Прогнозирование на основе аппарата нейронных сетей
Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.11.2009 |
Размер файла | 79,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2.4 Способы реализации нейронных сетей
Нейронные сети могут быть реализованы двумя путями: первый - это программная модель НС [2,3,15,34], второй - аппаратная [14,31,34,45,50]. На современном рынке изделия, основанные на использовании механизма действия НС, первоначально появились в виде нейроплат. В качестве типичного примера нейроплаты можно назвать плату МВ 86232 японской фирмы Fujitsu. На плате размещены процессор цифровой обработки сигналов и оперативная память емкостью 4 Мбайт, что позволяет использовать такую плату для реализации НС, содержащих до тысячи нейронов. Есть и более совершенные платы.
Основными коммерческими аппаратными изделиями на основе НС являются и, вероятно, в ближайшее время будут оставаться нейро- БИС. Сейчас выпускаются более 20 типов нейроБИС, параметры которых порой различаются на несколько порядков. Среди них - модель - ETANN фирмы Intel. Эта БИС, выполненная по микронной технологии, является реализацией НС с 64т нейронами и 10240 синапсами. Ее цена 2000 долл.
К числу самых дешевых нейроБИС (41 долл.) относится модель MD 1220 фирмы Micro Devices. Эта БИС реализует НС с 8 нейронами и 120 синапсами.
Среди разрабатываемых в настоящее время нейроБИС выделяются модели фирмы Adaptive Solutions (США) и Hitachi (Япония) . Нейро- БИС фирмы Adaptive Solutions, вероятно, станет одной из самых быстродействующих: объявленная скорость обработки составляет 1,2 млрд. соединений / с. (НС содержит 64 нейрона и 262144 синапса) . НейроБИС фирмы Hitachi позволяет реализовать НС, содержащую до 576 нейронов. Эти нейроБИС, несомненно, станут основой новых нейрокомпьютеров и специализированных многопроцессорных изделий.
Большинство сегодняшних нейрокомпьютеров представляют собой просто персональный компьютер или рабочую станцию, в состав которых входит дополнительная нейроплата. К их числу относятся, например, компьютеры серии FMR фирмы Fujitsu. Такие системы имеют бесспорное право на существование, поскольку их возможностей вполне достаточно для разработки новых алгоритмов и решения большого числа прикладных задач методами нейроматематики. Однако наибольший интерес представляют специализированные нейрокомпьютеры, непосредственно реализующие принципы НС. Типичными представителями таких систем являются компьютеры семейства Mark фирмы TRW (первая реализация персептрона, разработанная Розенблатом, называлась Mark I) . Модель Mark III фирмы TRW представляют собой рабочую станцию, содержащую до 15 процессоров семейства Motorola 68000 с математическими сопроцессорами. Все процессоры объединены шиной VME. Архитектура системы, поддерживающая до 65 000 виртуальных процессорных элементов с более чем 1 млн. настраиваемых соединений, позволяет обрабатывать до 450 тыс. межсоединений/с. Mark IV - это однопроцессорный суперкомпьютер с конвейерной архитектурой. Он поддерживает до 236 тыс. виртуальных процессорных элементов, что позволяет обрабатывать до 5 млн. межсоединений/с. Компьютеры семейства Mark имеют общую программную оболочку ANSE (Artificial Neural System Environment) , обеспечивающую программную совместимость моделей. Помимо указанных моделей фирмы TRW предлагает также пакет Mark II - программный эмулятор НС.
- Другой интересной моделью является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. Его топология представляет собой трехмерную решетку стандартных вычислительных узлов на базе процессоров 80188. Компьютер NETSIM используется для моделирования таких моделей НС, как сеть Хопфилда Кохонена и НС с обратным распространением. Его производительность достигает 450 млн. межсоединений/с.
Фирма Computer Recognitiion Systems (CRS) продает серию нейрокомпьютеров WIZARD/CRS 1000, предназначенных для обработки видеоизображений. Размер входной изображения 512 x 512 пикселей. Модель CRS 1000 уже нашла применение в промышленных системах автоматического контроля.
Сегодня на рынке представлено много моделей нейрокомпьютеров. На самом деле их, видимо, гораздо больше, но наиболее мощные и перспективные модели по-прежнему создаются по заказам военных. К сожалению, не имея достаточной информации о моделях специального назначения, трудно составить представление об истинных возможностях современных компьютеров.
Выводы
НС принадлежат классу коннекционистских моделей обработки информации. Основная их черта использовать взвешенные связи между обрабатывающими элементами как принципиальное средство запоминания информации. Обработка в таких сетях ведется одновременно большим числом элементов, благодаря чему они терпимы к неисправностям и способны к быстрым вычислениям.
Задать НС, способную решить конкретную задачу, - это значит определить модель нейрона, топологию связей, веса связей. Нейронные сети различаются между собой меньше всего моделями нейрона, а в основном топологией связей и правилами определения весов или правилами обучения, программирования.
По структуре связей сети делятся на два больших класса: однослойные и многослойные. К однослойным относятся модель Хопфилда [1,21,30,42-44] и последующие разработки [38], некоторые типы модели нейронной сети, известной под названием "машина Больцмана" [28,29]. Многослойная сеть имеет входной, выходной и скрытые слои, на входной подается информация, с выходного снимается от- вет, скрытые слои участвуют в обработке [31].
В настоящее время существует два подхода к решению задачи обучения НС решению задачи распознавания образов, оптимизации и т.д. Один, исторически более ранний, состоит в постепенной модификации весовых коэффициентов в процессе обучения.
Подходы к обучению однослойных и многослойных сетей различны. Обучение многослойных сетей состоит в том, что на основе набора примеров входное состояние -> выходное состояние постепенно подбираются веса всех связей так, чтобы каждое входное состояние вызывало соответствующее выходное. Обучающие алгоритмы представляют собою итерационные процедуры с медленным приближением к окончательным значениям весов связей. Этот способ впервые был реализован в персептроне Розенблата и локальных правилах обучения на основе модели Хебба. В последующие годы этот подход получил дальнейшее развитие в алгоритмах типа обратного распространения.
