Сравнительный анализ современных накопителей

Изучение современных накопителях информации, таких как ВЗУ со сменными носителями информации. Описание отдельных устройств и принципов организации и функционирования системы обмена информацией и интерфейса для внешних устройств всех типов.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 25.05.2009
Размер файла 91,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ГЛАВА 2. НАКОПИТЕЛИ НА ГМД

Основные внутренние элементы дисковода - дискетная рама, шпиндельный двигатель, блок головок с приводом и плата электроники.

Шпиндельный двигатель - плоский многополюсный, с постоянной скоростью вращения 300 об/мин. Двигатель привода блока головок - шаговый, с червячной, зубчатой или ленточной передачей.

Для опознания свойств дискеты на плате электроники возле переднего торца дисковода установлено три механических нажимных датчика: два - под отверстиями защиты и плотности записи, и третий - за датчиком плотности - для определения момента опускания дискеты. Вставляемая в щель дискета попадает внутрь дискетной рамы, где с нее сдвигается защитная шторка, а сама рама при этом снимается со стопора и опускается вниз - металлическое кольцо дискеты при этом ложится на вал шпиндельного двигателя, а нижняя поверхность дискеты - на нижнюю головку (сторона 0). Одновременно освобождается верхняя головка, которая под действием пружины прижимается к верхней стороне дискеты. На большинстве дисководов скорость опускания рамы никак не ограничена, из-за чего головки наносят ощутимый удар по поверхностям дискеты, а это сильно сокращает срок их надежной работы. В некоторых моделях дисководов (Teac, Panasonic, ALPS) предусмотрен замедлитель-микpолифт для плавного опускания рамы. Для продления срока службы дискет и головок в дисководах без микpо-лифта рекомендуется при вставлении дискеты пpидеpживать пальцем кнопку дисковода, не давая раме опускаться слишком резко. На валу шпиндельного двигателя имеется кольцо с магнитным замком, который в начале вращения двигателя плотно захватывает кольцо дискеты, одновременно центpиpуя ее на валу. В большинстве моделей дисководов сигнал от датчика опускания дискеты вызывает кpатковpеменный запуск двигателя с целью ее захвата и центpиpования.

Дисковод соединяется с контpоллеpом при помощи 34-пpоводного кабеля, в котором четные провода являются сигнальными, а нечетные - общими. Общий вариант интерфейса пpедусматpивает подключение к контpоллеpу до четырех дисководов, вариант для IBM PC - до двух. В общем варианте дисководы подключаются полностью параллельно друг другу, а номер дисковода (0..3) задается перемычками на плате электроники; в варианте для IBM PC оба дисковода имеют номер 1, но подключаются при помощи кабеля, в котором сигналы выбора (провода 10-16) перевернуты между разъемами двух дисководов. Иногда на разъеме дисковода удаляется контакт 6, играющий в этом случае роль механического ключа. Интерфейс дисковода достаточно прост и включает сигналы выбора устройства (четыре устройства в общем случае, два - в варианте для IBM PC), запуска двигателя, перемещения головок на один шаг, включения записи, считываемые/записываемые данные, а также информационные сигналы от дисковода - начало дорожки, признак установки головок на нулевую (внешнюю) дорожку, сигналы с датчиков и т.п. Вся работа по кодированию информации, поиску дорожек и секторов, синхронизации, коppекции ошибок выполняется контpоллеpом.

Гибкие диски.

Дискета или гибкий диск - компактное низкоскоростное малой ёмкости средство хранение и переноса информации. Различают дискеты двух размеров:3.5”, 5.25”, 8”

Конструктивно дискета представляет собой гибкий диск с магнитным покрытием, заключенный в футляр. Дискета имеет отверстие под шпиль привода, отверстие в футляре для доступа головок записи-чтения (в 3.5” закрыто железной шторкой), вырез или отверстие защиты от записи. Кроме того, 5.25” дискета имеет индексное отверстие, а 3.5” дискета высокой плотности - отверстие указанной плотности (высокая/низкая). 5.25” дискета защищена от записи, если соответствующий вырез закрыт. 3.5” дискета наоборот - если отверстие защиты открыто. В настоящее время практически только используются 3.5” дискеты высокой плотности.

Для дискет используются следующие обозначения:

- SS Single Side - односторонний диск (одна рабочая поверхность).

- DS Double Side - двусторонний диск.

- SD Single density - одинарная плотность.

- DD Double density - двойная плотность.

- HD high density - высокая плотность.

Накопитель на гибких дисках принципиально похож на накопитель на жестких дисках. Скорость вращения гибкого диска примерно в 10 раз медленнее, а головки касаются поверхности диска. В основном структура информации на дискете, как физическая, так и логическая, такая же, как на жестком диске. С точки зрения логической структуры на дискете отсутствует таблица разбиения диска.

ГЛАВА 3. ОПТИЧЕСКИЕ ДИСКИ

3.1 Форматы CD

Следует рассмотреть основные форматы, образуемые на CD за счет использования различных секто-ров, дорожек, стандартов.

Самый старый формат - CD-DA - аудиодиск: единственный сеанс, следовательно, одна заголовочная и дна финальная область, между которыми находятся только дорожки первого типа.

Следующий по времени - CD-ROM: также единственный сеанс, одна заголовочная область и одна финальная. Между ними находятся дорожки второго типа (формально могут быть и дорожки третьего типа, но на практике они не используются). Этот формат читается любым CD-ROM-накопителем, в том числе и старыми, не различающими несколько сеансов.

Смешанный диск (Mixed Mode) содержит в единственном сеансе дорожки CD-DA и CD-ROM. Обычный накопитель должен отключать воспроизведение звука, обнаруживая дорожку CD-ROM.

