Основы операционных систем
Изучение теорий операционных систем. Исследование принципов построения и особенностей проектирования современных ОС. Сущность виртуальной памяти и алгоритма синхронизации. Рассмотрение операционной и файловой системы, система управления вводом-выводом.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | книга |
Язык | русский |
Дата добавления | 12.01.2010 |
Размер файла | 2,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Существует большое количество разнообразных алгоритмов замещения страниц. Все они делятся на локальные и глобальные. Локальные алгоритмы, в отличие от глобальных, распределяют фиксированное или динамически настраиваемое число страниц для каждого процесса. Когда процесс израсходует все предназначенные ему страницы, система будет удалять из физической памяти одну из его страниц, а не из страниц других процессов. Глобальный же алгоритм замещения в случае возникновения исключительной ситуации удовлетворится освобождением любой физической страницы, независимо от того, какому процессу она принадлежала.
Глобальные алгоритмы имеют ряд недостатков. Во-первых, они делают одни процессы чувствительными к поведению других процессов. Например, если один процесс в системе одновременно использует большое количество страниц памяти, то все остальные приложения будут в результате ощущать сильное замедление из-за недостатка кадров памяти для своей работы. Во-вторых, некорректно работающее приложение может подорвать работу всей системы (если, конечно, в системе не предусмотрено ограничение на размер памяти, выделяемой процессу), пытаясь захватить больше памяти. Поэтому в многозадачной системе иногда приходится использовать более сложные локальные алгоритмы. Применение локальных алгоритмов требует хранения в операционной системе списка физических кадров, выделенных каждому процессу. Этот список страниц иногда называют резидентным множеством процесса. В одном из следующих разделов рассмотрен вариант алгоритма подкачки, основанный на приведении резидентного множества в соответствие так называемому рабочему набору процесса.
Эффективность алгоритма обычно оценивается на конкретной последовательности ссылок к памяти, для которой подсчитывается число возникающих page faults. Эта последовательность называется строкой обращений (reference string). Мы можем генерировать строку обращений искусственным образом при помощи датчика случайных чисел или трассируя конкретную систему. Последний метод дает слишком много ссылок, для уменьшения числа которых можно сделать две вещи:
для конкретного размера страниц можно запоминать только их номера, а не адреса, на которые идет ссылка;
несколько подряд идущих ссылок на одну страницу можно фиксировать один раз.
Как уже говорилось, большинство процессоров имеют простейшие аппаратные средства, позволяющие собирать некоторую статистику обращений к памяти. Эти средства обычно включают два специальных флага на каждый элемент таблицы страниц. Флаг ссылки (reference бит) автоматически устанавливается, когда происходит любое обращение к этой странице, а уже рассмотренный выше флаг изменения (modify бит) устанавливается, если производится запись в эту страницу. Операционная система периодически проверяет установку таких флагов, для того чтобы выделить активно используемые страницы, после чего значения этих флагов сбрасываются.
Рассмотрим ряд алгоритмов замещения страниц.
Алгоритм FIFO. Выталкивание первой пришедшей страницы
Простейший алгоритм. Каждой странице присваивается временная метка. Реализуется это просто созданием очереди страниц, в конец которой страницы попадают, когда загружаются в физическую память, а из начала берутся, когда требуется освободить память. Для замещения выбирается старейшая страница. К сожалению, эта стратегия с достаточной вероятностью будет приводить к замещению активно используемых страниц, например страниц кода текстового процессора при редактировании файла. Заметим, что при замещении активных страниц все работает корректно, но page fault происходит немедленно.
Аномалия Билэди (Belady)
На первый взгляд кажется очевидным, что чем больше в памяти страничных кадров, тем реже будут иметь место page faults. Удивительно, но это не всегда так. Как установил Билэди с коллегами, определенные последовательности обращений к страницам в действительности приводят к увеличению числа страничных нарушений при увеличении кадров, выделенных процессу. Это явление носит название «аномалии Билэди» или «аномалии FIFO*.
Система с тремя кадрами (9 faults) оказывается более производительной, чем с четырьмя кадрами (10 faults), для строки обращений к памяти 012301401234 при выборе стратегии FIFO.
Р Р Р Р (Ь)
Рис. 10.1. Аномалия Билэди: (а) -- FIFO с тремя страничными кадрами; (b) - FIFO с четырьмя страничными кадрами
Аномалию Билэди следует считать скорее курьезом, чем фактором, требующим серьезного отношения, который иллюстрирует сложность ОС, где интуитивный подход не всегда приемлем.
Оптимальный алгоритм (ОРТ)
Одним из последствий открытия аномалии Билэди стал поиск оптимального алгоритма, который при заданной строке обращений имел бы минимальную частоту page faults среди всех других алгоритмов. Такой алгоритм был найден. Он прост: замещай страницу, которая не будет использоваться в течение самого длительного периода времени.
Каждая страница должна быть помечена числом инструкций, которые будут выполнены, прежде чем на эту страницу будет сделана первая ссылка. Выталкиваться должна страница, для которой это число наибольшее.
Этот алгоритм легко описать, но реализовать невозможно. ОС не знает, к какой странице будет следующее обращение. (Ранее такие проблемы возникали при планировании процессов -- алгоритм SJF.)
Зато мы можем сделать вывод, что для того, чтобы алгоритм замещения был максимально близок к идеальному алгоритму, система должна как можно точнее предсказывать обращения процессов к памяти. Данный алгоритм применяется для оценки качества реализуемых алгоритмов.
Выталкивание дольше всего не использовавшейся страницы. Алгоритм LRU
Одним из приближений к алгоритму ОРТ является алгоритм, исходящий из эвристического правила, что недавнее прошлое -- хороший ориентир для прогнозирования ближайшего будущего.
Ключевое отличие между FIFO и оптимальным алгоритмом заключается в том, что один смотрит назад, а другой вперед. Если использовать прошлое для аппроксимации будущего, имеет смысл замещать страницу, которая не использовалась в течение самого долгого времени. Такой подход называется least recently used алгоритм (LRU). Работа алгоритма проиллюстрирована на рис. 10.2. Сравнивая рис. 10.1 b и 10.2, можно увидеть, что использование LRU алгоритма позволяет сократить количество страничных нарушений.