В однослойных сетях часто удается выразить веса связей через параметры задачи (так обстоит дело с моделью Хопфилда и однослойной машиной Больцмана) . Подход состоит в вычислении значений синаптических весов на основе заданного описания функционирования нейронной сети как "черного ящика". Если сеть должна реализовать заданную функцию, ее рассматривают как набор элементов пороговой логики и задача сводится к кусочно-линейной аппроксимации этой зависимости и синтезу соответствующего автомата.
Для общего случая, когда описание поведения сети задано в виде набора векторов возможных состояний, поиск синаптических весов сводится к решению соответствующей системы нелинейных уравнений. Такое решение было впервые найдено Хопфилдом. Появление этой работы около 10 лет назад продемонстрировало эффективность применения аналитических методов для интерпретации поведения нейронных сетей и привело к разработке проекционного алгоритма, позволяющего вычислять значения синаптических весов, сократив тем самым затраты времени на обучение.
Исследования проекционного алгоритма показывают, что при очевидных достоинствах ему свойственен ряд недостатков, в частности склонность сети к ложным реакциям и низкая эффективность при доучивании, когда необходимо ввести новые данные, не разрушая информации, запомненной ранее. Кроме того, до настоящего времени принято считать, что данный алгоритм пригоден лишь для полносвяз- ных нейронных сетей и неприменим в сетях другой архитектуры. Указанные недостатки и малая изученность таких вопросов, как структура и частота появления ложных реакций, реализация итеративных процедур доучивания и применение в неполносвязных сетях, затрудняет использование проекционного алгоритма в исследованиях по нейробионике и при проектировании нейропроцессоров. Недостатком проекционного алгоритма с точки зрения решения задачи прогнозирования является то, что при обучении необходимо с начала сформировать эталоны распознаваемых образов. В задаче прогнозирования это либо вовсе невозможно, либо чрезвычайно затруднено. Эталоны должны формироваться в самой сети на основе анализа исторических данных.
Исходя из вышеизложенного, можно заключить, что для решения задач прогнозирования наиболее подходит сеть с обратным распространением. Она позволяет формальным образом обучить сеть прогнозировать изменение требования на основе исторических данных о требовании.
3. Прогнозирование на основе нейронных сетей
В данной главе описан способ прогнозирования с помощью НС, основанный на методе окон. Также приведен обзор применения НС в финансовой сфере.
3.1 Общий подход к прогнозированию с помощью нейронных сетей
На НС задача прогнозирования формализуется через задачу распознавания образов. Данных о прогнозируемой переменной за некоторый промежуток времени образуют образ, класс которого определяется значением прогнозируемой переменной в некоторый момент времени за пределами данного промежутка т.е. значением переменной через интервал прогнозирования. Метод окон предполагает использование двух окон Wi и Wo с фиксированными размерами n и m соответственно. Эти окна, способны перемещаться с некоторым шагом по временной последовательности исторических данных, начиная с первого элемента, и предназначены для доступа к данным временного ряда, причем первое окно Wi, получив такие данные, передает их на вход нейронной сети, а второе - Wo - на выход. Получающаяся на каждом шаге пара Wi -> Wo (3.1) используется как элемент обучающей выборки (распознаваемый образ, или наблюдение) .
Например, пусть есть данные о еженедельных продажах режущего инструмента (k = 16) : 100 94 90 96 91 94 95 99 95 98 100 97 99 98 96 98 (3.2) Весь ряд смотри приложение 1. Зададим n = 4, m = 1, s = 1. С помощью метода окон для нейронной сети будет сгенерирована следующая обучающая выборка: 100 94 90 96 -> 91 94 90 96 91 -> 94 90 96 91 94 -> 95 (3.3) 96 91 94 95 -> 99 91 94 95 99 -> 95 и т.д.
Каждый следующий вектор получается в результате сдвига окон Wi и Wo вправо на один элемент (s = 1) . Предполагается наличие скрытых зависимостей во временной последовательности как множестве наблюдений. Нейронная сеть, обучаясь на этих наблюдениях и соответственно настраивая свои коэффициенты, пытается извлечь эти закономерности и сформировать в результате требуемую функцию прогноза P.
Прогнозирование осуществляется по тому же принципу, что и формирование обучающей выборки. При этом выделяются две возможности: одношаговое и многошаговое прогнозирование.
Многошаговое прогнозирование
Используется для осуществления долгосрочного прогноза и предназначено для определения основного тренда и главных точек изменения тренда для некоторого промежутка времени в будущем. При этом прогнозирующая система использует полученные (выходные) данные для моментов времени k+1, k+2 и т.д. в качестве входных данных для прогнозирования на моменты времени k+2, k+3 и т.д.
Предположим, система обучилась на временной последовательности (3.2). Затем она спрогнозировала k+1 элемент последовательности, например, равный 95, когда на ее вход был подан последний из известных ей образов (99,98,96,98) . После этого она осуществляет дальнейшее прогнозирование и на вход подается следующий образ (98,96,98,95) . Последний элемент этого образа является прогнозом системы. И так далее.
Одношаговое прогнозирование
Используется для краткосрочных прогнозов, обычно - абсолютных значений последовательности. Осуществляется прогноз только на один шаг вперед, но используется реальное, а не прогнозируемое значение для осуществления прогноза на следующем шаге.
Для временной последовательности 3.2. На шаге k+1 система прогнозирует требование 95, хотя реальное значение (смотри приложение 1) должно быть 96. На шаге k + 2 в качестве входного образа будет использоваться образ (98,96,98,96) .
Как было сказано выше, результатом прогноза на НС является класс к которому принадлежит переменная, а не ее конкретное значение. Формирование классов должно проводиться в зависимости от того каковы цели прогнозирования. Общий подход состоит в том, что область определения прогнозируемой переменной разбивается на классы в соответствии с необходимой точностью прогнозирования. Классы могут представлять качественный или численный взгляд на изменение переменной.
3.2 Применение нейронных сетей в финансовой сфере
Характерный пример успешного применения нейронных вычислений в финансовой сфере управление кредитными рисками. Как известно, до выдачи кредита банки проводят сложные статистические расчеты по финансовой надежности заемщика, чтобы оценить вероятность собственных убытков от несвоевременного возврата финансовых средств. Такие расчеты обычно базируются на оценке кредитной истории, динамике развития компании, стабильности ее основных финансовых показателей и многих других факторов. Один широко известный банк США опробовал метод нейронных вычислений и пришел к выводу, что та же задача по уже проделанным расчетам подобного рода решается быстрее и точнее. Например, в одном из случаев оценки 100 тыс. банковских счетов новая система, построенная на базе нейронных вычислений, определила свыше 90% потенциальных неплательщиков.
