Глобальные сети
Вычислительные глобальные сети и другие виды территориальных сетей передачи информации. Обобщенная структура и функции глобальной сети. Связи на основе выделенных линий, протоколы канального уровня. Глобальные связи на основе сетей с коммутацией каналов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | книга |
Язык | русский |
Дата добавления | 28.01.2010 |
Размер файла | 4,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Расширяемость протокола. Под расширяемостью понимается как возможность включения новых протоколов в стек РРР, так и возможность использования собственных протоколов пользователей вместо рекомендуемых в РРР по умолчанию. Это позволяет наилучшим образом настроить РРР для каждой конкретной ситуации.
Независимость от глобальных служб. Начальная версия РРР работала только с кадрами HDLC. Теперь в стек РРР добавлены спецификации, позволяющие использовать РРР в любой технологии глобальных сетей, например ISDN, frame relay, Х.25, Sonet и HDLC.
Переговорная процедура протоколов LCP и NCP может и не завершиться соглашением о каком-нибудь параметре. Если, например, один узел предлагает в качестве MTU значение 1000 байт, а другой отвергает это предложение и в свою очередь предлагает значение 1500 байт, которое отвергается первым узлом, то по истечении тайм-аута переговорная процедура может закончиться безрезультатно.
Возникает вопрос - каким образом два устройства, ведущих переговоры по протоколу РРР, узнают о тех параметрах, которые они предлагают своему партнеру? Обычно у реализации протокола РРР есть некоторый набор параметров по умолчанию, которые и используются в переговорах. Тем не менее каждое устройство (и программа, реализующая протокол РРР в операционной системе компьютера) позволяет администратору изменить параметры по умолчанию, а также задать параметры, которые не входят в стандартный набор. Например, IP-адрес для удаленного узла отсутствует в параметрах по умолчанию, но администратор может задать его для сервера удаленного доступа, после чего сервер будет предлагать его удаленному узлу.
Хотя протокол РРР и работает с кадром HDLC, но в нем отсутствуют процедуры контроля кадров и управления потоком протокола HDLC. Поэтому в РРР используется только один тип кадра HDLC - ненумерованный информационный. В поле управления такого кадра всегда содержится величина 03. Для исправления очень редких ошибок, возникающих в канале, необходимы протоколы верхних уровней - TCP, SPX, NetBUEl, NCP и т. п.
Одной из возможностей протокола РРР является использование нескольких физических линий для образования одного логического канала, так называемый транкинг каналов. Эту возможность реализует дополнительный протокол, который носит название MLPPP (Multi Link РРР). Многие производители поддерживают такое свойство в своих маршрутизаторах и серверах удаленного доступа фирменным способом. Использование стандартного способа всегда лучше, так как он гарантирует совместимость оборудования разных производителей.
Общий логический канал может состоять из каналов разной физической природы. Например, один канал может быть образован в телефонной сети, а другой может являться виртуальным коммутируемым каналов сети frame relay.
2.4 Использование выделенных линий для построения корпоративной сети
Для связи двух локальных сетей по арендуемому или собственному выделенному каналу обычно используются мосты или маршрутизаторы. Эти устройства нужны для того, чтобы по выделенному каналу пересылались не все кадры, циркулирующие в каждой локальной сети, а только те, которые предназначены для другой локальной сети.
Схема установки моста или маршрутизатора в этом случае однотипна (рис. 14). Сначала необходимо решить проблему физического сопряжения выходного порта моста или маршрутизатора с аппаратурой передачи данных, то есть DCE, подключаемой непосредственно к абонентскому окончанию линии. Если канал аналоговый, то это интерфейс с модемом, а если цифровой - то с устройством DSU/CSU. Интерфейс определяется требованиями DCE - это может быть RS-232C для низкоскоростных линий или же RS-449 или V.35 для высокоскоростных каналов типа Т1/Е1. Для канала ТЗ/ЕЗ потребуется наличие интерфейса HSSI.
Рис. 14. Соединение сетей с помощью выделенного канала
Некоторые устройства имеют программно настраиваемые последовательные интерфейсы, которые могут работать и как RS-449/V.11, и как RS-449/V.10, и как V.35.
На рис. 14 выбрано в качестве примера соединение через цифровой канал Е1, поэтому мост/маршрутизатор использует для подключения к каналу устройство DSU/ CSU с внутренним интерфейсом RS-449 и внешним интерфейсом G.703. Часто крупные маршрутизаторы имеют модули со встроенным интерфейсом G.703, тогда необходимость в устройстве DSU/CSU отпадает. Если же выделенный канал был бы аналоговым, то в качестве DCE был бы необходим модем, поддерживающий режим работы по выделенной линии, причем кроме других различных критериев (скорость, контроль ошибок, компрессия) необходимо учитывать возможность модема работать по предоставленному абонентскому окончанию: 4-проводному или 2-проводному.
После решения проблем физического уровня удаленные мосты готовы к работе. После включения каждый мост начинает передавать все кадры из своей локальной сети в выделенный канал и одновременно (так как практически все выделенные каналы дуплексные) принимать кадры из выделенного канала. На основании проходящего трафика каждый мост строит адресную таблицу и начинает передавать в выделенный канал кадры только тем станциям, которые действительно находятся в другой сети, а также широковещательные кадры и кадры с неизвестными МАС - адресами. Современные удаленные мосты при пересылке кадров локальных сетей упаковывают их в кадры протокола РРР. Переговорная процедура, которую ведут мосты при установлении РРР-соединения, сводится в основном к выбору параметров канального уровня с помощью протокола LPC, а также к взаимной аутентификации (если такая процедура задана в параметрах протокола РРР обоих мостов).
Маршрутизатор после подключения к выделенной линии и локальной сети необходимо конфигурировать. На рис. 14 IP-маршрутизаторы связаны по выделенному каналу. Конфигурирование маршрутизаторов в этом случае подобно конфигурированию в локальных сетях. Каждая локальная сеть получает свой IP-адрес с соответствующей маской. Выделенный канал также является отдельной IP-сетью, поэтому можно ему также дать некоторый IP-адрес из диапазона адресов, которым распоряжается администратор корпоративной сети (в данном случае выделенному каналу присвоен адрес сети, состоящей из 2-х узлов, что определяется маской 255.255,255.252). Можно выделенному каналу и не присваивать IP-адрес - такой интерфейс маршрутизатора называется ненумерованным (unnumbered). Маршрутизатор будет нормально работать в обоих случаях. Как и в локальной сети, маршрутизаторам не нужно вручную задавать аппаратные адреса своих непосредственных соседей, так как отсылая пакеты протокола маршрутизации (RIP или OSPF) по выделенному каналу, маршрутизаторы будут их получать без проблем. Протокол ARP на выделенном канале не используется, так как аппаратные адреса на выделенном канале не имеют практического смысла (в кадре РРР есть два адреса - кадр от DCE или от DTE, но маршрутизатор всегда будет получать кадр от DCE).
