys Networks, явно не квапляться випускати продукти на базі нового стандарту і навіть анонсувати їх. Причини такого поводження називаються самі різні: недостатньо високий рівень захищеності даних у мережах на 54 Мбіт/з, проблеми з дотриманням міжнародних норм на випромінювану потужність, відсутність зворотної сумісності, непридатність існуючих рішень для застосування в корпоративному середовищі (через обмежену функціональність), явно низький ринковий попит, нездатність моделей різних постачальників взаємодіяти один з одним. До речі, останньою проблемою займеться усі той же консорціум WECA: можливо, вже в червні буде даний старт новій програмі сертифікації Wi-Fi5.

Аналізуючи фактори, що змусили деяких постачальників обрати вичікувальну тактику, не слід скидати з рахунків і політичні мотиви. Компанія Atheros, піонер у створенні елементної бази для устаткування 802.11a, у свій час одержала великі інвестиції від Proxim, тому не дивно, що мікросхеми AR5000 не поставляються головним конкурентам останньої. До того ж Atheros заручалася підтримкою Intel і Sony, що дотримують досить твердої маркетингової тактики. Як би те ні було, Cisco Systems зробила ставку на іншого виробника електронних компонентів, приобретя в лютому минулого року компанію Radiata Communications, а тієї, очевидно, поки не удалося вирішити всі технічні проблеми реалізації положень нового стандарту в «залозі». Можливо, саме тут криються щирі причини нехарактерної для Cisco флегматичності в освоєнні ринкового сегмента, що зароджується.

Утім, не виключено, що ситуація зміниться швидше, ніж можна було б очікувати. У листопаду 2001 р. німецька Systemonic придбала права на частину розробок американської компанії Raytheon і вже наприкінці року випустила перші зразки повного комплекту мікросхем, необхідні для створення безпровідного устаткування наступного покоління. Їхні оптові постачання почнуться, як говориться, днями, і ця подія обіцяє стати додатковим стимулом до активного розвитку сектора устаткування для мереж 802.11a. Зважаючи на все, його масовий випуск почнеться все-таки в 2003 р. А можливо, і пізніше, оскільки в найближчі місяці на ринку безпровідних технологій можуть відбутися чергові радикальні зміни.

Слідом за появою перших продуктів стандарту 802.11a у закордонній пресі стали публікуватися наполегливі ради користувачам не поспішати з переходом на нову технологію. Висловлювана при цьому аргументація зводиться до того, що в надрах сімейства 802.11 визріває ще один стандарт, що, будучи прийнятий на озброєння мережною індустрією, здатний скласти гідну конкуренцію 802.11а. Мова йде про специфікацію 802.11g, робота над який у стінах IEEE почалася в березні 2000 р. Основна мета цієї діяльності -- розширити фізичний рівень мереж 802.11b для значного збільшення пропускної здатності. Спочатку передбачалося, що швидкість модуляції сигналу в мережах 802.11g буде досягати 20 Мбіт/з, однак сьогодні називаються набагато більші значення.

Процес твердження стандарту 802.11g довгий час гальмував протиборство між двома різними технологічними концепціями. Незабаром після утворення підкомітету 802.11g корпорація Texas Instruments запропонувала прийняти в якості базовий метод двоичной згортки (Packet Binary Convolution Coding, PBCC) з єдиною робочою частотою модулируемого сигналу. Автором альтернативного варіанта, заснованого на вже згадуваній технології OFDM з декількома несущими, стала компанія Intersil. Остаточний вибір на користь ортогонального частотного мультиплексування був зроблений тільки в листопаду 2001 р. З метою забезпечення сумісності з устаткуванням 802.11b, у мережах нового типу допускається застосування ще одного алгоритму -- комплементарної кодової маніпуляції (Complementary Code Keying, CCK). Очікується, що за прийняттям попередніх специфікацій 802.11g цього року піде, нарешті, їхнє остаточне твердження як галузевий стандарт.