Другая очень важная область применения нейронных вычислений в финансовой сфере предсказание ситуации на фондовом рынке. Стандартный подход к этой задаче базируется на жестко фиксированном наборе "правил игры", которые со временем теряют свою эффективность из-за изменения условий торгов на фондовой бирже. Кроме того, системы, построенные на основе такого подхода, оказываются слишком медленными для ситуаций, требующих мгновенного принятия решений. Именно поэтому основные японские компании, оперирующие на рынке ценных бумаг, решили применить метод нейронных вычислений. В типичную систему на базе нейронной сети ввели информацию общим объемом в 33 года деловой активности нескольких организаций, включая оборот, предыдущую стоимость акций, уровни дохода и т.д. Самообучаясь на реальных примерах, система нейронной сети показала большую точность предсказания и лучшее быстродействие: по сравнению со статистическим подходом дала улучшение результативности в целом на 19%.
Следующий пример, довольно близкий к области финансового рынка, - оценка стоимости недвижимости. Решение этой задачи зависит в основном от опыта сотрудника риэлтерской фирмы, учитывающего множество таких неравноценных факторов, как доля собственности, качество постройки, окружающая обстановка и т.д. Группа исследователей из университета г. Портсмут (Великобритания) заложила в вычислительную систему на базе нейронной сети данные по оценке недвижимости из обзоров риэлтеровских фирм и списков аукционных цен. Результат показал, что самообучившаяся система дает оценки стоимости, хорошо коррелируемые с экспертными заключениями специалистов этого профиля.
Пример удачного прогнозирования динамики биржевых курсов по заказу Chemical Bank продемонстрировала фирма Logica. На технической базе Sun SPARCstation LX с помощью нейронных вычислений моделировались рынки валютных курсов доллар/швейцарский франк и немецкая марка/швейцарский франк. Выбор именно этих валют объяснялся высоким уровнем подвижности первого соотношения и малым второго (до кризиса в 1993 году) . Данные о динамике кросс-курсов этих валют собирались с 1 октября 1992 года по 1 октября 1993 года, при этом ценовые прогнозы характеризовались пятью категориями: большой рост, малый рост, без изменений, малый спад, большой спад. В итоге нейронная система предсказала за вышеупомянутый годовой период 55 % реальных данных по первому соотношению валют и 23 % - по второму.
Лондонская фондовая биржа (ЛФБ) начала внедрение автоматизированной системы с элементами искусственного интеллекта на базе нейронных вычислений для контроля внутреннего дилинга. Первый этап инсталляции этой системы, разработанной лондонской фирмой SearchSpace и получившей кодовое наименование MonITARS (Monitoring Insider Trading and Regulatory Surveillance) , успешно завершен.
По оценкам экспертов, бум вокруг систем искусственного интеллекта в финансовой индустрии пришелся на период 1984 - 1989 гг. В основном он затронул США и в меньшей степени Великобританию, где разработчики сложных имитационных систем для военных (типа программы "Звездные войны") решили попытать счастья на Уолл-стрит. Многие разработчики действительно обогатились, чего нельзя сказать о финансовых структурах, чьи завышенные ожидания эффекта от внедрения подобных систем не оправдались. Так, один крупный инвестиционный банк на Уолл-стрит потратил более 1 млн. долл. на разработку системы искусственного интеллекта для финансовых операций, но спустя некоторое время вынужден был вернуться к старой, "неинтеллектуальной". Одной из причин неудачи был недостаточный по сравнению с ожидаемым уровень производительности системы, полученный в результате ее внедрения.
Американская фондовая биржа в Нью-Йорке пошла по аналогичному пути, запустив в 1987 году автоматизированную систему Stockwatch Alert Terminal (SWAT) II. Ее расширенная версия - SWAT III - сейчас проходит бета-тестирование и, видимо, будет внедрена в начале года. Правда, фирма SearchSpace утверждает, что выбрала другую технологию (в отличие от SWAT) , называемую "генетическими алгоритмами", и ведет переговоры о ее внедрении с рядом бирж Европы и Дальнего Востока.
В настоящее время банки пришли к выводу, что прикладные системы, разработанные на базе нейронных сетей, могут принести им пользу. На рынке уже предлагаются продукты подобного рода, определяющие вероятность риска при выдаче кредита, а также пакеты моделирования и прогнозирования банкротства, анализа портфеля ценных бумаг и торговли акциями. Нейронные сети заменяют традиционные системы в таких научно-технических областях, как статистические методы, распознавание образов, линейный и нелинейный математический анализ.
Mellon equity Associates - подразделение Mellon Bank в Питтсбурге (США) - достаточно давно применяло собственную систему анализа линейной регрессии для распределения фондов и специальной селекции акций. В ходе работы они обнаружили, что между различными оценочными параметрами существуют нелинейные связи, не поддающиеся точному учету с помощью имеющегося у них инструментария.
Поскольку данное направление работ составляет примерно половину всего бизнеса компании (под управлением находится около 2.5 млрд. долл. инвестиций) , то поиск более точных средств стал жизненно важной задачей. После тщательного анализа разных систем разработок ПО с помощью нейронных сетей Mellon Equity Associates выбрала пакет Neural-Works Professional II/Plus 5.0 фирмы Neural- Ware (Питтсбург) . Основанием для этого послужило наличие у него таких возможностей, как усиленный темп самообучения на базе "генетического алгоритма", очень важного для моделирования систем "с шумом".
По мнению руководителей NeuralWare Inc., методика линейного статистического анализа имеет следующие недостатки. При финансовых расчетах существует сильная взаимосвязь между отношением цена/доходы одинаковых рынков и темпами изменения дивидендов краткосрочных инвестиций. Когда на кривой, отображающей динамику последних, есть точки экстремума, то линейные методы могут дать переоценку первых.