Более современный вариант диска для multimedia-приложений, использующих звук и видео в реальном времени - CD-ROM XA. Его дорожки данных могут содержать сектора различных форм для хранения данных и сжатых аудио- видеопоследовательностей.

CD-I (или Зеленый диск). По типу секторов - такой же, как CD-ROM XA, однако отличается организацией работы с ним (в частности TOC). Работает на соответствующих ему накопителях.

CD-I Ready тип 1 - специальная разновидность диска CD-DA, на первой дорожке которого перед первым фрагментом сохраняется дополнительная информация в расширенной преамбуле. Аудио-проигрыватель не должен "замечать" эту информацию (он должен воспринимать ее как обычные 2 секунды тишины перед фрагментом). Увы! Не все старые проигрыватели такие "умные" и могут позиционироваться по оглавлению.
CD-I Ready тип 2 предлагается для устранения неприятностей, характерных для работы старых типов проигрывателей с дисками предыдущего типа. В нем используется неспособность этих накопителей увидеть второй сеанс (на этом диске два сеанса: первый - обычный аудио, второй - CD-I).

Для работы одновременно на накопителях CD-ROM XA и CD-I используется так называемый переходной диск CD (CD-Bridge). Это односеансовый диск, у которого первая дорожка CD-I, а остальные CD-ROM. Использование его базируется на разных позициях описания начала данных в накопителях CD-ROM XA и CD-I. В первом случае точка входа находится по адресу 00 мин 02 сек 16 сектор смещение 1024, а во втором случае в том же секторе, но со смещением 0. К этому типу дисков относится Photo-CD.

Video CD - компакт-диски, использующие сектора пятого типа (вторая форма) и соответствующие Белой книге - относительно молодому стандарту (1993 год), определяющему способ хранения видеоинформации с быстрым интерактивным доступом. Предполагается, что Зеленая книга будет доработана для соответствия дискам Белой книги.

Многосеансовые (multisession) диски могут состоять из сеансов только CD-ROM или только CD-Bridge и при этом быть как окончательно завершенными , так и допускающими запись дополнительных сеансов.

Заметим, что запись сеанса подразумевает кроме записи полезной информации еще и запись заголовочной (включая TOC) и финальной областей. Суммарный объем этих областей около 20 МБ, поэтому: запись мелких сеансов приводит к непроизводительному расходованию емкости диска; невозможно "дописать" диск, если на нем осталось свободным менее 20 МБ.

3.2 Перспективные типы CD

Существующие сегодня CD-ROM "родились" от аудиодисков, технологическая готовность выпуска кото-рых существует уже более 20 лет. За это время возникли и новые технологические возможности, и достаточный рынок для создания устройства, ориентированного на эффективное хранение данных, и удобные средства доступа к ним. Возможности формата, основанного на Красной книге, почти исчерпаны (одно только хранение оглавления в Q-фрейме подканала при пустующих секторах рубит под корень возможности использования небольших сеансов). Естественно, что мир стремится к созданию более современных CD. Такие CD давно ждут на рынке, для них не только придумали название (High Density Compact Disk - HD CD), но и успели поменять его на MMCD (MultiMedia CD). Ожидается, что за счет уменьшения длины волны считывающего лазера удастся уменьшить размеры пита и расстояние между дорожками. В совокупности с улучшением структуры хранения информации и более современными средствами коррекции ошибок, возможно, удастся достичь емкости 3,7 гб. на диск. Еще большую емкость обещает мультиповерхностная технология, при которой запись осуществляется на нескольких (для начала на двух) слоях, расположенных один над другим. Выбор считываемого слоя обеспечивается фокусировкой луча именно на нем, а чрезвычайно короткофокусная оптика позволяет уменьшить помеху от другого слоя до приемлемой величины.

Ресурсы расширения возможностей CD станут немного понятнее после знакомства с устройством накопителя и различными вариантами построения его узлов.

3.3 DVD диски

О том, что обычные CD-ROM диски, рожденные для записи звука, не так уж хорошо подходят для компьютеров общеизвестно. После нескольких лет обсуждения (и довольно жесткой конкуренции) различных вариантов улучшенных оптических дисков, имевших звучные названия 15 сентября 1995 года было, наконец достигнуто принципиальное согласие между различными группами разработчиков о технических основах создания нового диска. В 1995г. (8 декабря) крупнейшие производители CD-ROM приводов и связанных с ними устройств (Toshiba, Matsushita, Sony, Philips, Time Warner, Pioneer, JVC, Hitachi and Mitsubishi Electric) подписали окончательное соглашение, утвердив не только «тонкости» формата, но и название новинки DVD (Digital Video Disk). Впрочем споры вокруг нового стандарта не завершились с принятием соглашения - даже название не находит единогласной поддержки в рядах основателей: весьма распространенной является версия расшифровки аббревиатуры как Digital Versatile Disk - цифровой многофункциональный диск. Экстремисты полагают даже, что DVD следует рассматривать просто как «новое слово» в английском языке. И возможно они правы, если судьба новинки будет так успешна, как предвещают и вызовет революцию не только в вычислительной технике, но и в бытовой электронике.

Отсутствие единого понимания как технических, так и юридических характеристик нового изделия затрудняет подготовку производства. Несмотря на быстро расширяющийся круг участников лицензионных соглашений и начало выпуска первых устройств, прошедший в США 10-11 апреля 1996 года «Первый DVD форум» также не дал окончательной редакции стандартов нового носителя информации. Однако массовый выпуск DVD устройств фактически уже начался в четвертом квартале 1996 года.