Але, як це частенько буває, виробники поспішили загодя анонсувати нові продукти. Не дивно, що в передовиках виявилася усі та ж Intersil. У січні цього року компанія оголосила про намір уже в другому кварталі випустити досвідчені зразки набору мікросхем PRISM GT для безпровідних мереж 802.11g, а в третьому -- почати їхнє масове виробництво. За інформацією виготовлювача, зазначені мікросхеми забезпечать радіус дії крапки доступу, на 30% більший, ніж в існуючих пристроїв 802.11a, при зниженому енергоспоживанні. Однак головна перевага мереж 802.11g перед 802.11a полягає навіть не в цьому.

Устаткування 802.11g буде функціонувати в діапазоні частот 2,4 Ггц, а виходить, зможе легко «уписатися» у вже існуючі мережні середовища на базі 802.11b і навіть основного стандарту 802.11. Підтримка алгоритму модуляції OFDM дозволяє сподіватися, що теоретична пропускна здатність складе в них усі ті ж 54 Мбіт/с. Більш того, апологети технології 802.11g не утомлюються повторювати, що різноманіття припустимих схем модуляції дасть можливість виробникам мережного устаткування випускати комбіновані пристрої з підтримкою всіх трьох стандартів -- a, b і g.

Комусь подібна перспектива покажеться неправдоподібної, однак уже зроблені перші кроки для її практичної реалізації. Так, британська компанія Synad Technologies у грудні минулого року повідомила про завершення розробки набору мікросхем Mercury5G з одночасною підтримкою стандартів 802.11a і b. Ці електронні компоненти призначені для створення клієнтських пристроїв, здатних функціонувати в мережах обох типів. Покладена в їхню основу архітектура AgileRF забезпечує автоматичний вибір оптимального варіанта підключення, коли користувач знаходиться в зоні дії відразу декількох мереж. Клієнтський пристрій саме установить з'єднання з мережею, що забезпечила кращий зв'язок, і протягом усього сеансу буде постійно порівнювати характеристики поточного з'єднання з параметрами альтернативної мережі, щоб здійснити прозоре переключення на неї в разі потреби. Перші партії Mercury5G повинні відправитися виробникам мережного устаткування в цьому кварталі, так що уже в другій половині року на ринку можуть з'явитися двухстандартние двухдиапазонние радиокарти на базі розробок Synad.

Synad Technologies не самотня у своїх вишукуваннях. Американська Symbol Technologies представила в січні аналогічну розробку і навіть перший комбінований вузол доступу Mobius 5224 на її основі. Модифікації останнього повинні, зокрема, дозволити сполучати в рамках однієї беспроводной локальної мережі нові сегменти 802.11a із уже наявними на базі технологій 802.11b чи 802.11FH (тобто базового варіанта 802.11, що передбачає використання широкополосного сигналу з програмувальною перебудовою частоти).

Визнаючи безумовну перспективність розробок Synad і Symbol Technologies, варто помітити, що підтримка одним комплектом мікросхем або пристроєм на його основі двох стандартів -- далеко не рекорд. Восени минулого року компанії Spirea AB і embedded wireless devices (ewd) анонсували початок спільної розробки компонентів мікросхем для безпровідних мереж відразу чотирьох стандартів для роботи в частотних діапазонах 2,4, 5,2 і 5,8 Ггц. Крім 802.11a і b у списку присутні європейський стандарт HiperLAN і навіть Bluetooth (зв'язок із застосуванням цієї технології стане можливої після установки додаткового радиомодуля).

Особлива увага виробників до європейського беспроводной технології виникло невипадково. Стандарти і специфікації, розроблювальні в надрах IEEE 802.11 Task Force, насамперед розраховані на ринок США і Канади. Якщо говорити про устаткування 802.11b, те його застосування за межами Північної Америки особливих проблем не викликає, адже частотний діапазон 2,4 Ггц відноситься до нелицензируемим у багатьох країнах (але тільки не в Росії!). З мережами 802.11a справа обстоїть складніше.