Neural-Works Professional II/Plus 5.0, инсталлированный в компании Mellon Equity Associates, ориентирован на IBM-совместимый ПК с 486-м процессором (правда, в качестве препроцессора там используется мэйнфрейм VAX) и содержит компилятор языка C и стандартные электронные таблицы. Пакет внедрялся в течение четырех-пяти месяцев и в рабочем режиме функционирует с января 1994 года.
Гораздо более распространены случаи, когда в финансовых структурах применяются уже готовые приложения на базе нейронных сетей, например для автоматического распознавания чеков. Подобная система Quick Strokes-IFPS фирмы Mitek Systems (Сан-Диего, шт. Калифорния) была установлена в 1993 году в Федеральном резервном банке Чикаго. Она позволяет оперативно распознавать сканируемые чеки, используя среду обработки данных на базе мэйнфрейма.
Департамент торговли и индустрии правительства Великобритании спонсирует две программы, направленные на развитие нейронных вычислений в финансовой сфере. Это "Клуб нейропрогнозирования", созданный Лондонской школой бизнеса совместно с университетским колледжем Лондона (UCL) , и "Нейронные сети для финансовых услуг", продвигаемый фирмой TBS Bank Technology с UCL и Центром прогнозирования Henley. Вместе с тем среди множества финансовых институтов, известных как пользователи или исследователи этой технологии, фигурируют такие гиганты, как Chemical Bank, Citibank, JP Morgan и др.
Начав работу в этом направлении сравнительно недавно, программисты Великобритании уже добились ощутимых результатов. Группа специалистов, входящих в "Клуб нейропрогнозирования", создала нейронную систему для выработки тактики распределения фондов на глобальных рынках облигаций. Она охватывает семь отдельных географических регионов: Великобританию, Францию, Германию, Японию, США, Канаду, Австралию, и каждый из них моделируется особой локальной сетью нейронов. Все они проходят своеобразный процесс обучения на исторических данных с целью получения краткосрочных прогнозов ситуации на этом рынке за каждый месяц. Все локальные предсказания затем объединяются в Центре управления единым портфелем ценных бумаг.
Вышеописанная система с ноября 1992 года поступила на вооружение Североамериканской страховой компании в Бостоне (США) . В итоге капитал этой компании быстро увеличился с 25 до 50 млн. долл., а портфель ценных бумаг показал доходность свыше 25 % в первый же год внедрения системы. В этом нет ничего удивительного, так как нейронная сеть представляет собой универсальное средство аппроксимации, способное решить любую задачу.
Одна из наиболее передовых методик нейронных вычислений - генетические алгоритмы, имитирующие эволюцию живых организмов. Поэтому они могут быть использованы как оптимизатор параметров нейронной сети. Подобная система для прогнозирования результатов контрактов по долгосрочным ценным бумагам повышенной надежности была разработана и инсталлирована на рабочей станции Sun в компании Hill Samuel Investment Management. При моделировании нескольких стратегий торгов она достигла точности 57 % в предсказании направления движения рынка. В страховой фирме TSB General Insurance (Ньюпорт) используется сходная методика для прогноза уровня риска при страховании частных кредитов. Данная нейронная сеть самообучается на статистических данных о состоянии безработицы в стране.
Выводы
Прогнозирование на НС обладает рядом недостатков. Вообще говоря, нам необходимо как минимум 50 и лучше 100 наблюдений для создания приемлемой модели. Это достаточно большое число данных и существует много случаев, когда такое количество исторических данных недоступно. Например, при производстве сезонного товара, истории предыдущих сезонов недостаточно для прогноза на текущий сезон, из-за изменения стиля продукта, политики продаж и т.д.
Даже при прогнозировании требования на достаточно стабильный продукт на основе информации о ежемесячных продажах, возможно мы не сможем накопить историю за период от 50 до 100 месяцев. Для сезонных процессов проблема еще более сложна. Каждый сезон истории фактически представляет собой одно наблюдение. То есть, в ежемесячных наблюдениях за пять лет будет только пять наблюдений за январь, пять наблюдений за февраль и т.д. Может потребоваться информация за большее число сезонов для того, чтобы построить сезонную модель. Однако, необходимо отметить, что мы можем построить удовлетворительную модель на НС даже в условиях нехватки данных. Модель может уточняться по мере того, как свежие данные становится доступными.
Другим недостатком нейронных моделей - значительные затраты по времени и другим ресурсам для построения удовлетворительной модели. Эта проблема не очень важна, если исследуется небольшое число временных последовательностей. Тем не менее, обычно прогнозирующая система в области управления производством может включать от нескольких сотен до нескольких тысяч временных последовательностей.
Однако, несмотря на перечисленные недостатки, модель обладает рядом достоинств. Существует удобный способ модифицировать модель по мере того как появляются новые наблюдения. Модель хорошо работает с временными последовательностями, в которых мал интервал наблюдений, т.е. может быть получена относительно длительная временная последовательность. По этой причине модель может быть использована в областях, где нас интересуют ежечасовые, ежедневные или еженедельные наблюдения. Эти модели также используются в ситуациях, когда необходимо анализировать небольшое число временных последовательностей.
4. Нейронные сети основанные на методе обратного функционирования
В данной главе мы приводим детальное описание метода обратного распространения - способа обучения многослойных НС. Подробно описана НС для распознавания рукописных цифр и и процесс ее обучения. В главе также проведена современная оценка метода обратного распространения.
4.1 Обучение нейронных сетей
Мы можем научить трехслойную сеть решать определенную задачу, пользуясь следующей процедурой. Сначала мы предъявляем сети серию тренировочных примеров, которые состоят из паттерна активностей входных элементов вместе с желаемым паттерном активностей выходных элементов [8].
Предположим, что мы хотим научить сеть распознавать рукописные цифры. Можно воспользоваться матрицей, из 256 сенсоров, каждый из которых регистрирует присутствие или отсутствие чернильного пятнышка в пределах маленькой площадки - фрагмента одной цифры. Для сети, таким образом, потребуется 256 входных элементов (по одному на каждый сенсор) , 10 выходных элементов (по одному на каждую возможную цифру) и некоторое количество скрытых элементов. Для каждой цифры, регистрируемой сенсорами, сеть должна генерировать высокую активность в соответствующем выходном элементе и низкую в остальных выходных элементах.