3.4 DVD - сколько, где и как

DVD может существовать в нескольких модификациях. Самая про-стая из них похожа на обычный диск, отличающийся только тем, что отражающий слой расположен не на составляющем почти полную толщину (1.2 мм) слое поликарбоната, а на слое половинной толщины (0.6 мм). Вторую половину составляет плоский верхний слой. При этом емкость такого диска достигает 4.7 Гбайт, что обеспечивает более двух часов видео телевизионного качества (компрессия MPEG-2). При этом без особого труда на диске могут дополнительно сохраняться высококачественный стереозвук (на не-скольких языках!) и титры (также многоязычные). Если оба слоя несут информацию (в этом случае нижнее отражающее покрытие полупрозрачное , то суммарная емкость составляет 8.5 Гбайт (некоторое уменьшение емкости каждого слоя вызывается необходимостью уменьшить взаимные помехи при считы-вании дальнего слоя). Toshiba и Time Warner предлагают использовать также двухсторонний двухслойный диск. В этом случае его емкость составит 17 Гбайт!

Уже этой характеристики достаточно, чтобы представить себе воздействие, которое может оказать такой диск на кино/видео индустрию. Недаром значительная часть споров и задержек с производством устройств DVD вызвана согласованием способов защиты авторских прав от пиратского копирования. Цифровые системы, как известно, сохраняют качество сигнала при копировании и уже не служат препятствием для созда-ния нелицензионных копий. Поэтому Ассоциация кинопроизводителей Америки (MPAA - Motion Picture Association of America) совместно с Ассоциацией производителей бытовой электроники (Consumer Electronics Manufacturer's Association) возбужденно обсуждают возможности встраивания защиты от нели-цензионного копирования непосредственно в устройства, а также законопроекты, связанные с защитой от копирования. Среди предлагаемых мер не только исключение возможности прямого копирования диск/диск, но и более серьезные меры, такие как модификация операционной системы, с целью недопущения копирования данных считанных с DVD на другие носители (ожидается появление таких свойств в Windows 97 где-нибудь к 1998 году). Наиболее радикальная мера - модификация архитектуры ПК с целью принципиального исключения возможности попадания DVD-данных на системную шину, откуда они далее могут быть скопи-рованы. Рабочая группа (Technical Working Group), представляющая интересы производителей ком-пьютеров при этом не остаются в стороне, так как сужение функциональных возможностей устройств может быть не безболезненно.

Чтобы понять, как удалось достичь столь значительного роста объема информации на DVD диске сравним его с CD-ROM. Главное отличие конечно в увеличенной плотности записи информации. За счет перевода считывающего лазера из инфракрасного диапазона (длина волны 780 нм) в красный (с длиной волны 650 нм или 635 нм) и увеличения числовой аппретуры объектива до 0.6 (против 0.45 в CD) дости-гается более чем двукратное уплотнение дорожек и укорочение длины питов (отражающих высту-пов/впадин), что и видно на рис.8.

Кроме увеличения физической плотности размещения информации на диске произошли изменения и в способах ее представления. Так на смену способа модуляции 8/14 (EFM - eight to fourteen modulation) пришел способ, называемый EFM+. Он отличается несколько иным алгоритмом преобразования и, главное (!), требует ввода на границе байт не трех, а только двух дополнительных бит, поддерживающих условие ограниченности размеров пита в диапазоне от 3 до 11 бит (то есть между двумя последовательными единицами после кодирования не менее 2 и не более 10 ну-лей). Таким образом, получаем из каждого байта не 14+3=17, а 14+2=16 кодовых бит (это дает повод острословам требовать смены названия этого способ модуляции с EFM+ на EFM-). Изменение метода модуляции только одно из множества форматных изменений, позволяющих в целом увеличить объем сохраняемых данных. Собственно переход к EFM+ добавляет еще почти 6% к объему диска. Более мощный механизм коррекции ошибок RS-PC (Reed-Solomon Product Code) обещает быть на порядок более устойчивым к воз-можным ошибкам воспроизведения (не следует особо обольщаться - увеличивается на порядок также и объем данных, которые нам хотелось бы прочитать без ошибок. Кроме резкого уменьшения отдельных элементов на отражающей поверхности неизбежно приведет к росту количества случайных сбоев при чтении.

Из оставшихся еще не названными характеристик стоит отметить номинальную скорость передачи данных - 1.108 Кбайт/с, поддерживаемую при постоянной линейной скорости (CLV - constant lineal velocity 4 м/с.)

3.5 Емкость DVD

Существует пять разновидностей DVD-дисков:
1. DVD5 - однослойный односторонний диск, 4,7 Гб, или два часа видео;

2. DVD9 - двухслойный односторонний диск, 8,5 Гб, или четыре часа видео;

3. DVD10 - однослойный двухсторонний диск, 9,4 Гб, или 4,5 часа видео;

4. DVD14 - двухсторонний диск, два слоя на одной и один на другой стороне, 13,24 Гб, или 6,5 часов видео;

5. DVD18 - двухслойный двухсторонний диск, 17 Гб, или более восьми часов видео.

Последний вариант, DVD18, из-за слишком дорогой и сложной технологии производства в природе встречается очень редко. Самые популярные стандарты - DVD5 и DVD9.