Как и в локальных сетях, важной характеристикой удаленных мостов/маршрутизаторов является скорость фильтрации и скорость маршрутизации пакетов, которые часто ограничиваются не внутренними возможностями устройства, а скоростью передачи данных по линии. Для устойчивой работы сети скорость маршрутизации устройства должна быть выше, чем средняя скорость межсетевого трафика. При объединении сетей с помощью выделенного канала рекомендуется сначала выяснить характер межсетевого трафика - его среднее значение и пульсацию. Для хорошей передачи пульсаций пропускная способность канала должна быть большей или равной величине пульсаций трафика. Но такой подход приводит к очень нерациональной загрузке канала, так как при коэффициенте пульсаций 50; 1 в среднем будет использоваться только 1/50 пропускной способности канала. Поэтому чаще при выборе канала ориентируются на среднее значение межсетевого трафика. Правда, при этом пульсация будет создавать очередь кадров во внутреннем буфере моста или маршрутизатора, так как канал не может передавать данные с такой высокой скоростью, но очередь обязательно рассосется за конечное время, если среднее значение интенсивности межсетевого трафика меньше средней пропускной способности канала.
Для преодоления ограничений на скорость линии, а также для уменьшения части локального трафика, передаваемого по глобальной линии, в удаленных мостах и маршрутизаторах, работающих на глобальные каналы, используются специальные приемы, отсутствующие в локальных устройствах. Эти приемы не входят в стандарты протоколов, но они реализованы практически во всех устройствах, обслуживающих низкоскоростные каналы, особенно каналы со скоростями в диапазоне от 9600 бит/с до 64 Кбит/с.
К таким приемам относятся технологии сжатия пакетов, спуфинга и сегментации пакетов.
Сжатие пакетов (компрессия). Некоторые производители, используя собственные алгоритмы, обеспечивают коэффициент сжатия до 8:1. Стандартные алгоритмы сжатия, применяемые в модемах, устройствах DSU/CSU, самих мостах и маршрутизаторах, обеспечивают коэффициент сжатия до 4:1. После сжатия данных для передачи требуется существенно меньшая скорость канала.
Спуфинг (spoofing). Эта технология позволяет значительно повысить пропускную способность линий, объединяющих локальные сети, работающие по протоколам с большим количеством широковещательных рассылок. Во многих стеках протоколов для локальных сетей широковещательные рассылки обеспечивают решение задач поиска ресурсов сети. Спуфинг означает надувательство, мистификацию. Главной идеей технологии спуфинга является имитация передачи пакета по глобальной сети. Спуфинг используется не только на выделенных каналах, но и на коммутируемых, а также всегда, когда пропускная способность глобальной сети оказывается на границе некоторого минимального уровня.
Рассмотрим технику спуфинга на примере передачи между удаленными сетями пакетов SAP (Service Advertising Protocol - протокол объявления служб) серверами ОС NetWare. Эти пакеты каждый сервер генерирует каждую минуту, чтобы все клиенты сети могли составить правильное представление об имеющихся в сети разделяемых ресурсах - файловых службах, службах печати и т. п. SAP-пакеты распространяются в IPX-пакетах с широковещательным сетевым адресом (ограниченное широковещание). Маршрутизаторы не должны передавать такие пакеты из сети в сеть, но для SAP-пакетов сделано исключение - маршрутизатор, поддерживающий IPX, распространяет его на все порты, кроме того, на который этот пакет поступил (техника, подобная технике split horizon). Это делается для того, чтобы клиенты работали в одинаковых условиях независимо от сети, в которой они находятся. Удаленные мосты передают SAP-пакеты по долгу службы, так как они имеют широковещательные МАС - адреса.
Таким образом, по выделенной линии может проходить достаточно большое количество SAP-пакетов, которое зависит от количества серверов в каждой из локальных сетей, а также количества служб, о которых объявляет каждый сервер. Если эти пакеты посылаются каким-либо сервером, но не доходят до клиентов, то клиенты не могут воспользоваться службами этого сервера.
Если маршрутизаторы или мосты, объединяющие сети, поддерживают технику спуфинга, то они передают по выделенному каналу не каждый SAP-пакет, а например, только каждый пятый. Интенсивность служебного трафика в выделенном канале при этом уменьшается. Но для того, чтобы клиенты не теряли из списка ресурсов удаленной сети серверы, маршрутизатор/мост имитирует приход этих пакетов по выделенному каналу, посылая SAP-пакеты от своего имени каждую минуту, как это и положено по протоколу. При этом маршрутизатор/мост посылает несколько раз копию реального SAP-пакета, получаемого раз в 5 минут по выделенному каналу. Такую процедуру маршрутизатор/мост осуществляет для каждого сервера удаленной сети, генерирующего SAP-пакеты.
Существует несколько различных реализации техники спуфинга: посылка оригинальных пакетов в глобальный канал происходит по времени или по количеству принятых пакетов, при изменениях в содержимом пакетов. Последний способ достаточно логичен, так как сервер обычно каждый раз повторяет содержимое своего объявления - изменения в составе служб происходят редко. Поэтому, как в алгоритмах маршрутизации типа изменение связей достаточно передавать только измененные пакеты, так и для подтверждения нормальной работы достаточно периодически пересылать даже неизмененный пакет (в качестве сообщения HELLO).
Существует достаточно много протоколов, которые пользуются широковещательными рассылками, и пограничный маршрутизатор/мост должен их все учитывать. Только ОС Unix весьма редко работает по этому способу, так как ее основной коммуникационный стек TCP/IP проектировался для низкоскоростных глобальных линий связи. А такие ОС, как NetWare, Windows NT, OS/2, разрабатывались в основном в расчете на локальные сети, поэтому пропускную способность каналов связи не экономили.