Чтобы натренировать систему, мы предъявляем ей изображение цифры и сравниваем действительную активность на 10 выходных элементах с желаемой активностью. Затем мы подсчитываем ошибку, определяемую как квадрат разности между действительным и желаемым выходом. После этого мы изменяем вес каждой связи, с тем, чтобы уменьшить ошибку. Описанный процесс тренировки мы повторяем со многими различными написаньями каждой цифры, пока сеть не научится правильно распознавать все возможные изображения.
Чтобы реализовать эту процедуру, нам нужно изменять каждый вес на величину, пропорциональную скорости, с которой изменяется ошибка по мере изменения веса [5]. Эта величина (называемая производной ошибки по весу и обозначаемая EW) вычисляется не просто. Один из способов вычисления EW заключается в том, чтобы изменить вес на очень маленькую величину и посмотреть, как изменится ошибка. Однако этот метод не эффективен, поскольку требует отдельных вариаций для каждого из многих весов.
4.2. Алгоритм обратного распространения
4.2.1 Идея создания алгоритма обратного распространения
Примерно в 1974 году Поль Дж. Вербос изобрел значительно более эффективную процедуру для вычисления EW, когда работал над своей докторской диссертацией в Гарвардском университете. Процедура, известная теперь как алгоритм обратного распространения (back propagation algorithm) , стала одним из наиболее важных инструментов в обучении нейронных сетей [5,16,27,30,42,48,49].
Алгоритм обратного распространением проще всего понять, когда все элементы сети линейны. Алгоритм вычисляет каждую EW, сначала вычисляя EA - скорость, с которой изменяется ошибка при изменении уровня активности элемента. Для выходных элементов EA является просто разностью между действительным и желаемым выходом. Чтобы вычислить EA для скрытого элемента в слое, непосредственно предшествующем выходному слою, мы сначала идентифицируем все веса между этим скрытым элементом и выходными элементами, с которыми соединен данный скрытый элемент. Затем мы умножаем эти веса на величины EA для этих выходных элементов и складываем полученные произведения. Эта сумма и равна EA для данного скрытого элемента. Вычислив EA для всех элементов скрытого слоя, прилегающего к выходному, мы можем аналогичным образом рассчитать EA и для других слоев, перемещаясь в направлении, обратном тому направлению, в котором активность нейронов распространяется по сети. Отсюда и название алгоритма обратного прослеживания (или обратного распространения) . После того как значение EA для элемента вычислено, подсчитать EW для каждой входной связи элемента уже несложно. Величина EW является произведением EA и активности во входной цепи.
Для нелинейных элементов алгоритм обратного распространением включает дополнительный шаг. Перед перемещением в обратном направлении EA необходимо преобразовать в EI скорость, с которой изменяется ошибка по мере изменения суммарного входа элемента.
4.2.2 Описание НС и алгоритма обратного распространения
Чтобы обучить нейронную сеть решению какой-либо задачи, мы должны подправлять веса каждого элемента таким образом, чтобы уменьшалась ошибка - расхождение между действительным и желаемым выходом. Для этого нужно, чтобы нейронная сеть вычисляла производную от ошибки по весам (EW) . Другими словами, она должна вычислять, как изменяется ошибка при небольшом увеличении или уменьшении каждого веса. Чаще всего для вычисления EW применяется алгоритм обратного распространением.
Чтобы реализовать этот алгоритм, мы сначала должны дать математическое описание нейронной сети. Предположим, что элемент j - типичный элемент выходного слоя, а элемент i - типичный элемент слоя, который предшествует выходному. Активность элемента выходного слоя определяется двухшаговой процедурой. Сначала вычисляется суммарный взвешенный вход Xj с помощью формулы Xj = S (Yi * Wij) , (4.1) i где Yi - уровень активности i-го элемента в предшествующем слое и Wij - вес связи между i-м и j-м элементами.
Далее, элемент вычисляет активность Yj с помощью некоторой функции от суммарного взвешенного входа. Обычно применяется сигма-функция: Yj = 1 / (1 + e^(-Xj) ) . (4.2) После того как активности всех выходных элементов определены, сеть вычисляет ошибку, которая определяется выражением E = 1/2 * S (Yj - Dj) ^2, (4.3) j где Yj - уровень активности j-го элемента в верхнем слое, а Dj желаемый выход j-го элемента.
Алгоритм обратного распространения состоит из четырех шагов.
1) Вычислить, насколько быстро меняется ошибка при изменении выходного элемента. Эта производная ошибки (EA) есть разность между действительной и ожидаемой активностью.
dE EAj = ---- = Yj - Dj. (4.4) dYj
2) Вычислить, насколько быстро изменяется ошибка по мере изменения суммарного входа, получаемого выходным элементом. Эта величина (EI) есть результат шага 1, умноженный на скорость изменения выходного элемента с изменением его суммарного входа.
dE dE dYj EIj = = --- * --= EIj Yj (1 - Yj) . (4.5) dXj dYj dXj
3) Вычислить, как быстро изменяется ошибка по мере изменения веса на входной связи выходного элемента. Эта величина (EW) есть результат шага 2, умноженный на уровень активности элемента, из которого исходит связь.
dE dE dXj EWij = ---- = --- * --- = EIj Yi. (4.6) dWij dXj dXij
4) Вычислить, как быстро изменяется ошибка с изменением активности элемента из предыдущего слоя. Этот ключевой шаг позволяет применять обратное распространение к многослойным сетям. Когда активность элемента из предыдущего слоя изменяется, это влияет на активности всех выходных элементов, с которыми он связан. Поэтому, чтобы подсчитать суммарное воздействие на ошибку, мы складываем все эти воздействия на выходные элементы. Но эти воздействия нетрудно подсчитать. Этот результат шага 2, умноженный на вес связи к соответствующему выходному элементу.
dE dE dXj EAi = ---- = S (--- * ---) = S (EIj Wij) . (4.7) dYi j dXj dYij j
Пользуясь шагами 2 и 4, мы можем преобразовать величины EA одного слоя элементов в EA предыдущего слоя. Эту процедуру можно повторять, чтобы вычислять EA стольких предыдущих слоев, сколько их есть. Зная EA для элемента, мы можем воспользоваться шагами 2 и 3, чтобы вычислить EW на его выходных связях.