РРРР P PPP 8 pagefaults
Рис. 10.2. Пример работы алгоритма LRU
LRU -- хороший, но труднореализуемый алгоритм. Необходимо иметь связанный список всех страниц в памяти, в начале которого будут хранится недавно использованные страницы. Причем этот список должен обновляться при каждом обращении к памяти. Много времени нужно и на поиск страниц в таком списке.
В [Таненбаум, 2002] рассмотрен вариант реализации алгоритма LRU со специальным 64-битным указателем, который автоматически увеличивается на единицу после выполнения каждой инструкции, а в таблице страниц имеется соответствующее поле, в которое заносится значение указателя при каждой ссылке на страницу. При возникновении page fault выгружается страница с наименьшим значением этого поля.
Как оптимальный алгоритм, так и LRU не страдают от аномалии Би-лэди. Существует класс алгоритмов, для которых при одной и той же строке обращений множество страниц в памяти для п кадров всегда является подмножеством страниц для п+1 кадра. Эти алгоритмы не проявляют аномалии Билэди и называются стековыми (stack) алгоритмами.
Выталкивание редко используемой страницы. Алгоритм NFU
Поскольку большинство современных процессоров не предоставляют соответствующей аппаратной поддержки для реализации алгоритма LRU, хотелось бы иметь алгоритм, достаточно близкий к LRU, но не требующий специальной поддержки.
Программная реализация алгоритма, близкого к LRU, -- алгоритм NFU (Not Frequently Used).
Для него требуются программные счетчики, по одному на каждую страницу, которые сначала равны нулю. При каждом прерывании по времени (а не после каждой инструкции) операционная система сканирует все страницы в памяти и у каждой страницы с установленным флагом обращения увеличивает на единицу значение счетчика, а флаг обращения сбрасывает.
Таким образом, кандидатом на освобождение оказывается страница с наименьшим значением счетчика, как страница, к которой реже всего обращались. Главный недостаток алгоритма NFU состоит в том, что он ничего не забывает. Например, страница, к которой очень часто обращались в течение некоторого времени, а потом обращаться перестали, все равно не будет удалена из памяти, потому что ее счетчик содержит большую величину. Например, в многопроходных компиляторах страницы, которые активно использовались во время первого прохода, могут надолго сохранить большие значения счетчика, мешая загрузке полезных в дальнейшем страниц.
К счастью, возможна небольшая модификация алгоритма, которая позволяет ему «забывать». Достаточно, чтобы при каждом прерывании по времени содержимое счетчика сдвигалось вправо на 1 бит, а уже затем производилось бы его увеличение для страниц с установленным флагом обращения.
Другим, уже более устойчивым недостатком алгоритма является длительность процесса сканирования таблиц страниц.
Другие алгоритмы
Для полноты картины можно упомянуть еще несколько алгоритмов. Например, алгоритм Second-Chance -- модификация алгоритма FIFO, которая позволяет избежать потери часто используемых страниц с
помощью анализа флага обращений (бита ссылки) для самой старой страницы. Если флаг установлен, то страница, в отличие от алгоритма FIFO, не выталкивается, а ее флаг сбрасывается, и страница переносится в конец очереди. Если первоначально флаги обращений были установлены для всех страниц (на все страницы ссылались), алгоритм Second-Chance превращается в алгоритм FIFO. Данный алгоритм использовался в Multics и BSD Unix.
В компьютере Macintosh использован алгоритм NRU (Not Recently-Used), где страница-«жертва» выбирается на основе анализа битов модификации и ссылки. Интересные стратегии, основанные на буферизации страниц, реализованы в VAX/VMS и Mach.
Имеется также и много других алгоритмов замещения. Объем этого курса не позволяет рассмотреть их подробно. Подробное описание различных алгоритмов замещения можно найти в монографиях [Дейтел, 1987], [Цикритис, 1977], [Таненбаум, 2002] и др.
Управление количеством страниц, выделенным процессу. Модель рабочего множества
В стратегиях замещения, рассмотренных в предыдущем разделе, прослеживается предположение о том, что количество кадров, принадлежащих процессу, нельзя увеличить. Это приводит к необходимости выталкивания страницы. Рассмотрим более общий подход, базирующийся на концепции рабочего множества, сформулированной Деннингом [Denning, 1996].
Итак, что делать, если в распоряжении процесса имеется недостаточное число кадров? Нужно ли его приостановить с освобождением всех кадров? Что следует понимать под достаточным количеством кадров?
Трешинг ( Thrashing)
Хотя теоретически возможно уменьшить число кадров процесса до минимума, существует какое-то число активно используемых страниц, без которого процесс часто генерирует page faults. Высокая частота страничных нарушений называется трешинг (thrashing, иногда употребляется русский термин «пробуксовка», см. рис. 10.3). Процесс находится в состоянии трешинга, если при его работе больше времени уходит на подкачку страниц, нежели на выполнение команд. Такого рода критическая ситуация возникает вне зависимости от конкретных алгоритмов замещения.
Часто результатом трешинга является снижение производительности вычислительной системы. Один из нежелательных сценариев развития событий может выглядеть следующим образом. При глобальном алгоритме замещения процесс, которому не хватает кадров, начинает отбирать кадры у других процессов, которые в свою очередь начинают заниматься тем же. В результате все процессы попадают в очередь запросов к устройству вторичной памяти (находятся в состоянии ожидания), а очередь процессов в состоянии готовности пустеет. Загрузка процессора снижается. Операционная система реагирует на это увеличением степени мультипрограммирования, что приводит к еще большему трешингу и дальнейшему снижению загрузки процессора. Таким образом, пропускная способность системы падает из-за трешинга.
Рис. 10.3. Частота page faults в зависимости от количества кадров, выделенных процессу
Эффект трешинга, возникающий при использовании глобальных алгоритмов, может быть ограничен за счет применения локальных алгоритмов замещения. При локальных алгоритмах замещения если даже один из процессов попал в трешинг, это не сказывается на других процессах. Однако он много времени проводит в очереди к устройству выгрузки, затрудняя подкачку страниц остальных процессов.