3.6 Приводы и диски на 20 Гб

Компания New Medium Enterprises (NMEN) продемонстрировала уже практически доведенный до стадии коммерческого производства комплект из оптического привода и диска для него, емкостью 20 Гб. Речь идет о носителе формата VMD (Versatile MulitLayer Disc), использующего сразу несколько несущих информацию слоев, что позволяет добиться высокой емкости диска. При этом в VMD используется классическая технология записи, основанная на чтении при помощи красного лазерного диода. Это позволяет приводам VMD легко читать все предыдущие оптические форматы, такие как DVD и CD. Компания NMEN намерена выпустить диски емкостью 15, 20, 25 и 30 Гб, а также полную линейку соответствующих приводов уже в ближайшее время. Интересно отметить, что носители разной емкости будут отличаться друг от друга лишь количеством несущих информацию слоев. Сейчас NMEN уже рассматривает возможность переноса технологии на новый уровень и перехода на использование синих лазеров, подобных тем, что работают сейчас в прототипах оптических приводов Blu-Ray. По словам представителей NMEN, это позволит увеличить емкость одного многослойного диска до одного терабайта.

ГЛАВА 4. МАГНИТООПТИЧЕСКИЕ ДИСКИ

Скачок в развитии компьютерной индустрии и тенденций постоянного роста мощных компьютерных информационных систем неуклонно влекут за собой увеличение объемов обрабатываемой информации. Это обстоятельство все чаще заставляет задумываться над проблемой хранения этой информации и выбором типов применяемых устройств для систем резервного копирования. Применявшиеся до недавнего времени накопители на магнитной ленте (стримеры) уже не удовлетворяют современным требованиям. Магнитная лента легко подвергается всевозможным механическим и электромагнитным повреждениям. Небольшое повреждение ленты хотя бы в одном месте может привести к потере блока информации объемом несколько мегабайтов. Это не позволяет использовать ленточные картриджи как надежные носители для любого рода информации, а скорость работы таких систем с последовательным доступом не позволяет оперативно работать с сохраняемой на них информацией. Не справились с задачей и накопители на гибких дисках: последнее достижение в этой области - дискеты емкостью в 21 МБ - в наше время уже мало на кого произведет впечатление. К тому же эти носители для своего объема стоят недешево, и создание на них "библиотек" архивов данных - весьма дорогое удовольствие. Похоже, что эта технология зашла в тупик и сегодня не способна конкурировать с другими, более современными накопителями. Недавно организация FTA (Floptical Technology Association) объявила о начале разработки диска емкостью 120 МБ, но, несмотря на дешевизну, вряд ли новый накопитель будет иметь успех.

В последнее время в решении этой проблемы все более широкое признание получает магнитооптическая технология, которая использует магнитные и оптические механизмы записи и чтения; все чаще магнитооптические накопители используются для хранения больших объемов информации. Прародителем магнитооптической технологии считается фирма IBM, которая начала ее развитие в 1972 году. Первые магнитооптические дисководы появились в начале 80-х, но не получили широкого признания из-за высокой стоимости и сложности в работе. На сегодняшний день благодаря применению новых технических решений и последних технологий в магнитооптических системах ситуация с магнитооптическими накопителями полностью изменилась. Постоянное снижение цен на магнитооптические дисководы и улучшение технических характеристик позволит им в недалеком будущем полностью вытеснить с рынка стримеры, а постоянное увеличение емкости носителей и надежности хранения информации делает их работу в сетевых системах более эффективной по сравнению с накопителями типа CD-ROM.

Существует несколько стандартных типов магнитооптических дисководов, но на сегодняшний день самое большое распространение получили два из них. Это 3,5-дюймовые и 5,25-дюймовые накопители, причем 3,5-дюймовые накопители более популярны, хотя они и имеют меньший объем. Стандартные емкости 3,5-дюймовых дисков - 128, 230 и 640 МБ. У этих дискет одна рабочая поверхность, их размер соответствует размеру обычной 3,5-дюймовой дискеты, однако они несколько толще. Диски размером 5,25-дюйма имеют стандартные емкости 600 и 650 МБ или 1,2 и 1,3 ГБ (диски двойной плотности). В отличие от 3,5-дюймовых, у них две рабочие поверхности. Так же, как и обычный флоппи-диск, магнитооптические диски снабжены окошком защиты записи. Оба типа дисков полностью совместимы сверху вниз, а соблюдение стандартов магнитооптических дисководов не привязывает пользователей к конкретному производителю.

Запись на диск выполняется посредством последовательного нагревания ячейки диска лазером большой интенсивности до t=200 Со, в результате чего ячейка теряет заряд и последующего нанесения нового заряда при этой же температуре магнитной головкой. Считывание производится лазерным лучом меньшей интенсивности. Он направляется на ячейку и поляризуется имеющимся там зарядом (если таковой имеется), а считывающее устройство определяет, является ли отраженный луч поляризованным.

Не все магнитооптические диски могут быть перезаписываемыми; существуют также диски с однократной записью CC WORM (Continuons Composite Write Once Read Many) и частичной записью P-ROM (Partial read-only memory). Перезаписываемые диски могут полностью изменять свою информацию (количество циклов чтения/записи около 10 млн. и зависит от конкретного производителя). Диски с однократной записью аналогичны перезаписываемым, но в момент записи на диск наносятся специальные метки, которые запрещают повторную запись. Такие диски после записи информации автоматически переходят в разряд ROM-дисков. Диски с частичной записью делятся как бы на две части: одна из них содержит постоянные данные, которые невозможно изменить, другая часть содержит перезаписываемые данные. На такие диски (в неизменяемую часть) можно инсталлировать неизменный рабочий код программы, а свои данные можно хранить в перезаписываемом секторе. Надо заметить, что это - идеальное средство защиты от любых вирусов.

Несмотря на большую емкость магнитооптических дисков (на сегодняшний день существуют 5,25-дюймовые диски емкостью 4,6 ГБ), они не могут заменить жесткие диски. Прежде всего, это связано с низким быстродействием магнитооптических дисководов, а ведь этот параметр является одним из основных показателей для жестких дисков. Быстродействие магнитооптических дисководов существенно снижается при записи диска; не спасает положение и технология кэширования записи. Как известно, запись на магнитооптический диск осуществляется за два прохода: при первом проходе данные стираются с диска, при втором - записываются. А если к тому же установить проверку данных при записи, то быстродействие снизится еще на 20-30%.