4.2.3 Современная оценка алгоритма обратного распространения
На протяжении нескольких лет после его изобретения алгоритм обратного распространением оставался почти незамеченным, вероятно, потому, что не был в должной мере оценен специалистами. В начале 80-х годов Д. Румельхарт, работавший в то время в Калифорнийском университете в Сан-Диего, и Д. Паркер из Станфордского университете независимо друг от друга вновь открыли алгоритм. В 1986 году Румельхарт, Р. Уильямс, также из Калифорнийского университета в Сан-Диего, и Джеффери Е. Хинтон [5] продемонстрировали способность алгоритма обучить скрытые элементы вырабатывать интересные представления для сложных паттернов на входе и тем самым сделали его известным.
Алгоритм обратного распространения оказался на удивление эффективным в обучении сетей со многими слоями решению широкого класса задач [2,5,15]. Но более всего он эффективен в ситуациях, когда отношения между входом и выходом нелинейны, а количество обучающих данных велико. Применяя алгоритм, исследователи создали нейронные сети, способные распознавать рукописные цифры, предсказывать изменения валютного курса и оптимизировать химические процессы. Они даже воспользовались алгоритмом для обучения сетей, которые идентифицируют переродившиеся пред-раковые клетки в анализируемых образцах ткани и регулируют положение зеркал в телескопах, чтобы исключить атмосферные искажения.
Р. Андерсен из Массачусетского технологического института и Д. Зипсер из Калифорнийского университета в Сан-Диего показали, что алгоритм обратного распространения представляет собой весьма эффективный инструмент для понимания функций некоторых нейронов в коре головного мозга. Они научили нейронную сеть реагировать на зрительные стимулы, применив алгоритм обратного распространения. Затем они обнаружили, что реакция скрытых элементов удивительно схожа с реакцией реальных нейронов, выполняющих преобразование зрительной информации, поступающей от сетчатки, в форму, необходимую для более глубоких областей мозга, перерабатывающих зрительную информацию.
Выводы
Метод обратного распространения достаточно хорош при создании представлений о распознаваемом образе в скрытых элементах сети. Алгоритм обратного распространения показал эффективность процедур обучения НС, в которых веса постепенно изменяются, чтобы уменьшить ошибки. Раньше многие ученые полагали, что подобные методы окажутся безнадежными, поскольку должны неизбежно приводить к локально оптимальным, но в более широком масштабе ужасным решениям. Например, сеть для распознавания цифр может устойчиво сходиться к набору весов, при котором она будет путать единицы с семерками, хотя существует набор весов, позволяющий различать эти цифры наряду с другими. Из-за опасений подобного рода распространилось убеждение, что процедура обучения представляет интерес только в том случае, если она гарантирует сходимость к глобально оптимальному решению. Метод обратного распространения показал, что для многих задач глобальная сходимость не является необходимым условием для того, чтобы достичь хороших результатов.
С другой стороны, с биологической точки зрения, как подобие работы головного мозга, метод обратного распространения выглядит не очень убедительным. Наиболее очевидная трудность заключается в том, что информация должна проходить по тем же самым связям в обратном направлении, от каждого последующего уровня к предыдущему. Ясно, что этого не происходит в реальных нейронах. Однако этот довод на самом деле является довольно поверхностным. В мозге существует множество путей, ведущих от следующих слоев нервных клеток к предыдущим, и эти пути могут использоваться многообразными способами для передачи информации, необходимой для обучения.
Более серьезную проблему представляет собой быстродействие алгоритма обратного распространения. Здесь центральным является вопрос о том, как быстро растет время, необходимое для обучения, по мере возрастания размеров сети. Время, требующееся для вычисления производных от ошибки по весам на заданном тренировочном примере, пропорционально размерам сети, поскольку объем вычислений пропорционален количеству весов. Однако более крупные сети требуют большего количества тренировочных примеров, и им приходится модифицировать веса большее число раз. Следовательно, время обучения растет значительно быстрее, чем размеры сети.
Самая серьезная проблема метода обратного распространения заключается в том, что такая НС требует учителя, предоставляющего желаемый выход для каждого тренировочного примера. В отличие от этого человек обучается большинству вещей без помощи учителя. Никто не дает нам детального описания внутренних представлений мира, которые мы должны научиться извлекать из нашего сенсорного входа. Мы учимся понимать речь или зрительные сцены без каких-либо прямых инструкций.
Если сеть сталкивается с большим набором сочетаний сигналов, но не имеет никакой информации о том, что с ними следует делать, то, очевидно, перед ней нет четко поставленной задачи. Тем не менее, исследователи разработали несколько универсальных, неконтролируемых процедур, которые могут правильно регулировать весовые параметры сети. Все эти процедуры имеют два общих качества: они оперируют, явно или неявно, с некоторым понятием качества представления и работают, изменяя веса, чтобы повысить качество представления, вырабатываемого скрытыми элементами. Не смотря на отмеченные недостатки применение метода обратного распространения в целях прогнозирования требований оправданно, так как при прогнозировании не возникает ситуации неопределенности действий, которые необходимо проделать с информацией поступающей на вход НС.
5. Прогнозирование курса UKB/USD
В данной главе описаны эксперименты по прогнозированию курса американского доллара по отношению к украинскому карбованцу (UKB/USD) . Сначала описаны задачи исследования и общая структура экспериментов. Далее описаны проделанные эксперименты, при этом подробно перечислены особенности каждого из них. Для экспериментов, которые показали удовлетворительные результаты обучения (сеть распознала не менее 80% образов, на которых обучалась) в приложениях приведены таблицы с подробным описанием результатов по каждому образу, который распознавался.
5.1 Общий подход к прогнозированию курса UKB/USD
Исследования проводились на основе модели сети с обратным распространением (подробнее смотри главу 3) . Примененная методика прогнозирования подробно описана в главе 4.