По-перше, у США й у європейських державах частотні смуги, виділені для цілком. Точніше, ідентичні тільки дві нижніх ділянки спектра (5,15-5,25 і 5,25-5,35 Ггц), тоді як верхні розрізняються (5,725-5,825 Ггц у США і 5,470-5,570 Ггц у Європі). По-друге, у Європі існує власна технологія побудови безпровідних мереж High Performance Radio Local Area Network Type 2 (HiperLAN/2), просува активно консорціумом HiperLAN/2 Global Forum (H2GF) і в лютому 2000 р. затверджена інститутом ETSI як європейський стандарт.

Подібно специфікації 802.11a, європейський стандарт передбачає застосування алгоритму OFDM, а це означає, що максимальна швидкість модуляції сигналу в мережах HiperLAN/2 складає 54 Мбіт/с. Обидві технології підтримують многоадресную розсилання й орієнтовані на використання єдиної несущий, хоча в HiperLAN/2 додатково передбачений динамічний вибір частоти. На жаль, на цьому перелік збігів закінчується. На відміну від мереж 802.11a у середовищі HiperLAN/2 метод доступу до середовища передачі орієнтований на встановлення з'єднань, передбачені механізми забезпечення Qo і можливість взаємодії з провідними мережами різних типів, маються убудовані засоби керування потужністю радіосигналу, функції шифрування трафика, аутентификации клієнтів і т.д. чи Треба говорити, що стандарт HiperLAN/2 споконвічно розроблявся з орієнтацією на розподіл частот у діапазоні 5 Ггц, що прийнято в європейських країнах?

Несумісність технології Hiper LAN/2 з 802.11a з її попередниками в самий найближчий час може привести до роздробленості ринку. Корпорація Ericsson ще наприкінці 2000 р. продемонструвала прототипи устаткування для мереж HiperLAN/2, торік про підтримку європейського стандарту в сімействі продуктів Harmony повідомила компанія Proxim. Згідно з деякими прогнозами, масові постачання продуктів для HiperLAN/2 можуть початися цим летом, але для американських виробників устаткування 802.11a європейський континент буде закритий.

Як показав минулий рік, ця проблема хвилює телекомунікаційні компанії по обох сторони Атлантичного океану. Наприкінці грудня після тривалого періоду дискусій ETSI прийняв метод модуляції OFDM як основу нового стандарту High Performance Radio Metropolitan Area Networks (HiperMAN), де будуть визначені функціональні вимоги і єдиний радиоинтерфейс розподілених широкополосних систем безпровідного доступу, що працюють у діапазоні частот 2-11 Ггц. OFDM стане базовою технологією передачі даних на фізичному рівні в мережах HiperMAN. Представники ETSI заявляють про те, що при роботі над новим стандартом передбачається використовувати відповідні розділи майбутнього американського стандарту IEEE 802.16a для широкополосних безпровідних мереж передачі даних того ж частотного діапазону. Більш того, трохи раніше надійшло повідомлення про готовність ETSI скорегувати стандарт для безпровідних локальних мереж HiperLAN/2 з урахуванням окремих положень специфікації 802.11a.

Зусилля молодих компаній-розроблювачів електронних компонентів, спрямовані на створення наборів мікросхем з підтримкою декількох стандартів (а крім уже згаданих Spirea і ewd до їхнього числа можна прилічити канадську Wi-LAN, ізраїльську CommPrize і ряд інших), цілком відповідають цієї тенденції. Восени 2001 р. у гру вступила «важка артилерія»: Compaq, Intel і Microsoft створили спеціальну робочу групу з метою дослідження потенційних обсягів і перспектив розвитку ринків устаткування для кожного з двох конкуруючих стандартів.