Критическая ситуация типа трешинга возникает вне зависимости от конкретных алгоритмов замещения. Единственным алгоритмом, теоретически гарантирующим отсутствие трешинга, является рассмотренный выше не реализуемый на практике оптимальный алгоритм.
Итак, трешинг -- это высокая частота страничных нарушений. Необходимо ее контролировать. Когда она высока, процесс нуждается в кадрах. Можно, устанавливая желаемую частоту page faults, регулировать размер процесса, добавляя или отнимая у него кадры. Может оказаться целесообразным выгрузить процесс целиком. Освободившиеся кадры выделяются другим процессам с высокой частотой page faults.
Для предотвращения трешинга требуется выделять процессу столько кадров, сколько ему нужно. Но как узнать, сколько ему нужно? Необходимо попытаться выяснить, как много кадров процесс реально использует. Для решения этой задачи Деннинг использовал модель рабочего множества, которая основана на применении принципа локальности.
Модель рабочего множества Рассмотрим поведение реальных процессов.
Процессы начинают работать, не имея в памяти необходимых страниц. В результате при выполнении первой же машинной инструкции возникает page fault, требующий подкачки порции кода. Следующий page fault происходит при локализации глобальных переменных и еще один -- при выделении памяти для стека. После того как процесс собрал большую часть необходимых ему страниц, page faults возникают редко.
Таким образом, существует набор страниц (Pi, Р2,... Рп), активно использующихся вместе, который позволяет процессу в момент времени t в течение некоторого периода Т производительно работать, избегая большого количества page faults. Этот набор страниц называется рабочим множеством W(t,T) (workingset) процесса. Число страниц в рабочем множестве определяется параметром Т, является неубывающей функцией Т и относительно невелико. Иногда Т называют размером окна рабочего множества, через которое ведется наблюдение за процессом (см. рис. 10.4).
Строка обращений процесса 023345474375456784342457 Ц
1-Т I \Уи.Т>=|3.4.5.7} I
Рис. 10.4. Пример рабочего множества процесса
Легко написать тестовую программу, которая систематически работает с большим диапазоном адресов, но, к счастью, большинство реальных процессов не ведут себя подобным образом, а проявляют свойство локальности. В течение любой фазы вычислений процесс работает с небольшим количеством страниц.
Когда процесс выполняется, он двигается от одного рабочего множества к другому. Программа обычно состоит из нескольких рабочих множеств, которые могут перекрываться. Например, когда вызвана процедура, она определяет новое рабочее множество, состоящее из страниц, содержащих инструкции процедуры, ее локальные и глобальные переменные. После ее завершения процесс покидает это рабочее множество, но может вернуться к нему при новом вызове процедуры. Таким образом, рабочее множество определяется кодом и данными программы. Если процессу выделять меньше кадров, чем ему требуется для поддержки рабочего множества, он будет находиться в состоянии трешинга.
Принцип локальности ссылок препятствует частым изменениям рабочих наборов процессов. Формально это можно выразить следующим образом. Если в период времени (t -- Т, t) программа обращалась к страницам W(t,T), то при надлежащем выборе Т с большой вероятностью эта программа будет обращаться к тем же страницам в период времени (t, t + Т). Другими словами, принцип локальности утверждает, что если не слишком далеко заглядывать в будущее, то можно достаточно точно его прогнозировать исходя из прошлого. Понятно, что с течением времени рабочий набор процесса может изменяться (как по составу страниц, так и по их числу).
Наиболее важное свойство рабочего множества -- его размер. ОС должна выделить каждому процессу достаточное число кадров, чтобы поместилось его рабочее множество. Если кадры еще остались, то может быть инициирован другой процесс. Если рабочие множества процессов не помещаются в память и начинается трешинг, то один из процессов можно выгрузить на диск.
Решение о размещении процессов в памяти должно, следовательно, базироваться на размере его рабочего множества. Для впервые инициируемых процессов это решение может быть принято эвристически. Во время работы процесса система должна уметь определять: расширяет процесс свое рабочее множество или перемещается на новое рабочее множество. Если в состав атрибутов страницы включить время последнего использования tj (для страницы с номером i), то принадлежность i-й страницы к рабочему набору, определяемому параметром t в момент времени t будет выражаться неравенством: t -- Т < tj < t. Алгоритм выталкивания страниц WSClock, использующий информацию о рабочем наборе процесса, описан в [Таненбаум, 2002].
Другой способ реализации данного подхода может быть основан на отслеживании количества страничных нарушений, вызываемых процессом. Если процесс часто генерирует page faults и память не слишком заполнена, то система может увеличить число выделенных ему кадров. Если же процесс не вызывает исключительных ситуаций в течение некоторого времени и уровень генерации ниже какого-то порога, то число кадров процесса может быть урезано. Этот способ регулирует л ишь размер множества страниц, принадлежащих процессу, и должен быть дополнен какой-либо стратегией замещения страниц. Несмотря на то что система при этом может пробуксовывать в моменты перехода от одного рабочего множества к другому, предлагаемое решение в состоянии обеспечить наилучшую производительность для каждого процесса, не требуя никакой дополнительной настройки системы.
Страничные демоны
Подсистема виртуальной памяти работает производительно при наличии резерва свободных страничных кадров. Алгоритмы, обеспечивающие поддержку системы в состоянии отсутствия трешинга, реализованы в составе фоновых процессов (их часто называют демонами или сервисами), которые периодически «просыпаются» и инспектируют состояние памяти. Если свободных кадров оказывается мало, они могут сменить стратегию замещения. Их задача -- поддерживать систему в состоянии наилучшей производительности.
Примером такого рода процесса может быть фоновый процесс -- сборщик страниц, реализующий облегченный вариант алгоритма откачки, основанный на использовании рабочего набора и применяемый во многих клонах ОС Unix (см., например, [Bach, 1986]). Данный демон производит откачку страниц, не входящих в рабочие наборы процессов. Он начинает активно работать, когда количество страниц в списке свободных страниц достигает установленного нижнего порога, и пытается выталкивать страницы в соответствии с собственной стратегией.