В ОС NetWare существуют три основных типа широковещательных межсетевых сообщений - кроме сообщений SAP, необходимо также передавать сообщения протокола маршрутизации RIP, который программные маршрутизаторы, работающие на серверах NetWare, поддерживают по умолчанию, а также специальные сообщения watchdogs (называемые также keep alive), которыми обмениваются сервер и клиент, установившие логическое соединение. Сообщения watchdogs используются в том случае, когда временно в рамках данной логической сессии пользовательские данные не передаются. Чтобы поддержать соединение, клиент каждые 5 минут посылает такие сообщения серверу, говоря, что он жив. Если сервер не получает таких сообщений в течение 15 минут, то сеанс с данным клиентом прекращается. В интерфейсе NetBIOS (а его используют в качестве программного интерфейса приложения во многих ОС) порождается служебный трафик разрешения имен - запросы NameQuery посылаются (также широковещательным способом) каждые 20 минут, если зарегистрированное ранее имя не проявило себя в течение этого периода времени.
Для реализации анализа технология спуфинга требует пакетов сетевого уровня и выше. Поэтому для мостов реализация спуфинга - не такое обычное дело, как для маршрутизаторов. Мосты, поддерживающие спуфинг, не строят таблицы маршрутизации и не продвигают пакеты на основе сетевых адресов, но разбор заголовков и содержимого пакетов верхних уровней делают. Такие интеллектуальные удаленные мосты выпускает, например, компания Gandalf, хотя недорогие маршрутизаторы постепенно вытесняют мосты и в этой области.
Сегментация пакетов - позволяет разделять большие передаваемые пакеты и передавать их сразу через две телефонные линии. Хотя это и не делает телефонные каналы более эффективными, но все же увеличивает скорость обмена данными почти вдвое.
Выводы
Выделенные каналы широко используются для образования глобальных связей между удаленными локальными сетями.
Выделенные каналы делятся на аналоговые и цифровые в зависимости от аппаратуры длительной коммутации. В аналоговых каналах используются FDM-коммутаторы, а в цифровых - TDM. Ненагруженные каналы не проходят через мультиплексоры и коммутаторы и используются чаще всего как абонентские окончания для доступа к глобальным сетям.
Аналоговые каналы делятся на несколько типов: в зависимости от полосы пропускания - на каналы тональной частоты (3100 Гц) и широкополосные каналы (48 кГц), в зависимости от типа окончания - на каналы с 4-проводным окончанием и каналы с 2-проводным окончанием.
Для передачи компьютерных данных по аналоговым каналам используются модемы - устройства, относящиеся к типу DCE. Модемы для работы на выделенных каналах бывают следующих типов:
асинхронные, асинхронно-синхронные и синхронные модемы;
модемы для 4- и 2-проводных окончаний;
модемы, работающие только в полудуплексном режиме, и дуплексные модемы;
модемы, поддерживающие протоколы коррекции ошибок;
широкополосные модемы и модемы для канала тональной частоты.
Широкополосные модемы работают только по 4-проводным окончаниям в дуплексном синхронном режиме. Многие модели модемов для тонального канала могут работать в различных режимах, совмещая, например, поддержку асинхронного и синхронного режимов работы, 4- и 2-проводные окончания. Стандарт V.34+ является наиболее гибким и скоростным стандартом для модемов тонального канала, он поддерживает как выделенные, так и коммутируемые 2-проводные окончания.
Цифровые выделенные каналы образуются первичными сетями двух поколений технологии - PDH и SONET/SDH. Эти технологии существуют в двух вариантах - североамериканском и европейском. Последний является также международным, соответствующим рекомендациям ITU-T. Два варианта технологий PDH несовместимы.
В цифровых первичных сетях используется иерархия скоростей каналов, с помощью которой строятся магистральные каналы и каналы доступа. Технология PDH поддерживает следующие уровни иерархии каналов: абонентский канал 64 Кбит/с (DS-0), каналы Т1/Е1 (DS-1), каналы Т2/Е2 (DS-2) (редко сдаваемые в аренду) и каналы ТЗ/ЕЗ (DS-3). Скорость DS-4 определена в стандартах ITU-T, но на практике не используется.
Технология PDH разрабатывалась как асинхронная, поэтому кадры различных скоростей разделяются специальными битами синхронизации. В этом причина основного недостатка каналов этой технологии - для получения доступа к данным одного низкоскоростного абонентского канала необходимо произвести полное демультиплексирование высокоскоростного канала, например ЕЗ, а затем снова выполнить мультиплексирование 480 абонентских каналов в канал ЕЗ. Кроме того, технология PDH не обеспечивает автоматической реакции первичной сети на отказ канала или порта.
Технология SONET/SDH ориентируется на использование волоконно-оптических кабелей. Эта технология также включает два варианта - североамериканский (SONET) и европейско-международный (SDH), но в данном случае они являются совместимыми.
Технология SONET/SDH продолжает иерархию скоростей каналов PDH - до 10 Гбит/с. Технология основана на полной синхронизации между каналами и устройствами сети, которая обеспечивается наличием центрального пункта распределения синхронизирующих импульсов для всей сети.
Каналы иерархии PDH являются входными каналами для сетей технологии SONET/SDH, которая переносит ее по своим магистральным каналам.
Синхронная передача кадров различного уровня иерархии позволяет получить доступ к данным низкоскоростного пользовательского канала, не выполняя полного демультиплексирования высокоскоростного потока. Техника указателей позволяет определить начало пользовательских подкадров внутри синхронного кадра и считать их или добавить на лету. Эта техника называется техникой вставки и удаления (add and drop) пользовательских данных.
Сети SONET/SDH обладают встроенной отказоустойчивостью за счет избыточности своих кадров и способности мультиплексоров выполнять реконфигурирование путей следования данных. Основной отказоустойчивой конфигурацией является конфигурация двойных волоконно-оптических колец.
Внутренние протоколы SONET/SDH обеспечивают мониторинг и управление первичной сетью, в том числе удаленное создание постоянных соединений между абонентами сети.
Первичные сети SONET/SDH являются основой для большин Первичные сети SONET/SDH являются основой для большинства телекоммуникационных сетей: телефонных, компьютерных, телексных.
Для передачи компьютерных данных по выделенным каналам любой природы применяется несколько протоколов канального уровня: SLIP, HDLC и РРР. Протокол РРР в наибольшей степени подходит для современных выделенных каналов, аппаратура которых самостоятельно решает задачу надежной передачи данных. Протокол РРР обеспечивает согласование многих важных параметров канального и сетевого уровня при установлении соединения между узлами.
Для объединения локальных сетей с помощью выделенных каналов применяются такие DTE, как маршрутизаторы и удаленные мосты. В канале с низкой пропускной способностью маршуртизаторы и мосты используют спуфинг, компрессию и сегментацию данных.