Однако нельзя сказать, что положение дел не меняется. Совсем недавно фирма Pinnacle Micro выпустила магнитооптический накопитель под названием "Apex", в котором запись осуществляется за один проход, а его быстродействие составляет 4,5 МБ/с. Благодаря применению новой технологии быстродействие остается одинаковым как в режиме чтения, так и записи. Емкость нового дисковода составляет 4,6 ГБ. В настоящее время аналогичные разработки по однопроходным дисководам ведут фирмы IBM и Fujitsu.

Сегодня на нашем рынке наиболее широкое распространение получили 3,5-дюймовые дисководы фирм Fujitsu и IBM. Магнитооптические накопители выпускаются в двух вариантах: встраиваемые и внешние. Преимущество внешних накопителей заключается в том, что нагревание дисковода во время работы лазера не повышает температуру в корпусе самого компьютера. Встраиваемые накопители могут быть легко установлены на место обычного флоппи-накопителя. Все существующие магнитооптические накопители имеют интерфейс связи SCSI или Fast SCSI (фирма Fujitsu ведет разработку накопителей с интерфейсом связи IDE), поэтому требуется дополнительная установка SCSI хост-адаптера. Эти хост-адаптера выпускаются для установки на шину ISA или PCI и могут поставляться в комплекте с магнитооптическим дисководом или отдельно от него. Можно применять хост-адаптер любой фирмы, однако желательно наличие на нем кэш-памяти емкостью не менее 64 КБ и SCSI-BIOS (по крайней мере, возможности его установки).

Испытания Fujitsu с хост-адаптером IFD-630 этой же фирмы (интерфейс связи - Fast SCSI или, как его еще называют, SCSI-2). Если в хост-адаптере установлен и активирован SCSI-BIOS, BIOS активизируется простой установкой перемычки и отпадает необходимость в установке дополнительных драйверов. В противном случае приходится их инсталлировать под необходимую систему. При активизированном SCSI-BIOS появляется также возможность производить загрузку системы непосредственно с магнитооптического диска: для этого достаточно отформатировать этот диск как системный. Можно создать на этом диске сколько угодно разделов, используя для этого специальные утилиты fdisk и format, поставляемые вместе с дисководом.

Большое распространение получили "Библиотечные" магнитооптические накопители со сменными дисками, общая емкость которых может составлять несколько сотен гигабайтов. Смена диска в такой системе занимает всего несколько секунд и происходит программно, при этом не требуется никакого дополнительного вмешательства в этот процесс со стороны.

Магнитооптический дисковод внешне очень похож на обычный, но снабжен электронной системой выброса носителя. В принципе, работа с ним мало, чем отличается от работы с обычным дисководом, а для пользователя он ничем не отличается от обычного винчестера. В таблице приведены основные технические характеристики накопителя фирмы Fujitsu M2512A. При измерениях на некоторых компьютерах "желтой" сборки у нас получались неадекватные значения. Приведем минимальные: скорость записи 290 KБ/с, скорость чтения 800 KБ/с. При всех измерениях программная кэш-память не использовалась.

Магнитооптический диск имеет целый ряд преимуществ: он более надежен в работе по сравнению с обычными дискетами, магнитооптическая головка не касается диска при записи и чтении и таким образом исключены взаимные повреждения. К тому же сам диск менее чувствителен к механическим повреждениям или магнитным полям, случайные небольшие царапины не могут испортить диск или данные на нем, тем более что сам диск находится в защитном пластиковом корпусе. Магнитооптический диск способен сохранять информацию более длительное время, чем обычные флоппи-диски. Фирмы-производители гарантируют безотказную работу диска в течение нескольких десятков лет.

Насколько целесообразно применение магнитооптических накопителей уже сегодня? Постоянная тенденция снижения цен и повышение быстродействия все в большей степени оправдывает их применение. Уже сейчас они могут применяться для резервного копирования в сетевых системах. Установка магнитооптики на сервер или мощную рабочую станцию под управлением любой операционной системы повышает удобство и эффективность работы по сравнению с аналогичными системами на магнитной ленте или накопителях CD-ROM. На сегодняшний день это лучший вариант по соотношению цена/емкость/скорость.

Эти дисководы могут использоваться не только в сетевых системах как устройства резервного копирования, но могут быть успешно применены и в обычном ПК. Довольно удобно переносить в кармане винчестеры размером с обычную дискету и работать с ними как с обычными дискетами.

Конечно, магнитооптические накопители, как и другие устройства, имеют недостатки. Самым серьезным из них можно считать перегрев самого дисковода и диска в режиме записи. Для борьбы с перегревом на них устанавливается обдувающий вентилятор. Используя внутренний дисковод, следует по возможности пытаться устанавливать его в более просторное место, подальше от винчестеров и других накопителей. Еще один серьезный недостаток - это большое время доступа к данным (в самых последних моделях - около 20 мс).

Снижение цен на магнитооптические дисководы и увеличение их быстродействия в ближайшее время может привести к тому, что они полностью вытеснят флоппи-дисководы. Вполне возможно, что темпы снижения цен ниже, чем ожидалось, но предлагаемый объем и скоростные параметры магнитооптических накопителей уже сегодня многим помогут решить проблему хранения больших объемов информации. Насколько это перспективно и выгодно - судите сами.

ГЛАВА 5. USB - накопители.

5.1 Флэш-память

Флэш-память - особый вид энергонезависимой перезаписываемой полупроводниковой памяти.

Энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи);

Перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных;

Полупроводниковая (твердотельная) - не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip).

В отличие от многих других типов полупроводниковой памяти, ячейка флэш-памяти не содержит конденсаторов - типичная ячейка флэш-памяти состоит всего-навсего из одного транзистора особой архитектуры. Ячейка флэш-памяти прекрасно масштабируется, что достигается не только благодаря успехам в миниатюризации размеров транзисторов, но и благодаря конструктивным находкам, позволяющим в одной ячейке флэш-памяти хранить несколько бит информации.

Флэш-память исторически происходит от ROM (Read Only Memory) памяти, и функционирует подобно RAM (Random Access Memory). Данные флэш хранит в ячейках памяти, похожих на ячейки в DRAM. В отличие от DRAM, при отключении питания данные из флэш-памяти не пропадают.

Замены памяти SRAM и DRAM флэш-памятью не происходит из-за двух ее особенностей: флэш работает существенно медленнее и имеет ограничение по количеству циклов перезаписи (от 10.000 до 1.000.000 для разных типов).

Надёжность/долговечность: информация, записанная на флэш-память, может храниться очень длительное время (от 20 до 100 лет), и способна выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков). Основное преимущество флэш-памяти перед жёсткими дисками и носителями CD-ROM состоит в том, что флэш-память потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы. Кроме того, флэш-память компактнее большинства других механических носителей.

Итак, благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в качестве накопителя в таких портативных устройствах, как: цифровые фото- и видео камеры, сотовые телефоны, портативные компьютеры, MP3-плееры, цифровые диктофоны, и т.п.

5.2 Основы флэш-памяти

Флэш-память типа Boot Block служит для хранения обновляемых программ и данных в самых разных системах, включая сотовые телефоны, модемы, BIOS, системы управления автомобильными двигателями и многое другое. Используя флэш-память вместо EEPROM для хранения параметрических данных, разработчики добиваются снижения стоимости и повышения надежности своих систем. Например, в разработках сотовых телефонов параметрические блоки флэш-памяти используются для хранения телефонных номеров, учета времени использования и идентификатора пользователя (SIM-карта). Производители автомобилей используют параметрические блоки флэш-памяти в системах управления двигателями для хранения кодов ошибок и параметров оптимальных режимов работы. В каждом из подобных примеров изготовители экономят как на ненужной микросхеме EEPROM, так и на расходах, связанных с необходимостью содержания складского запаса "прошитых" разными программами EEPROM, используя флэш-память Boot Block Flash Memory не только для хранения прикладных программ, но и параметров. Загрузка кода в чистую память может производиться в составе готовой системы на финальной стадии изготовления изделия. Кроме того, за счет снижения числа комплектующих и внешних контактов достигается более высокая надежность автомобильных систем в целом. И, наконец, повышается объем хранимых параметров и частота их изменения. В настоящей статье обсуждается структура связных списков для хранения параметров в блочной флэш-памяти с применением схемы, эмулирующей перезапись байтов. Обзор основ флэш-памяти приводится для пояснения того, как используется флэш-память в системе, и описывает ограничения на реализацию схемы программирования. Основное внимание уделено передовой, в настоящий момент, технологии - SmartVoltage.

5.3 Основы технологии

Флэш - технология позволяет оснастить системную память уникальными свойствами. Подобно ОЗУ, флэш-память модифицируется электрически внутрисистемно, но подобно ПЗУ, флэш энергонезависима и хранит данные даже после отключения питания. Однако, в отличие от ОЗУ, флэш нельзя переписывать побайтно. Флэш-память читается и записывается байт за байтом и предъявляет новое требование: ее нужно стереть перед тем, как записывать новые данные.

Операции над флэш-памятью

Операция

Минимальный сегмент

Типичное время

Максимальное время

Чтение

Byte

60 нс.

60 нс.

Запись

Byte

9 мкс

не более 100 мкс

Стирание

8KB-Block

0.6 с

4.3 с

Примечание:

по спецификации на ИС SmartVoltage 4Мbit Boot Block в 8-bit режиме при VCC=5.0V и VPP=5.0V

Запись (программирование) флэш-памяти - это процесс замены "1" на "0". Стирание - это процесс замены "0" на "1", где флэш стирается блок за блоком. Блоки - это области с фиксированными адресами. Когда блок стирается, стираются параллельно все ячейки внутри блока, независимо от других блоков этого прибора флэш-памяти. Микросхемы Flash Memory Boot Block должны выдерживать не менее 100 тысяч циклов стирания при напряжении питания VCC=5V. Цикл считается законченным, если 8КВ одного из параметрических блоков успешно запрограммировано и после этого стерто. Этот параметр очень важный, так как от него зависит то, какой объем данных можно хранить и как часто их можно обновлять. Поскольку флэш-память не допускает перезаписи отдельной ячейки без предварительного стирания всего блока памяти, то применяются программные методы эмуляции перезаписи байта с использованием двух 8КВ параметрических блоков, показанных на примере карты памяти.

5.4 Типы карт памяти

Compact Flash. Карточки этого формата впервые появились в 1994 г. Стандарт разработала компания SanDisk и предоставила его для общественного пользования безо всяких дополнительных лицензионных отчислений. В октябре 1995 г. была создана некоммерческая организация Compact Flash Association (CFA). Помимо, собственно, зачинщика, в нее вошли IBM, Canon, Kodak, HP, Hitachi, Epson и Socket Communications. Разработчики создали карты Miniature Card, но они оказались не очень удачными. Все права на технологию были проданы Centennial Technologies, которая в 2000 г. объявила о решении выпустить в свет собственный формат флэш-карт под названием

Compact Linear Flash. Карточка содержит довольно сложный контроллер, благодаря которому она совместима с адаптерами PCMCIA. Питание может составлять 3,3 или 5В. Существует два класса CompactFlash-карт, в подражание PCMCIA названных Type I и Type II. Они различаются только толщиной (3,3 и 5 мм) и количеством чипов памяти, которые могут в них поместиться.