Но если возникает требование страницы в условиях, когда список свободных страниц пуст, то начинает работать механизм свопинга, поскольку простое отнятие страницы у любого процесса (включая тот, который затребовал бы страницу) потенциально вело бы к ситуации thrashing, и разрушало бы рабочий набор некоторого процесса. Любой процесс, затребовавший страницу не из своего текущего рабочего набора, становится в очередь на выгрузку в расчете на то, что после завершения выгрузки хотя бы одного из процессов свободной памяти уже может быть достаточно.
В ОС Windows 2000 аналогичную роль играет менеджер балансного набора (Working set manager), который вызывается раз в секунду или тогда, когда размер свободной памяти опускается ниже определенного предела, и отвечает за суммарную политику управления памятью и поддержку рабочих множеств.
Программная поддержка сегментной модели памяти процесса
Реализация функций операционной системы, связанных с поддержкой памяти, -- ведение таблиц страниц, трансляция адреса, обработка страничных ошибок, управление ассоциативной памятью и др. -- тесно связана со структурами данных, обеспечивающими удобное представление адресного пространства процесса. Формат этих структур сильно зависит от аппаратуры и особенностей конкретной ОС.
Чаще всего виртуальная память процесса ОС разбивается на сегмен ты пяти типов: кода программы, данных, стека, разделяемый и сегмен файлов, отображаемых в память.
Сегмент программного кода содержит только команды. Сегмент про граммного кода не модифицируется входе выполнения процесса, обычно страницы данного сегмента имеют атрибут read-only. Следствием этоп является возможность использования одного экземпляра кода для разны процессов.
Сегмент данных, содержащий переменные программы и сегмент стекг содержащий автоматические переменные, могут динамически менять cboi размер (обычно данные в сторону увеличения адресов, а стек -- в сторон уменьшения) и содержимое, должны быть доступны по чтению и запис: и являются приватными сегментами процесса.
С целью обобществления памяти между несколькими процессам: создаются разделяемые сегменты, допускающие доступ по чтению и запи си. Вариантом разделяемого сегмента может быть сегмент файла, отобра жаемого в память. Специфика таких сегментов состоит в том, что из ни откачка осуществляется не в системную область выгрузки, а непосредст венно в отображаемый файл. Реализация разделяемых сегментов основан на том, что логические страницы различных процессов связываются с од ними и теми же страничными кадрами.
Сегменты представляют собой непрерывные области (в Linux они так и называются -- области) в виртуальном адресном пространстве процесса, выровненные по границам страниц. Каждая область состоит из набора страниц с одним и тем же режимом защиты. Между областями в виртуальном пространстве могут быть свободные участки. Естественно, что подобные объекты описаны соответствующими структурами (см., например, структуры mm_struct и vm_area_struct в Linux).
Часть работы по организации сегментов может происходить с участием программиста. Особенно это заметно при низкоуровневом программировании. В частности, отдельные области памяти могут быть поименованы и использоваться для обмена данными между процессами. Два процесса могут общаться через разделяемую область памяти при условии, что им известно ее имя (пароль). Обычно это делается при помощи специальных вызовов (например, шар и unmap), входящих в состав интерфейса виртуальной памяти.
Загрузка исполняемого файла (системный вызов exec) осуществляется обычно через отображение (mapping) его частей (кода, данных) в соответствующие сегменты адресного пространства процесса. Например, сегмент кода является сегментом отображаемого в память файла, содержащего исполняемую программу. При попытке выполнить первую же инструкцию система обнаруживает, что нужной части кода в памяти нет, генерирует page fault и подкачивает эту часть кода с диска. Далее процедура повторяется до тех пор, пока вся программа не окажется в оперативной памяти.
Как уже говорилось, размер сегмента данных динамически меняется. Рассмотрим, как организована поддержка сегментов данных в Unix. Пользователь, запрашивая (библиотечные вызовы malloc, new) или освобождая (free, delete) память для динамических данных, фактически изменяет границу выделенной процессу памяти через системный вызов brk (от слова break), который модифицирует значение переменной brk из структуры данных процесса. В результате происходит выделение физической памяти, граница brk смещается в сторону увеличения виртуальных адресов, а соответствующие строки таблиц страниц получают осмысленные значения. При помощи того же вызова brk пользователь может уменьшить размер сегмента данных. На практике освобожденная пользователем виртуальная память (библиотечные вызовы free, delete) системе не возвращается. На это есть две причины. Во-первых, для уменьшения размеров сегмента данных необходимо организовать его уплотнение или «сборку мусора». А во-вторых, незанятые внутри сегмента данных области естественным образом будут вытолкнуты из оперативной памяти вследствие того, что к ним не будет обращений. Ведение списков занятых и свободных областей памяти в сегменте данных пользователя осуществляется на уровне системных библиотек.
Более подробно информация об адресных пространствах процессов в Unix изложена в [Кузнецов], [Bach, 1986].
Отдельные аспекты функционирования менеджера памяти
Корректная работа менеджера памяти помимо принципиальных вопросов, связанных с выбором абстрактной модели виртуальной памяти и ее аппаратной поддержкой, обеспечивается также множеством нюансов и мелких деталей. В качестве примера такого рода компонента рассмотрим более подробно локализацию страниц в памяти, которая применяется в тех случаях, когда поддержка страничной системы приводит к необходимости разрешить определенным страницам, хранящим буферы ввода-вывода, другие важные данные и код, быть блокированными в памяти.
Рассмотрим случай, когда система виртуальной памяти может вступить в конфликт с подсистемой ввода-вывода. Например, процесс может запросить ввод в буфер и ожидать его завершения. Управление передастся другому процессу, который может вызвать page fault и, с отличной от нуля вероятностью, спровоцировать выгрузку той страницы, куда должен быть осуществлен ввод первым процессом. Подобные ситуации нуждаются в дополнительном контроле, особенно если ввод-вывод реализован с использованием механизма прямого доступа к памяти (DMA). Одно из решений данной проблемы -- вводить данные в невытесняемый буфер в пространстве ядра, а затем копировать их в пользовательское пространство.