Можливо, зусилля стандартообразующих організацій і комп'ютерних гігантів згладять гостроту проблеми. Але не варто думати, начебто європейці готові без бою здати свої позиції. Практично одночасно з ухваленням принципового рішення по стандарті HiperMAN інститут ETSI і консорціум H2GF оголосили про спільну ініціативу, спрямованої на вироблення єдиної технічної політики і консолідацію зусиль виробників безпровідних систем, реалізація якої дозволила б в одних випадках забезпечити взаємодія з наступаючої через океан технологією 802.11a, а в інших -- відкрито протистояти їй.

Деяка непослідовність у діях ETSI цілком з'ясовна. Протекціонізм стосовно європейських виробників не повинний стримувати загальний розвиток ринку безпровідних мереж, але ж ні для кого не секрет, що моду тут визначають американські компанії. Тим часом, як можна бачити з приведеної в попередньому розділі короткої характеристики технології HiperLAN/2, у функціональному відношенні вона поки явно випереджає аналогічну розробку IEEE. Узяти ті ж механізми Qo: якщо в європейський стандарт вони закладалися споконвічно (оскільки сама технологія HiperLAN створювалася як беспроводной аналог ATM), те в сімействі 802.11 відповідні протоколи ще тільки має бути створити. Утім, і в цій області минулий рік виявився симптоматичним.

Проблема підтримки Qo у безпровідних середовищах виникла порівняно недавно. Кілька років назад нікому й у голову не приходило, що по радиоефиру можна передавати що-небудь, крім звичайних даних. Однак стрімке зростання пропускної здатності безпровідних мереж привів до проникнення в них змішаного трафика. Як показали перші тести устаткування 802.11a, у так називаній ближній зоні реальна швидкість передачі трафика складає 13-15 Мбіт/с.

Приведені значення відносяться до мережі, що цілком відповідає стандарту 802.11a. Тим часом перші виробники високошвидкісних безпровідних пристроїв (Proxim, SMC) передбачили у своїх продуктах так називані турборежими, при включенні яких швидкість модуляції сигналу в радіоканалі може досягати 72, а те і 108 Мбіт/с. Якщо не зневажати цими технічними хитруваннями, то за певних умов реальну швидкість передачі інформації можна підняти приблизно в півтора разу. Поки подібні турборежими, будучи патентованими розробками відповідних компаній, підтримуються тільки в мережах, цілком побудованих на базі устаткування одного виробника. Можна припустити, що через якийсь час вони одержать широке поширення, і швидкість передачі даних на рівні 20 Мбіт/з у мережах 802.11a (чи HiperLAN/2) стане звичайною справою. У свою чергу, це відкриє дорогу в беспроводние мережі мультимедийним додаткам. Як показують події останніх місяців, подібна перспектива -- не за горами.

У листопаду 2001 р. на каліфорнійській виставці Western Cable Show компанія Magis Networks вперше у світі організувала передачу телевізійного сигналу високої чіткості (High-Definition TV, HDTV) по беспроводной мережі 802.11a. У ролі передавального пристрою виступала крапка доступу, у ролі приймаючого -- вилучений термінал. В обох продуктах використовувалися мікросхеми виробництва Magis, засновані на розробленій нею технології Air5. Інженерам компанії удалося перевершити технічні параметри стандарту 802.11a і одночасно передати через радиоефир кілька потоків цифрового кабельного і супутникового відео, цифрового аудио, а також звичайного трафика IP, причому без утрати якості.

Канадська компанія Sensate торік випустила програмну платформу і проміжне програмне забезпечення 2nR-Musiker для безпровідних додатків Audio-over-IP (AoIP). Виробник надає ліцензії на свою технологію розроблювачам апаратних і програмних засобів, розраховуючи істотно розширити спектр можливих додатків технології AoIP. Система 2nR-Musiker наділяє мережу 802.11b багатьма рисами, властивим мережам мобільного зв'язку, включаючи функції виявлення й аутентификации абонентів, роумінгу, кеширования даних і забезпечення Qo.