Целью экспериментов было прогнозирование курса UKB/USD. Для достижения данной цели было проведено исследование влияния представления исторических и прогнозируемых данных на ошибку прогнозирования. Также были рассмотрены вопросы влияния структуры НС на скорость обучения сети и ошибку прогнозирования. При этом ставились следующие задачи: - поиск критериев прогнозирования; - поиск оптимального представления исторических данных о курсе; - поиск оптимального представления результата прогнозирования; - поиск оптимального размера окна; - поиск оптимальной структуры сети.
Прогнозирование курса UKB/USD проводилось на основе временной последовательности ежедневных данных о курсе. Такой подход к прогнозированию основан на идее американских экономистов, что для прогнозирования некоторых экономических показателей вполне достаточно исследования истории их изменения. Успешное применение данного подхода другими исследователями [7] для прогнозирования курсов DM/USD и SUR/USD позволяет надеяться на успех прогнозирования UKB/USD.
Исходными данными для экспериментов служили ежедневные измерения курса UKB/USD с 15.06.93 по 26.06.95 всего 842 измерений (данные взяты из архивов банка Porto-Franco) . Прогнозировалось среднее значение курса за день (среднее арифметическое дневных курсов покупки и продажи) .
Каждый из экспериментов, можно разбить на несколько этапов. Первым этапом было формирование обучающей выборки. На этом этапе определяется вид представления исторических и прогнозируемых данных и происходит формирование наборов, подаваемых на входные нейроны и соответствующих им наборов снимаемых с выходов сети (подробнее смотри раздел 2.2.4) . Большинство опытов прогнозировало не фактический курс, а его относительное изменение (ОИК) . Относительное изменение курса определяется по формуле OIKt = (Kt+1 - Kt) /Kt (5.1) Для автоматизации процесса формирования обучающих выборок был использован пакет MS EXCEL 5.0.
Вторым этапом является обучение НС на основе сформированной на первом этапе обучающей выборке. Качество обучения характеризовалось ошибкой обучения, определяемой как суммарное квадратичное отклонение значений на выходах НС в обучающей выборке от реальных значений, полученных на выходах НС. Критерием прекращения обучения было прохождение сетью 1500 итераций или уменьшение ошибки на выходах сети на два порядка, по сравнению с первичной ошибкой. В том случае, если при описании опыта не указано, что произошло снижение ошибки на два порядка, обучение было остановлено по первому критерию.
На третьем этапе проводилось тестирование обучения сети. На вход подавалось порядка 4 - 5% наборов из обучающей выборки и определялось качество распознавания сети. Опыт считался успешным, если относительная достоверность распознавания образов была не менее 80%.
На четвертом этапе проводилась симуляция прогнозирования. На вход сети подавались наборы, которые не были внесены в обучающую выборку, но результат по ним (прогноз) известен.
Результаты успешных опытов приведены в приложениях 2.1-2.3. Каждая из таблиц приложений разделены на две части. В первой расположены результаты тестирования обучения, во второй - результаты симуляции прогнозирования. Первый столбец в таблице описания опытов содержит номер набора в тестовой или симуляционной выборке. Остальные столбцы содержат результаты экспериментов. В них может находиться знак *, или пара цифр. Энак * означает, что данный набор распознан правильно. Цифры в строке обозначают, что при распознавании произошла ошибка. Первая цифра обозначает номер нейрона, который соответствует фактическому значению переменной, а вторая - фактическому.
5.2 Описание экспериментов
ЭКСПЕРИМЕНТ 1 ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ:
Данные подаются на входы НС в виде временной последовательности ежедневных измерений фактического курса (в тысячах карбованцев) .
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ:
Выход НС образует 17 классов прогнозируемого результата - курс с шагом от 5 до 25 тыс. крб.
РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 7: 13: 17 (количество входных нейронов: количество нейронов в скрытом слое: количество выходных нейронов) . РЕЗУЛЬТАТЫ: Неудача. Не были распознаны образы, на которых обучалась сеть.
ЭКСПЕРИМЕНТ 2 ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ:
Данные подаются на входы НС в виде временной последовательности ежедневных измерений нормированного десятичного логарифма относительного изменения курса в процентах (ОИК в %) .
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ:
Выход НС образует 20 классов прогнозируемого результата - нормированный десятичный логарифма ОИК в % с шагом 0.05 и два класса, определяющих направление изменения курса - рост или падение (см. таблицу 5.1).
Таблица 5.1. Выходы НС в эксперименте 2.
Номер нейрона |
Распознаваемый образ |
| 1 | Повышение курса | | 2 | Понижение курса | | 3 | от 0 до 0.05 | | 4 | от 0.05 до 0.10 |............
| 21 | от 0.90 до 0.95 | | 22 | от 0.95 до 1.00 | РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 7: 11: 22 РЕЗУЛЬТАТЫ:
Неудача. Не были распознаны образы, на которых обучалась сеть.
В экспериментах с 3 по 8 были проделаны попытки улучшить качество результатов полученных в экспериментах 1 и 2. Предполагалось, что этого можно добиться изменяя ширину окна и структуру нейронной сети (количество нейронов в скрытом слое) . Были проведены эксперименты со структурой сети 14: 11: 22,21: 11: 22,14: 6: 22,21: 6: 22,14: 18: 22,21: 18: 22. Все эксперименты закончились неудачей - не были распознаны образы, на которых обучалась сеть.
ЭКСПЕРИМЕНТ 9 ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ:
Каждое измерение подавалось на три нейрона: первые два определяли направление изменения курса - рост или падение, на третий подавался нормированный десятичный логарифм ОИК в % с шагом 0.05.
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ:
Выход НС образует 20 классов прогнозируемого результата - нормированный десятичный логарифм ОИК в % с шагом 0.05 и два класса, определяющих направление изменения курса рост или падение (см. таблицу 5.1) .
РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 21: 11: 22 РЕЗУЛЬТАТЫ: Неудача. Не были распознаны образы, на которых обучалась сеть.
В экспериментах с 10 по 13 продолжались попытки улучшить качество результатов. Предполагалось, что этого можно добиться на основе подхода описанного в эксперименте 9, изменяя ширину окна и структуру нейронной сети (количество нейронов в скрытом слое) . Были проведены эксперименты со структурой сети 42: 11: 22,63: 11: 22,42: 18: 22,63: 18: 22. Все эксперименты закончились неудачей - не были распознаны образы, на которых обучалась сеть.