Второе решение -- локализовать страницы в памяти, используя специальный бит локализации, входящий в состав атрибутов страницы. Локализованная страница замещению не подлежит. Бит локализации сбрасывается после завершения операции ввода-вывода.
Другое использование бита локализации может иметь место и при нормальном замещении страниц. Рассмотрим следующую цепь событий. Низкоприоритетный процесс после длительного ожидания получил в свое распоряжение процессор и подкачал с диска нужную ему страницу. Если он сразу после этого будет вытеснен высокоприоритетным процессом, последний может легко заместить вновь подкачанную страницу низкоприоритетного, так как на нее не было ссылок. Имеет смысл вновь загруженные страницы помечать битом локализации до первой ссылки, иначе низкоприоритетный процесс так и не начнет работать.
Использование бита локализации может быть опасным, если забыть его отключить. Если такая ситуация имеет место, страница становится неиспользуемой. SunOS разрешает использование данного бита в качестве подсказки, которую можно игнорировать, когда пул свободных кадров становится слишком маленьким.
Другим важным применением локализации является ее использование в системах мягкого реального времени. Рассмотрим процесс или нить реального времени. Вообще говоря, виртуальная память -- антитеза вычислений реального времени, так как дает непредсказуемые задержки при подкачке страниц. Поэтому системы реального времени почти не используют виртуальную память. ОС Solaris поддерживает как реальное время, так и разделение времени. Для решения проблемы page faults Solaris разрешает процессам сообщать системе, какие страницы важны для процесса, и локализовать их в памяти. В результате возможно выполнение процесса, реализующего задачу реального времени, содержащего локализованные страницы, где временные задержки страничной системы будут минимизированы.
Помимо системы локализации страниц, есть и другие интересные проблемы, возникающие в процессе управления памятью. Так, например, бывает непросто осуществить повторное выполнение инструкции, вызвавшей page fault. Представляют интерес и алгоритмы отложенного выделения памяти (копирование при записи и др.). Ограниченный объем данного курса не позволяет рассмотреть их более подробно.
Заключение
Описанная система управления памятью является совокупностью программно-технических средств, обеспечивающих производительное функционирование современных компьютеров. Успех реализации той части ОС, которая относится к управлению виртуальной памятью, определяется близостью архитектуры аппаратных средств, поддерживающих виртуальную память, к абстрактной модели виртуальной памяти ОС. Справедливости ради заметим, что в подавляющем большинстве современных компьютеров аппаратура выполняет функции, существенно превышающие потребности модели ОС, так что создание аппаратно-за-висимой части подсистемы управления виртуальной памятью ОС в большинстве случаев не является чрезмерно сложной задачей.
Часть IV. Файловые системы
Все компьютерные приложения нуждаются в хранении и обновлении информации. Возможности оперативной памяти для хранения информации ограничены. Во-первых, оперативная память обычно теряет свое содержимое после отключения питания, а во-вторых, объем обрабатываемых данных зачастую превышает ее возможности. Кроме того, информацию желательно иметь в виде, не зависящем от процессов. Поэтому принято хранить данные на внешних носителях (обычно это диски) в единицах, называемых файлами. В большинстве компьютерных систем предусмотрены устройства внешней (вторичной) памяти большой емкости, на которых можно хранить огромные объемы данных. Однако характеристики доступа к таким устройствам существенно отличаются от характеристик доступа к основной памяти. Чтобы повысить эффективность использования этих устройств, был разработан ряд специфичных для них структур данных и алгоритмов.
Лекция 11. Файлы с точки зрения пользователя
В настоящей лекции вводится понятие и рассматриваются основные функции и интерфейс файловой системы.
Ключевые слова: файл, внешняя память, индексация, тип файла, атрибуты файла, доступ к файлу, прямой, последовательный, индекс -но-последовательный файл, каталоги, директории, дерево каталогов, операции над файлами, операции над каталогами, защита файлов.
Введение
История систем управления данными во внешней памяти начинается еще с магнитных лент, но современный облик они приобрели с появлением магнитных дисков. До этого каждая прикладная программа сама решала проблемы именования данных и их структуризации во внешней памяти. Это затрудняло поддержание на внешнем носителе нескольких архивов долговременно хранящейся информации. Историческим шагом стал переход к использованию централизованных систем управления файлами. Система управления файлами берет на себя распределение внешней памяти, отображение имен файлов в адреса внешней памяти и обеспечение доступа к данным.
Файловая система -- это часть операционной системы, назначение которой состоит в том, чтобы организовать эффективную работу с данными, хранящимися во внешней памяти, и обеспечить пользователю удобный интерфейс при работе с такими данными. Организовать хранение информации на магнитном диске непросто. Это требует, например, хорошего знания устройства контроллера диска, особенностей работы с его регистрами. Непосредственное взаимодействие с диском -- прерогатива компонента системы ввода-вывода ОС, называемого драйвером диска. Для того чтобы избавить пользователя компьютера от сложностей взаимодействия с аппаратурой, была придумана ясная абстрактная модель файловой системы. Операции записи или чтения файла концептуально проще, чем низкоуровневые операции работы с устройствами.
Основная идея использования внешней памяти состоит в следующем. ОС делит память на блоки фиксированного размера, например, 4096 байт. Файл, обычно представляющий собой неструктурированную последовательность однобайтовых записей, хранится в виде последовательности блоков (не обязательно смежных); каждый блок хранит целое число записей. В некоторых ОС (MS-DOS) адреса блоков, содержащих данные файла, могут быть организованы в связный список и вынесены в отдельную таблицу в памяти. В других ОС (Unix) адреса блоков данных файла хранятся в отдельном блоке внешней памяти (так называемом индексе или индексном узле). Этот прием, называемый индексацией, является наиболее распространенным для приложений, требующих произвольного доступа к записям файлов. Индекс файла состоит из списка элементов, каждый из которых содержит номер блока в файле и сведения о местоположении данного блока. Считывание очередного байта осуществляется с так называемой текущей позиции, которая характеризуется смещением от начала файла. Зная размер блока, легко вычислить номер блока, содержащего текущую позицию. Адрес же нужного блока диска можно затем извлечь из индекса файла. Базовой операцией, выполняемой по отношению к файлу, является чтение блока с диска и перенос его в буфер, находящийся в основной памяти.