3. Глобальные связи на основе сетей с коммутацией каналов
Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способность такой линии всегда находится в распоряжении взаимодействующих сетей. Однако это и наиболее дорогой вид глобальных связей - при наличии N удаленных локальных сетей, которые интенсивно обмениваются данными друг с другом, нужно иметь Nx(N-l)/2 выделенных линий. Для снижения стоимости глобального транспорта применяют динамически коммутируемые каналы, стоимость которых разделяется между многими абонентами этих каналов.
Наиболее дешевыми оказываются услуги телефонных сетей, так как их коммутаторы оплачиваются большим количеством абонентов, пользующихся телефонными услугами, а не только абонентами, которые объединяют свои локальные сети.
Телефонные сети делятся на аналоговые и цифровые в зависимости от способа мультиплексирования абонентских и магистральных каналов. Более точно, цифровыми называются сети, в которых на абонентских окончаниях информация представлена в, цифровом виде и в которых используются цифровые методы мультиплексирования и коммутации, а аналоговыми - сети, которые принимают данные от абонентов аналоговой формы, то есть от классических аналоговых телефонных аппаратов, а мультиплексирование и коммутацию осуществляют как аналоговыми методами, так и цифровыми. В последние годы происходил достаточно интенсивный процесс замены коммутаторов телефонных сетей на цифровые коммутаторы, которые работают на основе технологии TDM. Однако такая сеть по-прежнему останется аналоговой телефонной сетью, даже если все коммутаторы будут работать по технологии TDM, обрабатывая данные в цифровой форме, если абонентские окончания у нее останутся аналоговыми, а аналого-цифровое преобразование выполняется на ближней к абоненту АТС сети. Новая технология модемов V.90 смогла использовать факт существования большого количества сетей, в которых основная часть коммутаторов являются цифровыми.
К телефонным сетям с цифровыми абонентскими окончаниями относятся так называемые службы Switched 56 (коммутируемые каналы 56 Кбит/с) и цифровые сети с интегральными услугами ISDN (Intergrated Services Digital Network). Службы Switched 56 появились в ряде западных стран в результате предоставления конечным абонентам цифрового окончания, совместимого со стандартами линий Т1. Эта технология не стала международным стандартом, и сегодня она вытеснена технологией ISDN, которая такой статус имеет.
Сети ISDN рассчитаны не только на передачу голоса, но и компьютерных данных, в том числе и с помощью коммутации пакетов, за счет чего они получили название сетей с интегральными услугами. Однако основным режимом работы сетей ISDN остается режим коммутации каналов, а служба коммутации пакетов обладает слишком низкой по современным меркам скоростью - обычно до 9600 бит/с. Поэтому технология ISDN будет рассмотрена в данном разделе, посвященном сетям с коммутацией каналов. Новое поколение сетей с интеграцией услуг, названное B-ISDN (от broadband - широкополосные), основано уже целиком на технике коммутации пакетов (точнее, ячеек технологии АТМ), поэтому эта технология будет рассмотрена в разделе, посвященном сетям с коммутацией пакетов.
Пока географическая распространенность аналоговых сетей значительно превосходит распространенность цифровых, особенно в нашей стране, но это отставание с каждым годом сокращается.
3.1 Аналоговые телефонные сети
Организация аналоговых телефонных сетей
Наиболее популярными коммутируемыми каналами являются каналы, создаваемые обычными аналоговыми телефонными сетями. В англоязычной литературе их иногда называют POTS (Plain Old Telephone Service), - что-то вроде старая добрая телефонная служба, хотя, конечно, название PSTN (Public Switched Telephone Network) - публичная коммутируемая телефонная сеть является более официальным. К сожалению, эти сети малопригодны для построения магистралей корпоративных сетей. Со средней пропускной способностью 9600 бит/с коммутируемые аналоговые линии, оснащенные модемами, подходят только для пользователя с минимальными требованиями к времени реакции системы. Максимальная на сегодня пропускная способность в 56 Кбит/с достигается только в том случае, если все коммутаторы в сети на пути следования данных являются цифровыми, да и то такая скорость обеспечивается только в направлении сеть - пользователь.
Чаще всего такие линии используются для индивидуального удаленного доступа к сети или же как резервные линии связи небольших офисов с центральным отделением предприятия. Доступ по телефонной сети имеет англоязычное название dial-up access. Тем не менее при недостатке средств коммутируемые аналоговые линии обеспечивают связь локальных сетей между собой. Это выгодный режим соединения, если количество передаваемых данных невелико и данные не требуют частого обновления. В этом случае две сети могут соединяться по аналоговой телефонной сети, например, раз в сутки, передавать в течение нескольких минут данные, а затем разрывать соединение. При повременной оплате телефонного соединения такой режим оказывается эффективным. Обычно к нему прибегают для передачи сводок работы предприятия за день, точнее тех частей сводок, которые имеют небольшие объемы (чаще всего - это числовые показатели, без графики).
Ниже перечислены основные характеристики аналоговых телефонных сетей.
При вызове пользователи получают прямое соединение через коммутаторы в сети. Прямое соединение эквивалентно паре проводов с полосой пропускания от 300 до 3400 Гц. Абонентское окончание 2-проводное.
Вызов абонента может осуществляться двумя способами: с помощью импульсного набора с частотой 10 Гц или тонового набора с частотой 10 Гц. При импульсном наборе длительность набора зависит от того, какие цифры образуют номер - например, цифра 0 передается десятью последовательными импульсами, цифра 9 - девятью и т. д. При тоновом наборе любая цифра передается подачей в сеть двух синусоидальных сигналов разной частоты в течение 50 мс (сопровождаемых паузой 50 мс). Поэтому набор номера тоновым способом в среднем в 5 раз быстрее, чем импульсный (к сожалению, в нашей стране импульсный набор пока остается основным способом набора во всех городах).
Коммутаторы сети не позволяют обеспечить промежуточное хранение данных. Поскольку запоминающие устройства в коммутаторах отсутствуют, возможен отказ в соединении при занятости абонента или при исчерпании коммутатором своих возможностей по соединению входных и выходных каналов (занятость АТС).
Для передачи дискретных данных по аналоговым коммутируемым сетям используются модемы, поддерживающие процедуру вызова абонента.
Пропускная способность коммутируемого аналогового канала заранее неизвестна, так как модемы устанавливают соединение на скорости, подходящей для реального качества канала. Так как качество коммутируемых каналов меняется в течение сеанса связи, то модемы изменяют скорость передачи данных динамически.