І Magis Networks, і Sensate застосовують власні механізми приоритезации трафика. Розробкою же стандартів для засобів Qo у безпровідних мережах займається підкомітет IEEE 802.11e. Довгий час діяльність цього підрозділу не відрізнялася особливим динамізмом, можливо, тому, що була орієнтована на підтримку додатків пакетної передачі голосу в мережах RadioEthernet. У листопаду 2000 р. IEEE затвердила специфікацію Qo Baseline, де були визначені основні процедури обробки мультимедийного трафика в безпровідних мережах передачі даних, механізми корекції помилок, алгоритми диспетчеризації каналів для забезпечення підвищеної надійності передачі й інтерфейси взаємодії з протоколами вишележащих рівнів. Для динамічного керування пропускною здатністю, виділюваної різним видам трафика, передбачалося використовувати протокол резервування ресурсів (Resource Reservation Protocol, RSVP). Самої ж специфікації 802.11e повинні були базуватися на технології Whitecap компанії ShareWare.

Однак на грудневому засіданні підкомітету IEEE 802.11e були прийняті пропозиції по забезпеченню якості обслуговування в безпровідних мережах, внесені комітетом з беспроводним технологій (WWG) консорціуму 1394 Trade Association. Вони охоплюють базові компоненти послуг рівня MAC, що регламентують доступ до радіоканалу відповідно до визначеної схеми диспетчеризації. Зазначені компоненти в першу чергу розраховані на взаємодію з протоколом 802.11a PHY у діапазоні 5 Ггц, хоча не суперечать і специфікації 802.11b.

Процес стандартизації безпровідних механізмів Qo, здається, зрушився з мертвої крапки, але група 802.11e знаходиться на самому початку шляху. Це визнають і її керівники. Пропозиції по адаптації наробітків консорціуму 1394 TA до беспроводним мереж поки носять концептуальний характер, а засновану на них і готову до застосування технологію ще має бути створити.

Не цілком ясна і перспектива попередніх вишукувань у даній області. Не чекаючи появи остаточного стандарту, Panasonic, Netgear і деякі інші виробники приступили до випуску устаткування на базі технології Whitecap. Чи означає початок співробітництва з WWG повна зміна чи курсу два підходи будуть гармонійно доповнювати один одного?

Незадовго до згаданого грудневого засідання підкомітету IEEE компанія Cirrus Logic на виставці Comdex Fall 2001 продемонструвала перші в галузі продукти з підтримкою розроблювальних стандартних механізмів Qo у безпровідних мережах. Сімейство Bodega засноване на власному протоколі компанії Whitecap2, що ще зовсім недавно планувалося включити до складу специфікацій 802.11e. Випередивши своїх конкурентів, Cirrus Logic мала намір почати серійне виробництво продуктів з нового сімейства в першій половині цього року. Наскільки доцільним виявиться такий крок в умовах, що змінилися, сказати важко.

Але як би те ні було, прийняття остаточного стандарту, що регламентує процедури забезпечення якості сервісу в безпровідних мереж, більше не може відкладатися на довгі роки. Є підстави припустити, що ця довгоочікувана подія відбудеться в 2003 р. А к того часу саме приспіють різноманітні пристрої для мереж 802.11a, 802.11g і HiperLAN/2, будуть радикально удосконалені алгоритми захисту трафіку в радіоефірі, одержать широке поширення беспроводні локальні мережі загального користування, організація роумінгу безпровідних додатків перестане виглядати як нерозв'язна задача, оператори стільникового зв'язку повернуться обличчям до беспроводних мереж передачі даних, і узагалі весь беспровідний світ змінить свій вигляд до невпізнанності.

Тести

1) У якому році Defence Advanced Research Agensy (DARPA) за завданням міністерства оборони США приступило до проекту по створенню експериментальної мережі передачі пакетів.