Файловая система позволяет при помощи системы справочников (каталогов, директорий) связать уникальное имя файла с блоками вторичной памяти, содержащими данные файла. Иерархическая структура каталогов, используемая для управления файлами, может служить другим примером индексной структуры. В этом случае каталоги или папки играют роль индексов, каждый из которых содержит ссылки на свои подкаталоги. С этой точки зрения вся файловая система компьютера представляет собой большой индексированный файл. Помимо собственно файлов и структур данных, используемых для управления файлами (каталоги, дескрипторы файлов, различные таблицы распределения внешней памяти), понятие «файловая система» включает программные средства, реализующие различные операции над файлами.
Перечислим основные функции файловой системы:
Идентификация файлов. Связывание имени файла с выделенным ему пространством внешней памяти.
Распределение внешней памяти между файлами. Для работы с конкретным файлом пользователю не требуется иметь информацию о местоположении этого файла на внешнем носителе информации. Например, для того чтобы загрузить документ в редактор с жесткого диска, нам не нужно знать, на какой стороне какого магнитного диска, на каком цилиндре и в каком секторе находится данный документ.
Обеспечение надежности и отказоустойчивости. Стоимость информации может во много раз превышать стоимость компьютера.
Обеспечение защиты от несанкционированного доступа.
Обеспечение совместного доступа к файлам, так чтобы пользователю не приходилось прилагать специальных усилий по обеспечению синхронизации доступа.
Обеспечение высокой производительности.
Иногда говорят, что файл -- это поименованный набор связанной информации, записанной во вторичную память. Для большинства пользователей файловая система -- наиболее видимая часть ОС. Она предоставляет механизм для онлайнового хранения и доступа как к данным, так и к программам для всех пользователей системы. Сточки зрения пользователя, файл -- единица внешней памяти, то есть данные, записанные на диск, должны быть в составе какого-нибудь файла.
Важный аспект организации файловой системы -- учет стоимости операций взаимодействия с вторичной памятью. Процесс считывания блока диска состоит из позиционирования считывающей головки над дорожкой, содержащей требуемый блок, ожидания, пока требуемый блок сделает оборот и окажется под головкой, и собственно считывания блока. Для этого требуется значительное время (десятки миллисекунд). В современных компьютерах обращение к диску осуществляется примерно в 100 ООО раз медленнее, чем обращение к оперативной памяти. Таким образом, критерием вычислительной сложности алгоритмов, работающих с внешней памятью, является количество обращений к диску.
В данной лекции рассматриваются вопросы структуры, именования, защиты файлов; операции, которые разрешается производить над файлами; организация файлового архива (полного дерева справочников). Проблемы выделения дискового пространства, обеспечения производительной работы файловой системы и ряд других вопросов, интересующих разработчиков системы, вы найдете в следующей лекции.
Общие сведения о файлах
Имена файлов
Файлы представляют собой абстрактные объекты. Их задача -- хранить информацию, скрывая от пользователя детали работы с устройствами. Когда процесс создает файл, он дает ему имя. После завершения процесса файл продолжает существовать и через свое имя может быть доступен другим процессам.
Правила именования файлов зависят от ОС. Многие ОС поддерживают имена из двух частей (имя + расширение), например progr.c (файл, содержащий текст программы на языке Си) или autoexec.bat (файл, содержащий команды интерпретатора командного языка). Тип расширения файла позволяет ОС организовать работу с ним различных прикладных программ в соответствии с заранее оговоренными соглашениями. Обычно ОС накладывают некоторые ограничения, как на используемые в имени символы, так и на длину имени файла. В соответствии со стандартом POSIX, популярные ОС оперируют удобными для пользователя длинными именами (до 255 символов).
ТИПЫ ФАЙЛОВ
Важный аспект организации файловой системы и ОС -- следует ли поддерживать и распознавать типы файлов. Если да, то это может помочь правильному функционированию ОС, например не допустить вывода на принтер бинарного файла.
Основные типы файлов: регулярные (обычные) файлы и директории (справочники, каталоги). Обычные файлы содержат пользовательскую информацию. Директории -- системные файлы, поддерживающие структуру файловой системы. В каталоге содержится перечень входящих в него файлов и устанавливается соответствие между файлами и их характеристиками (атрибутами). Мы будем рассматривать директории ниже.
Напомним, что хотя внутри подсистемы управления файлами обычный файл представляется в виде набора блоков внешней памяти, для пользователей обеспечивается представление файла в виде линейной последовательности байтов. Такое представление позволяет использовать абстракцию файла при работе с внешними устройствами, при организации межпроцессных взаимодействий и т. д. Так, например, клавиатура обычно рассматривается как текстовый файл, из которого компьютер получает данные в символьном формате. Поэтому иногда к файлам приписывают другие объекты ОС, например специальные символьные файлы и специальные блочные файлы, именованные каналы и сокеты, имеющие файловый интерфейс. Эти объекты рассматриваются в других разделах данного курса.
Далее речь пойдет главным образом об обычных файлах.
Обычные (или регулярные) файлы реально представляют собой набор блоков (возможно, пустой) на устройстве внешней памяти, на котором поддерживается файловая система. Такие файлы могут содержать как текстовую информацию (обычно в формате ASCII), так и произвольную двоичную (бинарную) информацию.
Текстовые файлы содержат символьные строки, которые можно распечатать, увидеть на экране или редактировать обычным текстовым редактором.
Другой тип файлов -- нетекстовые, или бинарные, файлы. Обычно они имеют некоторую внутреннюю структуру. Например, исполняемый файл в ОС Unix имеет пять секций: заголовок, текст, данные, биты реалло-кации и символьную таблицу. ОС выполняет файл, только если он имеет нужный формат. Другим примером бинарного файла может быть архивный файл. Типизация файлов не слишком строгая.