В телефонных коммутаторах аналоговых телефонных сетей могут использоваться два принципа коммутации - аналоговый, основанный на частотном разделении канала (FDM), и цифровой, основанный на разделении канала во времени (TDM).
Системы, работающие по методу частотного уплотнения, подразделяются на электромеханические и программно-управляемые электронные. Электромеханические системы (например, шаговые искатели) управляются по проводным цепям и приводятся в действие электродвигателями или шаговыми искателями. В электромеханических системах логика маршрутизации встроена в аппаратуру. В программно-управляемых коммутаторах логика коммутации реализуется программным обеспечением, а сама коммутация выполняется электронным способом.
Электромеханические коммутаторы, естественно, создают значительные помехи в коммутируемых каналах. Кроме того, дополнительные помехи создает сам способ коммутации уплотненных каналов на основе FDM. Это объясняется тем, что коммутировать уплотненные в общий канал сигналы отдельных абонентов невозможно. Перед операцией коммутации всегда нужно провести полное демультиплексирование сигналов абонентских каналов, то есть превратить сигнал высокочастотной несущей (который находится в диапазоне от 60 до 108 кГц для уплотненного канала первого уровня, состоящего из 12 абонентских каналов) в голосовой сигнал со спектром от 300 до 3400 Гц. Только затем такие каналы можно коммутировать с помощью шаговых искателей или электронных ключей. После коммутации абонентские каналы снова уплотняются в высокочастотный канал, но каждый входной канал теперь уже накладывается на несущую другой порядковой частоты, что и соответствует операции коммутации (напомним, что при TDM-коммутации в уплотненном кадре меняется порядок следования байт).
Операция демультиплексирования высокочастотной несущей, а затем повторное наложение сигналов на высокочастотные несущие создает значительные помехи (треск и свист в телефонной трубке), которые существенно снижают качество коммутируемых каналов по сравнению с выделенными аналоговыми. Понятно, что наличие электромеханических элементов только усугубляет картину, а старые АТС с шаговыми искателями еще эксплуатируются (в Москве только совсем недавно была демонтирована АТС 231, которая работала с 30-х годов и была, естественно, электромеханической).
Переход на цифровые методы коммутации существенно повышает качество коммутируемых каналов даже при том, что сигнал от абонента поступает в ближайшую АТС в аналоговой форме, а значит, подвергается на последней миле воздействию помех, которые уже невозможно отфильтровать.
Модемы для работы на коммутируемых аналоговых линиях
Для передачи данных по аналоговым коммутируемым телефонным каналам используются модемы, которые:
поддерживают процедуру автовызова абонента;
работают по 2-проводному окончанию, так как в телефонных сетях для коммутируемых каналов предусмотрено именно это окончание.
Чаще всего сегодня для коммутируемых каналов используются те же модели модемов, что и для выделенных, так как последние стандарты определяют два режима работы - по выделенным каналам и по коммутируемым. Естественно, такие комбинированные модели дороже моделей, поддерживающих только один режим работы - по коммутируемым каналам.
Для передачи данных по коммутируемым каналам CCITT разработал ряд основных стандартов, определяющих скорость и метод кодирования сигналов.
Стандарты первой группы являются основными и состоят из следующих спецификаций:
V.21 - дуплексная асинхронная передача данных на скорости 300 бит/с;
V.22 - дуплексная асинхронная/синхронная передача данных на скорости 1,2 Кбит/с;
V.22 bis - дуплексная асинхронная/синхронная передача данных на скоростях 1,2 и 2,4 Кбит/с;
V.26 ter - дуплексная асинхронная/синхронная передача данных на скоростях 1,2 и 2,4 Кбит/с;
V.32 - дуплексная асинхронная/синхронная передача данных на скоростях 4,8 и 9,6 Кбит/с;
V.32 bis - дуплексная асинхронная/синхронная передача на скорости до 14,4 Кбит/с;
V.34 - дуплексная передача на скорости до 28,8 Кбит/с;
V.34+ - дуплексная передача на скорости до 33,6 Кбит/с.
На практике сегодня в основном применяют модемы, поддерживающие стандарт V.34+, которые могут адаптироваться к качеству линии.
Для реализации функций автовызова современные модемы поддерживают несколько способов. При работе с модемом по асинхронному интерфейсу обычно используется система команд, предложенная компанией Hayes для своей модели Smartmodem в начале 80-х годов. Каждая команда состоит из набора обычных символов, передаваемых модему в старт-стопном режиме. Например, для указания набора номера в импульсном режиме необходимо послать модему команду ATDP. Это можно сделать даже вручную, если модем подключен к обычному алфавитно-цифровому терминалу через интерфейс RS-232C.
Для синхронных интерфейсов между модемом и DTE используются два стандарта автонабора номера: V.25 и V.25bis. Стандарт V.25 требует, чтобы, помимо основного интерфейса для передачи данных, модем соединялся с DTE отдельным интерфейсом V.25/RS-366 на специальном 25-контактном разъеме. В стандарте V.25 bis для передачи команд автовызова предусмотрен тот же разъем, что и в основном интерфейсе, то есть RS-232C. Интерфейсы V.25 и V.25 bis могут работать не только в синхронном режиме с DTE, но и в асинхронном, но в основном характерны для синхронных интерфейсов, так как в асинхронном режиме для автовызова чаще используются Hayes-команды.
Для модемов, работающих с DTE по асинхронному интерфейсу, комитет CCITT разработал протокол коррекции ошибок V.42. До его принятия в модемах, работающих по асинхронному интерфейсу, коррекция ошибок обычно выполнялась по протоколам фирмы Microcom, еще одного лидера в области модемных технологий. Эта компания реализовала в своих модемах несколько различных процедур коррекции ошибок, назвав их протоколами MNP (Microcom Networking Protocol) классов 2-4.