Начиная с 14 эксперимента было предложено работать при прогнозировании со свернутым описанием исторических данных. Единичным измерением при таком подходе считается описание периода времени, в течении которого приращение исследуемой переменной оставалось постоянным. Такой период описывается парой чисел. В это паре первое число обозначает приращение переменной, которое держалось в течении некоторого периода, а второе - длительность периода, в течении которого удерживалось это приращение. Далее рассматриваются различные варианты представления предложенного описания данных. Свертка описания исторических данных проводилось на основе временной последовательности ОИК в % (интервал - один день) .
ЭКСПЕРИМЕНТ 14.
Исследовалось влияние числа прогнозируемых на одной НС переменных на достоверность прогнозирования. Прогнозирование значения и длительности приращения проводилось на двух различных сетях. Окно на входе НС организовано из пар, описывающих промежуток времени (приращение, длительность) .
ЭКСПЕРИМЕНТ 14.1. Прогнозирование значения приращения ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ: ОИК в % кластеризуется и подается на входы НС в соответствии с данными из таблицы 5.2. Время кластеризуется и подается на входы НС в соответствии с данными из таблицы 5.3.
Таблица 5.2. Интервалы кластеризации и соответствующая им кодировка входов для данных по ОИК. Эксперимент 14.
Интервал кластеризации, % |
Код, подаваемый на вход нейрона |
|
менее - 10 от - 9.99 до - 2.41 от - 2.40 до - 0.01 0 от 0.01 до 2.40 от 2.41 до 9.99 от 10 и более |
100 10 1 0 1 10 100 |
Таблица 5.3. Интервалы кластеризации и соответствующая им кодировка входов для данных по времени. Эксперимент 14.
Интервал кластеризации, дни |
Код, подаваемый на вход нейрона |
|
1 от 2 до 3 от 4 до 7 от 8 и более |
0 1 10 100 |
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ: С выхода НС снимались данные о распознанном классе в соответствии с интервалами кластеризации приведенными в таблице 5.2.
РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 14: 10: 7 РЕЗУЛЬТАТЫ: Сеть распознала 80 % образов, на которых обучалась. Было получено 33.3 % правильных прогнозов. Результаты приведены в приложении 2.1.
ЭКСПЕРИМЕНТ 14.2. Прогнозирование длительности приращения. ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ: Как в эксперименте 14.1.
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ: С выхода НС снимались данные о распознанном классе в соответствии с интервалами кластеризации приведенными в таблице 5.3.
РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 14: 9: 4 РЕЗУЛЬТАТЫ: Сеть распознала 100 % образов, на которых обучалась, было получено 66.7 % правильных прогнозов. Результаты приведены в приложении 2.1.
ЭКСПЕРИМЕНТ 15 Исследовалось влияние числа прогнозируемых на одной НС переменных на достоверность прогнозирования. Прогнозирование значения и длительности приращения проводилось на одной сети.
ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ: Как в эксперименте 14.
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ: С выхода НС снимались данные о распознанном классе приращения в соответствии с интервалами кластеризации приведенными в таблице 5.2. и о распознанном классе промежутка времени в соответствии с интервалами кластеризации приведенными в таблице 5.3.
РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 14: 12: 11 РЕЗУЛЬТАТЫ: Сеть распознала 70% образов, на которых обучалась, было получено 14.3% правильных прогнозов. По сравнению с экспериментом 14, результаты ухудшились на 30 - 40%. Значительно увеличилось число "соседних" ошибок и нечеткость в распознавании образов. Результаты приведены в приложении 2.1.
ЭКСПЕРИМЕНТ 16 Исследовалось влияние расположения групп описания исторических данных (приращение и длительность) на входах НС. Организованы окно приращений и окно длительности, подаваемые на входы НС последовательно.
ЭКСПЕРИМЕНТ 16.1. Прогнозирование значения приращения.
ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ: Как в эксперименте 14.
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ: Как в эксперименте 14.1.
РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 14: 10: 7 РЕЗУЛЬТАТЫ: Сеть распознала 80 % образов, на которых обучалась. Было получено 42.9 % правильных прогнозов. Результаты приведены в приложении 2.1.
ЭКСПЕРИМЕНТ 16.2. Прогнозирование длительности приращения. ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ: Как в эксперименте 14.
ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ: Как в эксперименте 14.2.
РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 14: 9: 4 РЕЗУЛЬТАТЫ: Сеть распознала 90% образов, на которых обучалась. Было получено 42.9% правильных прогнозов. Результаты приведены в приложении 2.1.
ЭКСПЕРИМЕНТ 17 ОПИСАНИЕ ИСТОРИЧЕСКИХ ДАННЫХ: Как в эксперименте 16 ОПИСАНИЕ ПРОГНОЗИРУЕМЫХ ДАННЫХ: Как в эксперименте 15 РАЗМЕР ОКНА: 7 СТРУКТУРА СЕТИ: 14: 10: 11 РЕЗУЛЬТАТЫ: Сеть распознала 70 % образов, на которых она обучалась, было получено 14.3 % правильных прогнозов. По сравнению с экспериментом 16, результаты ухудшились на 20 - 35%. Значительно увеличилось число "соседних" ошибок и нечеткость в распознавании образов. Результаты приведены в приложении 2.1.
ЭКСПЕРИМЕНТ 18 Дальнейшая работа с НС из эксперимента 14 показала, что классы, кодируемые 10 и 100 (-10 и -100) были неразличимы. Фактически - сеть работала с 5 классами приращения и 3 классами длительности приращения. Для повышения точности представления данных, кодировка классов была изменена.
Подобные документы
Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.
дипломная работа [4,6 M], добавлен 22.09.2011Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.
курсовая работа [527,2 K], добавлен 28.05.2009Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.
реферат [162,9 K], добавлен 30.09.2013Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа [2,3 M], добавлен 13.10.2015Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.
реферат [158,2 K], добавлен 16.03.2011Исследование задачи и перспектив использования нейронных сетей на радиально-базисных функциях для прогнозирования основных экономических показателей: валовый внутренний продукт, национальный доход Украины и индекс потребительских цен. Оценка результатов.
курсовая работа [4,9 M], добавлен 14.12.2014Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.
контрольная работа [135,5 K], добавлен 30.11.2015