Обычно прикладные программы, работающие с файлами, распознают тип файла по его имени в соответствии с общепринятыми соглашениями. Например, файлы с расширениями .с, .pas, . txt -- ASCII-файлы, файлы с расширениями .ехе -- выполнимые, файлы с расширениями . obj, .zip- бинарные и т. д.
Атрибуты файлов
Кроме имени ОС часто связывают с каждым файлом и другую информацию, например дату модификации, размер и т. д. Эти другие характеристики файлов называются атрибутами. Список атрибутов в разных ОС может варьироваться. Обычно он содержит следующие элементы: основную информацию (имя, тип файла), адресную информацию (устройство, начальный адрес, размер), информацию об управлении доступом (владелец, допустимые операции) и информацию об использовании (даты создания, последнего чтения, модификации и др.).
Список атрибутов обычно хранится в структуре директорий (см. следующую лекцию) или других структурах, обеспечивающих доступ к данным файла.
Организация файлов и доступ к ним
Программист воспринимает файл в виде набора однородных записей. Запись -- это наименьший элемент данных, который может быть обработан как единое целое прикладной программой при обмене с внешним устройством. Причем в большинстве ОС размер записи равен одному байту. В то время как приложения оперируют записями, физический обмен с устройством осуществляется большими единицами (обычно блоками). Поэтому записи объединяются в блоки для вывода и разблокируются -- для ввода. Вопросы распределения блоков внешней памяти между файлами рассматриваются в следующей лекции.
ОС поддерживают несколько вариантов структуризации файлов.
Последовательный файл
Простейший вариант -- так называемый последовательный файл. То есть файл является последовательностью записей. Поскольку записи, как правило, однобайтовые, файл представляет собой неструктурированную последовательность байтов.
Обработка подобных файлов предполагает последовательное чтение записей от начала файла, причем конкретная запись определяется ее положением в файле. Такой способ доступа называется последовательным (модель ленты). Если в качестве носителя файла используется магнитная лента, то так и делается. Текущая позиция считывания может быть возвращена к началу файла (rewind).
Файл прямого доступа
В реальной практике файлы хранятся на устройствах прямого (random) доступа, например на дисках, поэтому содержимое файла может быть разбросано по разным блокам диска, которые можно считывать в произвольном порядке. Причем номер блока однозначно определяется позицией внутри файла.
Здесь имеется в виду относительный номер, специфицирующий данный блок среди блоков диска, принадлежащих файлу. О связи относительного номера блока с абсолютным его номером на диске рассказывается в следующей лекции.
Естественно, что в этом случае для доступа к середине файла просмотр всего файла с самого начала не обязателен. Для специфицирования места, с которого надо начинать чтение, используются два способа: с начала или с текущей позиции, которую дает операция seek. Файл, байты которого могут быть считаны в произвольном порядке, называется файлом прямого доступа.
Таким образом, файл, состоящий из однобайтовых записей на устройстве прямого доступа, -- наиболее распространенный способ организации файла. Базовыми операциями для такого рода файлов являются считывание или запись символа в текущую позицию. В большинстве языков высокого уровня предусмотрены операторы посимвольной пересылки данных в файл или из него.
Подобную логическую структуру имеют файлы во многих файловых системах, например в файловых системах ОС Unix и MS-DOS. ОС не осуществляет никакой интерпретации содержимого файла. Эта схема обеспечивает максимальную гибкость и универсальность. С помощью базовых системных вызовов (или функций библиотеки ввода/вывода) пользователи могут как угодно структурировать файлы. В частности, многие СУБД хранят свои базы данных в обычных файлах.
Другие формы организации файлов
Известны как другие формы организации файла, так и другие способы доступа к ним, которые использовались в ранних ОС, а также применяются сегодня в больших мэйнфреймах (mainframe), ориентированных на коммерческую обработку данных.
Первый шаг в структурировании -- хранение файла в виде последовательности записей фиксированной длины, каждая из которых имеет внутреннюю структуру. Операция чтения производится над записью, а операция записи переписывает или добавляет запись целиком. Ранее использовались записи по 80 байт (это соответствовало числу позиций в перфокарте) или по 132 символа (ширина принтера). В ОС СР/М файлы были последовательностями 128-символьных записей. С введением CRT-терминалов данная идея утратила популярность.
Другой способ представления файлов -- последовательность записей переменной длины, каждая из которых содержит ключевое поле в фиксированной позиции внутри записи (см. рис. 11.1). Базисная операция в данном случае -- считать запись с каким-либо значением ключа. Записи могут располагаться в файле последовательно (например, отсортированные по значению ключевого поля) или в более сложном порядке. Метод доступа по значению ключевого поля к записям последовательного файла называется индексно-последовательным.
В некоторых системах ускорение доступа к файлу обеспечивается конструированием индекса файла. Индекс обычно хранится на том же устройстве, что и сам файл, и состоит из списка элементов, каждый из которых содержит идентификатор записи, за которым следует указание о местоположении данной записи. Для поиска записи вначале происходит обращение к индексу, где находится указатель на нужную запись. Такие файлы называются индексированными, а метод доступа к ним -- доступ с использованием индекса.
Предположим, у нас имеется большой несортированный файл, содержащий разнообразные сведения о студентах, состоящие из записей с несколькими полями, и возникает задача организации быстрого поиска по одному из полей, например по фамилии студента. Рис. 11.2 иллюстрирует решение данной проблемы -- организацию метода доступа к файлу с использованием индекса.
Следует отметить, что почти всегда главным фактором увеличения скорости доступа является избыточность данных.
Способ выделения дискового пространства при помощи индексных узлов, применяемый в ряде ОС (Unix и некоторых других, см. следующую лекцию), может служить другим примером организации индекса.
В этом случае ОС использует древовидную организацию блоков, при которой блоки, составляющие файл, являются листьями дерева, а каждый внутренний узел содержит указатели на множество блоков файла. Для больших файлов индекс может быть слишком велик. В этом случае создают индекс для индексного файла (блоки промежуточного уровня или блоки косвенной адресации).