В стандарте V.42 основным является другой протокол - протокол LAP-M (Link Access Protocol for Modems). Однако стандарт V.42 поддерживает и процедуры MNP 2-4, поэтому модемы, соответствующие рекомендации V.42, позволяют устанавливать свободную от ошибок связь с любым модемом, поддерживающим этот стандарт, а также с любым MNP-совместимым модемом. Протокол LAP-M принадлежит семейству HDLC и в основном работает так же, как и другие протоколы этого семейства - с установлением соединения, кадрированием данных, нумерацией кадров и восстановлением кадров с поддержкой метода скользящего окна. Основное отличие от других протоколов этого семейства - наличие кадров XID и BREAK. С помощью кадров XID (eXchange Identification) модемы при установлении соединения могут договориться о некоторых параметрах протокола, например о максимальном размере поля данных кадра, о величине тайм-аута при ожидании квитанции, о размере окна и т. п. Эта процедура напоминает переговорные процедуры протокола РРР. Команда BREAK (BRK) служит для уведомления модема-напарника о том, что поток данных временно приостанавливается. При асинхронном интерфейсе с DTE такая ситуация может возникнуть. Команда BREAK посылается в ненумерованном кадре, она не влияет на нумерацию потока кадров сеанса связи. После возобновления поступления данных модем возобновляет и отправку кадров, как если бы паузы в работе не было.
Почти все современные модемы при работе по асинхронному интерфейсу поддерживают стандарты сжатия данных CCITT V.42bis и MNP-5 (обычно с коэффициентом 1:4, некоторые модели - до 1:8). Сжатие данных увеличивает пропускную способность линии связи. Передающий модем автоматически сжимает данные, а принимающий их восстанавливает. Модем, поддерживающий протокол сжатия, всегда пытается установить связь со сжатием данных, но если второй модем этот протокол не поддерживает, то и первый модем перейдет на обычную связь без сжатия.
При работе модемов по синхронному интерфейсу наиболее популярным является протокол компрессии SDC (Synchronous Data Compression) компании Motorola.
Новый модемный стандарт V.90 является технологией, направленной на обеспечение недорогого и быстрого способа доступа пользователей к сетям поставщиков услуг. Этот стандарт обеспечивает асимметричный обмен данными: со скоростью 56 Кбит/с из сети и со скоростью 30-40 Кбит/с в сеть. Стандарт совместим со стандартом V.34+.
Основная идея технологии асимметричных модемов состоит в следующем. В современных телефонных сетях часто единственным аналоговым звеном в соединении с сервером удаленного доступа является телефонная пара, связывающая модем компьютера с коммутатором телефонной станции. Этот канал оптимизирован для передачи речевых сигналов: максимальная скорость передачи данных определяется из условия предельно допустимого соотношения между шумами физической линии передачи и погрешностью дискретизации звукового сигнала при его оцифровывании. Эта величина задается стандартом V.34+ и равна 33,6 Кбит/с.
Однако все выше приведенные соображения справедливы только для одного направления передачи данных - от аналогового модема к телефонной станции. Именно на этом участке выполняется аналого-цифровое преобразование, которое вносит погрешность квантования. Эта погрешность добавляется к другим помехам линии и ограничивает скорость передачи 33,6 Кбит/с. Обратное же цифро-аналоговое преобразование не вносит дополнительного шума, что делает возможным увеличение скорости передачи от телефонной станции к модему пользователя до 56 Кбит/с.
Достоинством новой технологии является то, что для ее внедрения не требуется вносить какие-либо изменения в оборудование телефонной станции - нужно лишь изменить программу в цифровых модемах, установленных в стойках у поставщика услуг, а также загрузить в пользовательский модем новую программу либо заменить микросхему памяти в зависимости от модели и производителя.
Технологии асимметричных модемов рассчитаны на то, что сервер удаленного доступа поставщика услуг корпоративной или публичной сети с коммутацией пакетов подключен к какой-либо АТС телефонной сети по цифровому интерфейсу, например BRI ISDN, или же по выделенному каналу Т1/Е1. Так что цифровой поток данных, идущий от сервера, постоянно пересылается сетью в цифровой форме и только на абонентском окончании преобразуется в аналоговую форму. Если же сервер удаленного доступа подключен к телефонной сети по обычному аналоговому окончанию, то даже наличие модема V.90 у сервера не спасет положение - данные будут подвергаться аналого-цифровому преобразованию, и их максимальная скорость не сможет превысить 33,6 Кбит/с. При подключении же модемов V.90 к телефонной сети с обеих сторон обычным способом, то есть через аналоговые окончания, они работают как модемы V.34+. Такая же картина будет наблюдаться в случае, если в телефонной сети на пути трафика встретится аналоговый коммутатор.
3.2 Служба коммутируемых цифровых каналов Switched 56
Если все коммутаторы телефонной сети работают по технологии цифровой коммутации TDM, то кажется, что перевод абонентского окончания на передачу данных в цифровой форме - не такая уж сложная вещь. И, имея сеть цифровых телефонных коммутаторов, нетрудно сделать ее полностью цифровой. Однако это не так. Передача данных со скоростью 64 Кбит/с в дуплексном режиме требует либо прокладки между жилыми домами и АТС новых кабелей, либо специальных усилителей-регенераторов на обоих концах абонентского окончания, то есть в том числе и в квартирах. Оба способа связаны с большими затратами труда и материальных средств, так как аналоговые телефонные сети вполне довольствуются тем медным проводом, который в больших количествах уже проложен между АТС и домами того района города, который данная АТС обслуживает и который заканчивается пассивной телефонной розеткой, а не усилителем-регенератором.
Поэтому массовый переход на полностью цифровые телефонные сети связан с большими капиталовложениями и требует значительного времени для его осуществления, что и показала жизнь.
Однако для некоторых особо требовательных абонентов, которые согласны заплатить за повышения качества и скорости коммутируемых каналов, телефонные компании уже достаточно давно предлагают цифровые коммутируемые службы. Обычно такими абонентами являются корпоративные абоненты, которым нужен быстрый и качественный доступ к корпоративной информации.
Одной из первых служб такого рода стала служба Switched 56, предлагаемая различными телекоммуникационными компаниями в США, Англии и некоторых других странах. Технология этой службы (которая в разных странах имеет разное название, например, в Англии - Kilostream) основана на 4-проводном окончании каналов Т1. Абонент для подключения к сети должен установить у себя соответствующее оборудование, представляющее собой DSU/CSU со встроенным блоком автовызова. Использование 8-го бита для передачи номера вызываемого абонента, а также для других служебных целей ограничивает скорость передачи данных до 56 Кбит/с. Типичная схема функционирования службы Switched 56 показана на рис. 15.
Рис. 15. Функционирование службы Switched 56
Абонентами обычно являются компьютеры или локальные сети, подключаемые к сети с помощью маршрутизатора или удаленного моста. Местные станции соединяются с некоторой центральной станцией, которая коммутирует цифровые потоки Т1/Е1. Сеть является полностью цифровой и поддерживает различные скорости передачи данных - от 2400 бит/с до 56 Кбит/с. Абоненты службы Switched 56 подключаются также к общей публичной телефонной сети, однако соединения со скоростью 56 Кбит/с возможны только в том случае, когда оба абонента пользуются этой службой.