Стандартный размер карты 43 x 36 мм. Одно из наиболее замечательных преимуществ CompactFlash заключается в электрической совместимости с IDE-интерфейсом. Это не означает, что карточку можно вставить в разъем, а подразумевает возможность эмуляции жесткого диска. На программном уровне карта ничем не отличается от винчестера: она обладает всеми необходимыми параметрами, такими, как количество виртуальных цилиндров и головок. Обращение к карте выполняется с помощью стандартного прерывания IRQ 14, и для работы с CompactFlash не требуется драйверов. Сейчас выпускаются карты CompactFlash объемом до 1 GB, и никаких физических ограничений не предвидится. Одно из главных достоинств стандарта - специфицированный встроенный контроллер памяти, обусловливающий четкое определение логической структуры данных.

MMC. В ноябре 1997 г. компании Siemens и SanDisk анонсировали MMC. Стандарт был изначально "свободным", таким же, как CompactFlash, т. е. лишенным каких-либо лицензионных ограничений. Размер карты всего 24 x 32 x 1,4 мм, а максимальная емкость сегодня составляет 64 MB, весят карты всего 1б5 грамма. Скорость передачи данных равняется 20 MBps. Эти модули памяти работают при напряжениях 3,3 или 2,7 В и токе до 35 мА, что и обусловливает низкое энергопотребление. В 1998 г. сформировался альянс MMCA (MultiMedia Card Association), объединивший промоутеров новой технологии.

Smart Media. Стандарт был разработан в 1995 г. компанией Toshiba, а его продвижением занимается организация SSFDC Forum, в рядах которой немало известных компаний. Кстати, SSFDC (Solid State Floppy Disk Card) можно перевести как

"твердотельная дискета". Следует отметить, что многие производители делают флэш-карты сразу трех основных типов: Compact Flash, SmartMedia и MultiMediaCard. В отличие от Compact Flash, карты SmartMedia (SM) не снабжены встроенным контроллером, что, по замыслу создателей, должно снижать их стоимость. Кроме того, SМ имеют меньшие размеры (37x45x0,76 мм) и массу (до 2 г). По популярности SM спорят с CF, а вместе с ним оба этих стандарта охватывают более половины рынка флэш-карт. Рабочие напряжения у SM такие же, как и у CF, но обычно используется 3,3 В. Максимальная емкость карт, объявленная производителями, в частности компаниями EMTEC и Delkin, составляет 128 Мбайт. Из-за отсутствия внутреннего контроллера для работы с этими картами невозможно применить пассивный переходник, а считыватели для них стоят около 50 долл. К сожалению, SМ не дешевле, чем CF.

Memory Stick. Некогда Sony заставила компьютерную индустрию выбрать в качестве сменных носителей свои 3,5-дюймовые флоппи-дисководы, а теперь она решила позаботиться о своих позициях и на аудио рынке, для чего разработала новый стандарт флэш-карт Memory Stick (MS). Эти 10-контактные устройства размерами 21,5x50x2,8 мм и массой 4 г стали опорой цифровой империи Sony, которая устанавливает их в свои цифровые плееры, фотоаппараты и видеокамеры, также игрушки и другие устройства. Сейчас доступны 128-Мбайт модули MS. В 2003 г. ассортимент Memory Stick Pro включит в себя карты емкостью 128 MB, 512 MB и 1 GB, а на 2006 г. запланировано появление модели 8 GB.

SecureDigital. Размер карты - 24 x 32 x 2,1 мм, что практически соответствует параметрам Magic Stick Duo. В настоящий момент анонсированы изделия емкостью от 8 до 512 MB при максимуме 16 GB. Скорость записи, что типично для флэш-карт, существенно зависит от объема и, следовательно, количества используемых чипов. Стандартная скорость записи составляет 2 MBps, но, начиная с 512 MB носителей, она возрастает многократно до внушительных 10 MBps. Карты оснащены механическим переключателем защиты от записи, наподобие защелки "read-only" у флоппи-дисков. Каждая SD-карта содержит два контроллера: ввода/вывода и поддержки системы кодирования. Разъем состоит из девяти контактов, четыре из которых предназначены для передачи данных, один используется для передачи команд и еще один отведен под синхросигнал. За исключением различного количества линий ввода/вывода, отражающего желание создателей SD увеличить производительность карты, интерфейс подобен таковому у MMC. С точки зрения производительности среди SecureDigital полностью сохраняется картина с "быстрыми" и "медленными" карточками. Только в отличие от CompactFlash их пока никто не выделяет в отдельные подклассы и не маркирует надписями а-ля Ultra, Professional, HiSpeed и т. д.

xD-Picture Card. Данный формат - своеобразное "логическое продолжение" Smart Media, предложенное в 2002 г. компаниями Fujifilm и Olympus. Основные преимущества спроектированного изделия: сниженная себестоимость (экономия на внутреннем контроллере), небольшие размеры (20 x 25 x 1,7 мм) и невысокое энергопотребление. Аббревиатура xD означает eXtreme Digital, т. е. экстремально цифровые. Учитывая "тесноту" на рынке флэш-карт, необходимость в еще одном новом формате, равно как и его перспектива, вызывают некоторые сомнения.