Операции над файлами
Операционная системадолжна предоставить в распоряжение пользователя набор операций для работы с файлами, реализованных через системные вызовы. Чаще всего при работе с файлом пользователь выполняет не одну, а несколько операций. Во-первых, нужно найти данные файла и его атрибуты по символьному имени, во-вторых, считать необходимые атрибуты файла в отведенную область оперативной памяти и проанализировать права пользователя на выполнение требуемой операции. Затем следует выполнить операцию, после чего освободить занимаемую данными файла область памяти. Рассмотрим в качестве примера основные файловые операции ОС Unix [Таненбаум, 2002]:
Создание файла, не содержащего данных. Смысл данного вызова -- объявить, что файл существует, и присвоить ему ряд атрибутов. При этом выделяется место для файла на диске и вносится запись в каталог.
Удаление файла и освобождение занимаемого им дискового пространства.
Открытие файла. Перед использованием файла процесс должен его открыть. Цель данного системного вызова -- разрешить системе проанализировать атрибуты файла и проверить права доступа к нему, а также считать в оперативную память список адресов блоков файла для быстрого доступа к его данным. Открытие файла является процедурой создания дескриптора или управляющего блока файла. Дескриптор (описатель) файла хранит всю информацию о нем. Иногда, в соответствии с парадигмой, принятой в языках программирования, под дескриптором понимается альтернативное имя файла или указатель на описание файла в таблице открытых файлов, используемый при последующей работе с файлом. Например, на языке Си операция открытия файла fd=open(pathname, flags,modes) ; возвращает дескриптор f d, который может быть задействован при выполнении операций чтения ( read {f d, buf f er, count) ;) или записи.
Закрытие файла. Если работа с файлом завершена, его атрибуты и адреса блоков на диске больше не нужны. В этом случае файл нужно закрыть, чтобы освободить место во внутренних таблицах файловой системы.
Позиционирование. Дает возможность специфицировать место внутри файла, откуда будет производиться считывание (или запись) данных, то есть задать текущую позицию.
Чтение данных из файла. Обычно это делается с текущей позиции. Пользователь должен задать объем считываемых данных и предоставить для них буфер в оперативной памяти.
* Запись данных в файл с текущей позиции. Если текущая позиция находится в конце файла, его размер увеличивается, в противном случае запись осуществляется на место имеющихся данных, которые, таким образом, теряются.
Есть и другие операции, например переименование файла, получение атрибутов файла и т. д.
Существует два способа выполнить последовательность действий над файлами [Олифер, 2001].
В первом случае для каждой операции выполняются как универсальные, так и уникальные действия (схема stateless). Например, последовательность операций может быть такой: open, readl, close, ... open, read2, close, ... open, read3, close.
Альтернативный способ -- это когда универсальные действия выполняются в начале и в конце последовательности операций, а для каждой промежуточной операции выполняются только уникальные действия. В этом случае последовательность вышеприведенных операций будет выглядеть так: open, readl, ... read2, ... read3, close.
Большинство ОС использует второй способ, более экономичный и быстрый. Первый способ более устойчив к сбоям, поскольку результаты каждой операции становятся независимыми от результатов предыдущей операции; поэтому он иногда применяется в распределенных файловых системах (например, Sun NFS).
Подобные документы
Основные понятия об операционных системах. Виды современных операционных систем. История развития операционных систем семейства Windows. Характеристики операционных систем семейства Windows. Новые функциональные возможности операционной системы Windows 7.
курсовая работа [60,1 K], добавлен 18.02.2012Понятие виртуальной памяти, ее реализация. Особенности страничной организации по требованию. Этапы обработки ситуации отсутствия страницы в памяти. Стратегии (алгоритмы) замещения страниц. Особенности некоторых операционных систем: Windows NT и Solaris.
презентация [2,2 M], добавлен 24.01.2014Изучение особенностей операционной системы, набора программ, контролирующих работу прикладных программ и системных приложений. Описания архитектуры и программного обеспечения современных операционных систем. Достоинства языка программирования Ассемблер.
презентация [1,3 M], добавлен 22.04.2014Общая характеристика преимуществ взаимодействующих процессов: модульность, ускорение вычислений. Знакомство с основами современных операционных систем. Анализ особенностей использования общего почтового ящика, рассмотрение способов создания и удаления.
презентация [1,6 M], добавлен 24.01.2014Характеристика сущности, назначения, функций операционных систем. Отличительные черты их эволюции. Особенности алгоритмов управления ресурсами. Современные концепции и технологии проектирования операционных систем, требования, предъявляемые к ОС XXI века.
курсовая работа [36,4 K], добавлен 08.01.2011Операционная система - программа, которая загружается при включении компьютера. Способы реализации интерфейса и классификация операционных систем. Организация файловой системы, типы файлов и их наименования. Понятие каталога, атрибуты файловой системы.
реферат [16,6 K], добавлен 25.02.2011Важность операционной системы для мобильных устройств. Популярность операционных систем. Доля LINUX на рынке операционных систем. История OS Symbian, BlackBerry OS, Palm OS. Отличия смартфона от обычного мобильного телефона. Учет ограничений по памяти.
презентация [477,3 K], добавлен 01.12.2015Основные понятия операционных систем. Современное оборудование компьютера. Преимущества и недостатки операционной системы Linux. Функциональные возможности операционной системы Knoppix. Сравнительная характеристика операционных систем Linux и Knoppix.
реферат [1,5 M], добавлен 17.12.2014Основные понятия операционных систем. Синхронизация и критические области. Сигналы и взаимодействие между процессами. Управление памятью. Драйверы устройств. Особенности современных операционных систем. Центральный процессор, микросхемы часов и таймеров.
учебное пособие [1,2 M], добавлен 24.01.2014Использование операционных систем Microsoft Windows. Разработка операционной системы Windows 1.0. Возможности и характеристика последующих версий. Выпуск пользовательских операционных систем компании, доработки и нововведения, версии Windows XP и Vista.
реферат [23,3 K], добавлен 10.01.2012