Стандарты службы Switched 56 разные в разных компаниях и разных странах. Сегодня этот вид службы вытесняется сетями ISDN, стандарты которых являются международными, хотя в этой области также имеются проблемы совместимости сетей разных стран.
3.3 ISDN - сети с интегральными услугами
Цели и история создания технологии ISDN
ISDN (Integrated Services Digital Network - цифровые сети с интегральными услугами) относятся к сетям, в которых основным режимом коммутации является режим коммутации каналов, а данные обрабатываются в цифровой форме. Идеи перехода телефонных сетей общего пользования на полностью цифровую обработку данных, при которой конечный абонент передает данные непосредственно в цифровой форме, высказывались давно. Сначала предполагалось, что абоненты этой сети будут передавать только голосовые сообщения. Такие сети получили название IDN - Integrated Digital Network. Термин интегрированная сеть относился к интеграции цифровой обработки информации сетью с цифровой передачей голоса абонентом. Идея такой сети была высказана еще в 1959 году. Затем было решено, что такая сеть должна предоставлять своим абонентам не только возможность поговорить между собой, но и воспользоваться другими услугами - в первую очередь передачей компьютерных данных. Кроме того, сеть должна была поддерживать для абонентов разнообразные услуги прикладного уровня - факсимильную связь, телетекс (передачу данных между двумя терминалами), видеотекс (получение хранящихся в сети данных на свой терминал), голосовую почту и ряд других. Предпосылки для создания такого рода сетей сложились к середине 70-х годов. К этому времени уже широко применялись цифровые каналы Т1 для передачи данных в цифровой форме между АТС, а первый мощный цифровой коммутатор телефонных каналов 4ESS был выпущен компанией Western Electric в 1976 году.
В результате работ, проводимых по стандартизации интегральных сетей в CCITT, в 1980 году появился стандарт G.705, в котором излагались общие идеи такой сети. Конкретные спецификации сети ISDN появились в 1984 году в виде серии рекомендаций I. Этот набор спецификаций был неполным и не подходил для построения законченной сети. К тому же в некоторых случаях он допускал неоднозначность толкования или был противоречивым. В результате, хотя оборудование ISDN и начало появляться примерно с середины 80-х годов, оно часто было несовместимым, особенно если производилось в разных странах. В 1988 году рекомендации серии I были пересмотрены и приобрели гораздо более детальный и законченный вид, хотя некоторые неоднозначности сохранились. В 1992 и 1993 годах стандарты ISDN были еще раз пересмотрены и дополнены. Процесс стандартизации этой технологии продолжается.
Внедрение сетей ISDN началось достаточно давно - с конца 80-х годов, однако высокая техническая сложность пользовательского интерфейса, отсутствие единых стандартов на многие жизненно важные функции, а также необходимость крупных капиталовложений для переоборудования телефонных АТС и каналов связи привели к тому, что инкубационный период затянулся на многие годы, и сейчас, когда прошло уже более десяти лет, распространенность сетей ISDN оставляет желать лучшего. Кроме того, в разных странах судьба ISDN складывалась по-разному. Наиболее давно в национальном масштабе эти сети работают в таких странах, как Германия и Франция. Тем не менее доля абонентов ISDN даже в этих странах составляет немногим более 5 % от общего числа абонентов телефонной сети. В США процесс внедрения сетей ISDN намного отстал от Европы, поэтому сетевая индустрия только недавно заметила наличие такого рода сетей. Если судить о тех или иных типах глобальных сетей по коммуникационному оборудованию для корпоративных сетей, то может сложиться ложное впечатление, что технология ISDN появилась где-то в 1994 - 1995 годах, так как именно в эти годы начали появляться маршрутизаторы с поддержкой интерфейса ISDN. Это обстоятельство просто отражает тот факт, что именно в эти годы сеть ISDN стала достаточно распространенной в США - стране, компании которой являются лидерами в производстве сетевого оборудования для корпоративных сетей.
Архитектура сети ISDN предусматривает несколько видов служб (рис. 16):
Рис. 1 Службы ISDN
некоммутируемые средства (выделенные цифровые каналы);
коммутируемая телефонная сеть общего пользования;
сеть передачи данных с коммутацией каналов;
сеть передачи данных с коммутацией пакетов;
сеть передачи данных с трансляцией кадров (frame relay);
средства контроля и управления работой сети.
Как видно из приведенного списка, транспортные службы сетей ISDN действительно покрывают очень широкий спектр услуг, включая популярные услуги frame relay. Кроме того, большое внимание уделено средствам контроля сети, которые позволяют маршрутизировать вызовы для установления соединения с абонентом сети, а также осуществлять мониторинг и управление сетью. Управляемость сети обеспечивается интеллектуальностью коммутаторов и конечных узлов сети, поддерживающих стек протоколов, в том числе и специальных протоколов управления.
Стандарты ISDN описывают также ряд услуг прикладного уровня: факсимильную связь на скорости 64 Кбит/с, телексную связь на скорости 9600 бит/с, видеотекс на скорости 9600 бит/с и некоторые другие.
На практике не все сети ISDN поддерживают все стандартные службы. Служба frame relay хотя и была разработана в рамках сети ISDN, однако реализуется, как правило, с помощью отдельной сети коммутаторов кадров, не пересекающейся с сетью коммутаторов ISDN.
Базовой скоростью сети ISDN является скорость канала DS-0, то есть 64 Кбит/с. Эта скорость ориентируется на самый простой метод кодирования голоса - ИКМ, хотя дифференциальное кодирование и позволяет передавать голос с тем же качеством на скорости 32 или 16 Кбит/с.
Пользовательские интерфейсы ISDN
Одним из базовых принципов ISDN является предоставление пользователю стандартного интерфейса, с помощью которого пользователь может запрашивать у сети разнообразные услуги. Этот интерфейс образуется между двумя типами оборудования, устанавливаемого в помещении пользователя (Customer Premises Equipment, СРЕ): терминальным оборудованием пользователя ТЕ (компьютер с соответствующим адаптером, маршрутизатор, телефонный аппарат) и сетевым окончанием NT, которое представляет собой устройство, завершающее канал связи с ближайшим коммутатором ISDN.