А)1975 рік

Б)1969 рік

В)1961 рік

2) У якому році вийшов перший стандарт для протоколів TCP/IP, що ввійшов у Military Standarts (MIL STD),

А)1983 рік

Б)1969 рік

В)1961 рік

3)В якому році ARPANET перетворилася з експериментальної мережі в робочу мережу.

А)1975 рік

Б)1969 рік

В)1961 рік

4) В якому році ARPANET припинила своє існування.

А)1991

Б)1983

В)1992

5)Який протокол відрізняє Internet від інших мереж.

А)TCP/IP.

Б) SLIP

В) UDP

6)Які протоколи відносяться до протоколів логічного рівня SLIP (Serial Line Interface Protocol) і PPP (Point to Point Protocol).

А) TCP/IP.

Б) SLIP

В) UDP

7) Які протоколи належать до протоколів транспортного рівня.

А) TCP/IP, UDP

Б) SLIP

В) UDP

8)Скільки байт займає адреса в Інтернеті

А)4

Б)5

В)6

9)Які протоколі відносяться до таблиць маршрутизації.

А) ІСМР, RIP, OSPF

Б) TCP/IP, UDP

В) UDP

10)Скільки в мережі в Internet існує рівнів взаємодії між комп'ютерами.

А)5

Б)6

С)7

11)Які рівні взаємодії існують між комп'ютерами.

А)фізичний, мережний

Б)логічний, транспортний

В) фізичний, логічний, мережний, транспортний, рівень сеансів зв'язку, представницький і прикладний рівень.

12)Які сервіси інтернет ви знаєте.

А) Сервіс WWW

Б) E-MAIL

В) Сервіс WWW, E-MAIL, NEWS/USENET, FTP, Telnet, Proxy-сервер

13)Назвати всі загальні функції Електронної пошти.

А)підготовка тексту

Б)читання і збереження кореспонденції

В)знищення кореспонденції, ввод адреси, коментування і пересилка інформації, функції імпорту для інших файлів, підготовка тексту, читання і збереження кореспонденції

14)Які функції включає в себе сучасний пакет E-mail?

А)підписи

Б)адресні книги

В) підписи, адресні книги, додатки, фільтрацію/маршрутизацію.

15)З якого року починається епоха безпровідних мереж

А)2000 рік

Б)2001 рік

В)2002 рік

16)В якому році розробили стандарт FDDI II.

А)1986 році

Б)1991 році

В)1990 році

17)Який стандарт визначає підрівень МАС.

А) IEEE 802.11e

Б)IEEE 802.16a

В)IEEE 802.12.

18) В якому році комітетом ХЗТ9.5 Американського інституту національних стандартів (ANSI) розробив стандарт на оптоволоконний інтерфейс розподілених даних.

А)1985

Б)1979

В)1983

19) Яка швидкість була визначена у стандарті 802.11b

А)17 Мбіт/з

Б)11 Мбіт/з

В)14 Мбіт/з

20)В якому році корпорація Ericsson продемонструвала прототипи устаткування для мереж HiperLAN/2.

А)2000 р.

Б)2001 р.

В)2003 р.

Використана література

1. Компьютер Пресс N2 1996г.

2. Компьютер Пресс N4 1997г.

3. Computer Week Москва N17(223) 2002г.

4. Cheswick W.R., Bellovin S.M. Firewalls and Internet Security: Repelling the Wily Hacker. - Addison-Wesley, 2003. - 275 c.

5. Гилстер П. Новый навигатор Internet: Пер с англ. -Киев: Диалектика, 1999- 495 c.

6. Кент П. Internet / Пер. c англ. В.Л. Григорьева. - М.: Компьютер, ЮНИТИ, 1996. - 267 c.

7. Нольден М. Ваш первый выход в Internet: Для начинающих пльзователей Internet и широкого круга пользователей PC / Гл. ред. Е.В. Кондукова; Пер с нем. К.А. Шиндер. - Спб.: ИКС, 1996. - 238 с.