Пользовательский интерфейс основан на каналах трех типов:
В-со скоростью передачи данных 64 Кбит/с;
D - со скоростью передачи данных 16 или 64 Кбит/с;
Н - со скоростью передачи данных 384 Кбит/с (НО), 1536 Кбит/с (НИ) или 1920 Кбит/с (Н12).
Каналы типа В обеспечивают передачу пользовательских данных (оцифрованного голоса, компьютерных данных или смеси голоса и данных) и с более низкими скоростями, чем 64 Кбит/с. Разделение данных выполняется с помощью техники TDM. Разделением канала В на подканалы в этом случае должно заниматься пользовательское оборудование, сеть ISDN всегда коммутирует целые каналы типа В. Каналы типа В могут соединять пользователей с помощью техники коммутации каналов друг с другом, а также образовывать так называемые полупостоянные (semipermanent) соединения, которые эквиваленты соединениям службы выделенных каналов. Канал типа В может также подключать пользователя к коммутатору сети Х.25.
Канал типа D выполняет две основные функции. Первой и основной является передача адресной информации, на основе которой осуществляется коммутация каналов типа В в коммутаторах сети. Второй функцией является поддержание услуг низкоскоростной сети с коммутацией пакетов для пользовательских данных. Обычно эта услуга выполняется сетью в то время, когда каналы типа D свободны от выполнения основной функции.
Каналы типа Н предоставляют пользователям возможности высокоскоростной передачи данных. На них могут работать службы высокоскоростной передачи факсов, видеоинформации, качественного воспроизведения звука.
Пользовательский интерфейс ISDN представляет собой набор каналов определенного типа и с определенными скоростями.
Сеть ISDN поддерживает два типа пользовательского интерфейса - начальный (Basic Rate Interface, BRI) и основной (Primay Rate Interface, PRI).
Начальный интерфейс BRI предоставляет пользователю два канала по 64 Кбит/с для передачи данных (каналы типа В) и один канал с пропускной способностью 16 Кбит/с для передачи управляющей информации (канал типа D). Все каналы работают в полнодуплексном режиме. В результете суммарная скорость интерфейса BRI для пользовательских данных составляет 144 Кбит/с по каждому направлению, а с учетом служебной информации - 192 Кбит/с. Различные каналы пользовательского интерфейса разделяют один и тот же физический двухпроводный кабель по технологии TDM, то есть являются логическими каналами, а не физическими. Данные по интерфейсу BRI передаются кадрами, состоящими из 48 бит. Каждый кадр содержит по 2 байта каждого из В каналов, а также 4 бита канала D. Передача кадра длится 250 мс, что обеспечивает скорость данных 64 Кбит/с для каналов В и 16 Кбит/с для канала D. Кроме бит данных кадр содержит служебные предоставляет пользователю два канала по 64 Кбит/с для передачи данных (каналы типа В) и один канал с пропускной способностью 16 Кбит/с для передачи управляющей информации (канал типа D). Все каналы работают в полнодуплексном режиме. В результете суммарная скорость интерфейса BRI для пользовательских данных составляет 144 Кбит/с по каждому направлению, а с учетом служебной информации - 192 Кбит/с. Различные каналы пользовательского интерфейса разделяют один и тот же физический двухпроводный кабель по технологии TDM, то есть являются логическими каналами, а не физическими. Данные по интерфейсу BRI передаются кадрами, состоящими из 48 бит. Каждый кадр содержит по 2 байта каждого из В каналов, а также 4 бита канала D. Передача кадра длится 250 мс, что обеспечивает скорость данных 64 Кбит/с для каналов В и 16 Кбит/с для канала D. Кроме бит данных кадр содержит служебные биты для обеспечения синхронизации кадров, а также обеспечения нулевой постоянной составляющей электрического сигнала.
Подобные документы
Принцип построения компьютерных сетей: локальные вычислительные сети и глобальные компьютерные сети Internet, FidoNet, FREEnet и другие в деле ускорения передачи информационных сообщений. LAN и WAN сети, права доступа к данным и коммутация компьютеров.
курсовая работа [316,0 K], добавлен 18.12.2009Виды компьютерных сетей. Характеристики каналов связи. Типы связи: электрические кабеля, телефонная линия и оптоволоконный кабель. Наиболее распространены сейчас модемы, их виды. Виды каналов связи: сетевые адаптеры и протоколы. Одноранговые сети.
презентация [169,2 K], добавлен 01.10.2010Общие понятия компьютерных сетей. Протоколы и их взаимодействие. Базовые технологии канального уровня. Сетевые устройства физического и канального уровня. Характеристика уровней модели OSI. Глобальные компьютерные сети. Использование масок в IP-адресации.
курс лекций [177,8 K], добавлен 16.12.2010Классификация компьютерных сетей. Назначение компьютерной сети. Основные виды вычислительных сетей. Локальная и глобальная вычислительные сети. Способы построения сетей. Одноранговые сети. Проводные и беспроводные каналы. Протоколы передачи данных.
курсовая работа [36,0 K], добавлен 18.10.2008Эволюция вычислительных систем: мэйнфреймы, многотерминальные системы, глобальные и локальные сети. Базовые понятия сетей передачи информации. Процесс передачи данных и виды сигналов: аналоговый и цифровой. Физическая и логическая структуризация сетей.
реферат [246,8 K], добавлен 05.08.2013Применение сетевых технологий в управленческой деятельности. Понятие компьютерной сети. Концепция открытых информационных систем. Преимущества объединения компьютерных сетей. Локальные вычислительные сети. Глобальные сети. Международная сеть INTERNET.
курсовая работа [38,1 K], добавлен 16.04.2012Понятие сети ЭВМ и программного обеспечения компьютерных сетей. Локальные, корпоративные и глобальные вычислительные сети. Технологии сетевых многопользовательских приложений. Сетевые ОС NetWare фирмы Novell. Назначение службы доменных имен DNS.
учебное пособие [292,6 K], добавлен 20.01.2012Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.
реферат [134,0 K], добавлен 21.10.2013Общие сведения о вычислительных сетях, история их появления. Локальные и глобальные сети. Пакет как основная единица информации вычислительной сети. Главные способы переключения соединений. Методы организации передачи данных между компьютерами.
презентация [611,9 K], добавлен 25.11.2012Классификация компьютерных сетей по распространенности и скорости передачи информации. Спутниковый или оптоволоконный канал связи с сервером Интернета. Использование браузера, программного обеспечения для просмотра веб-сайтов. Общение в реальном времени.
презентация [1,5 M], добавлен 16.04.2015