8. Левин В.К. Защита информации в информационно-вычислительных cистемах и сетях // Программирование. - 1994. - N5. - C. 5-16.

9. Фролов А.В., Фролов Г.В. Глобальные сети компьютеров. Практическое введение в Internet, E-mail, FTP, WWW, и HTML, программирование для Windiws Sockets. - Диалог - МИФИ, 1996. - 283 c.

10. Фигурнов В.Э. "IBM РС для пользователя".

11. www.yandex.ru

12. www.rambler.ru.

13. www.yahoo.ru


Подобные документы

  • Інтернет – об’єднання комп’ютерних мереж. Хронологія розвитку Інтернету. Протокол — спосіб взаємодії, обміну даними між комп'ютерами при роботі у мережі. Найпопулярніші служби Інтернету. Веб-сторінки, гіперпосилання та домени. Приклад типової IP-адреси.

    презентация [1,7 M], добавлен 02.04.2013

  • Локальні мережні ресурси. Класифікація супутників зв'язку за висотою орбіти. Максимальна швидкість роботи, яка забезпечується технологією Інтернет. Загальний доступ до принтера користувачам ЛОМ. Обмін інформацією між користувачами комп'ютерної мережі.

    контрольная работа [29,2 K], добавлен 19.07.2011

  • Історія розвитку мережі Інтернет, можливості її практичного використання. Місце України у формуванні ресурсів "всесвітньої павутини". Правові основи використання Інтернету в Україні. Види доступу до мережі. Мережа Інтернет в Україні: сучасний стан.

    курсовая работа [145,9 K], добавлен 07.10.2012

  • Історія виникнення та розвитку мережі Інтернет. Загальні принципи роботи та основні функції всесвітньої мережі. Законодавче та правове регулювання інформаційної діяльності. Дослідження досвіду України у формуванні інформаційно-комунікативного суспільства.

    дипломная работа [841,9 K], добавлен 15.03.2014

  • Сучасний розвиток мережі Інтернет: становлення всесвітньої мережі в реаліях нашого часу, розвиток послуг. Становлення мережі Інтернет в нашій державі, сучасний стан та проблематика. Державна політика в галузі розвитку "всесвітньої павутини" в Україні.

    курсовая работа [58,0 K], добавлен 06.05.2010

  • Використання мережі із топологією "розподілена зірка", витої пари та концентраторів (для сполучення), мережевої карти із роз'ємами типу RG-45, встановлення операційної системи та монтаж мережі комп'ютерної лабораторії із підключенням до Інтернету.

    контрольная работа [1,0 M], добавлен 12.06.2010

  • Поняття Інтернету, його структура та головні елементи, принципи існування та діяльності часток. Імена комп'ютерів та служба. Кеш і мережа, взаємозв'язок. Proxies, або доступ до світу через посередника. Безпечна передача даних, її принцип та інструменти.

    реферат [18,9 K], добавлен 03.06.2011

  • Поняття та завдання комп'ютерних мереж. Розгляд проекту реалізації корпоративної мережі Ethernet шляхом створення моделі бездротового зв’язку головного офісу, бухгалтерії, філій підприємства. Налаштування доступу інтернет та перевірка працездатності.

    курсовая работа [2,2 M], добавлен 20.03.2014

  • Загальна характеристика та опис фізичної структури мережі. IP-адресація комп’ютерів та обладнання, що використовується. Операційна система сервера. Розрахунок довжини кабелю та коробу. Операційна система сервера, материнська плата, вартість обладнання.

    курсовая работа [35,5 K], добавлен 28.05.2015

  • Глобальні комп’ютерні мережі. Мережа Internet, її засновники. Задачі протоколів управління передачею та IP-міжмережного, порядок роботи їх роботи. Поняття електронної адреси. Доменна система імен. Основні види Internet-послуг. Електронна пошта E-mail.

    презентация [2,8 M], добавлен 22.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.