USB-флэш-память. USB-флэш-память (USB-память) -- совершенно новый тип флэш-накопителей, появившийся на рынке в 2001 г. По форме USB-память напоминает брелок продолговатой формы, Рис 22. состоящий из двух половинок -- защитного колпачка и собственно накопителя с USB-разъемом (внутри него размещаются одна или две микросхемы флэш-памяти и USB-контроллер). Работать с USB-памятью очень удобно -- для этого не требуется никаких дополнительных устройств. Достаточно иметь под рукой ПК с ОС Windows с незанятым USB-портом, чтобы за две минуты «добраться» до содержимого этого накопителя. В худшем случае вам придется установить драйверы USB-памяти, в лучшем -- новое USB-устройство и логический диск появятся в системе автоматически. Флэш-диск может иметь объем от 16 до 512 Мб. Существуют и более емкие варианты - до 2 Гб памяти. Однако не следует забывать о стоимости внутренней памяти. К тому же добавить ее не представляется возможным. В этом и есть самый серьезный недостаток USB-носителя - он очень дорого стоит в расчете на 1 Мб. Возможно, в будущем USB-память станет основным типом устройств для хранения и переноса небольших объемов данных. Ридеры. Ридеры - это современные, недавно появившиеся устройства для чтения флэш-карт. На сегодняшний день их огромное разнообразие...

Самым универсальным является ECS 6-in-1 card reader Elitegroup Computer Systems (ECS) представляет внутреннее устройство для чтения карт 6-в-одном. 6-in-1 card reader представляет собой решение для обмена данными между компьютером и цифровыми фотокамерами, цифровыми видеокамерами, мр3- . карта Elitegroup Computer Systems (ECS) плеерами и даже мобильными телефонами. Устанавливаемый в стандартный 3,5" слот и подключаемый через разъёмы USB на материнской плате ECS card reader устанавливает новый стандарт в области гибкости обращения с носителями информации. Данное устройство поддерживает стандарты CompactFlash (тип I/II), IBM Microdrives, SmartMedia cards, MultiMedia cards (MMC), Secure Digital cards (SD) и Memory stick, причём для каждого вида предусмотрен собственный разъем, что в сочетании с возможностью одновременного доступа к различным приводам позволяет легко и быстро скопировать информацию с одного носителя на другой.

5.5 Применение флэш-памяти

Где же нашли применение флэш-диска? Дать однозначный и исчерпывающий ответ на этот вопрос трудно, т. к. по мере развития технологий флэш-памяти обнаруживаются все новые и новые области ее применения.

Прежде всего, флэш-диски применяются в системах управления промышленным оборудованием, в горячих цехах и на открытом воздухе, в условиях постоянных ударов, тряски, вибрации, загрязненной атмосферы. Системы управления, устанавливаемые на железнодорожном, водном транспорте (вибрация, повышенная влажность) или на летательных аппаратах (быстрая смена высоты и температуры, большие перегрузки), немыслимы без таких устройств. И, конечно, в космических системах (перегрузки, невесомость, энергопотребление) флэш-дискам попросту нет конкурентов. Наконец не стоит забывать бедных «юзеров» -- у нас с вами тоже периодически возникает потребность в мобильных устройствах хранения информации для переноса их между машинами и работы в «тяжелых человеческих» условиях. Поверьте, человек и сам без участия природы может ненароком создать самые что ни на есть неблагоприятные условия эксплуатации. Например, уронить их, вынести на мороз, под дождь и т. п. Ситуация на отечественном рынке ФД укладывается в рамки общемировых тенденций. Большая часть поставляемой продукции потребляется в промышленной сфере для автоматизации производства. С другой стороны, PCMCIA-карты на основе флэш-памяти для портативных компьютеров, хотя и предлагаются, но не получили широкого распространения. Микросхемы флэш-памяти может работать при температурах от -50 до 80 градусов, влажности воздуха от 8 до 95 процентов, выдерживать ударную нагрузку до 1000g, вибрационную нагрузку до 15g. Время наработки на отказ у флэш-памяти около 1000 часов (сюда входит время записи и стирания), а срок хранения данных исчисляется десятками лет. Флэш-память применяется практически во всех современных устройствах: сотовых телефонах, портативных компьютерах,mp3-плейерах, цифровых видеокамер и фотоаппаратах и многих других. Флэш-память используется в любых компьютерных комплектующих: микросхема BIOS на материнской плате, прошивки различных устройств (CD-Rom, видеокарта, звуковая карта, модем). Модемы с микросхемами флэш-памяти могут принимать и отправлять данные даже при выключенном компьютере. USB-flash - это идеальная замена дискетам при переноске и хранение данных, а при снижении цен, флэш-брелки могут даже заменить компакт-диски. Флэш-память разработана и применяется для того, чтобы упростить работу системы, в которой она применяется, а также повысить ее производительность. За счет обновления информации через флэш-память система (например, модем, звуковая карта и т.д.) в гораздо меньшей степени использует оперативную память компьютера. Тем самым повышается производительность не только одного прибора, но и всего компьютера в целом. Использование микросхем флэш-памяти также позволяет снизить стоимость оборудования. Флэш-память, используя блочную архитектуру, полностью заменила собой микросхемы, стираемые целиком.

О том, что флэш-память находит применение практически везде, свидетельствуют данные об объёмах продаж. Действительно, с 1999 по 2000 гг. рынок флэш-памяти вырос на 148%, продажи достигли 11,3 млрд. долл. Но в 2001 г. разразился экономический кризис, и он в той же степени, что и рост, отразился на рынке флэш-памяти, который уменьшился на 30%, до 8 млрд. долл. 2002 г. прошел без значительных изменений. Продажи продолжали снижаться, на конец года была зафиксирована цифра 7,7 млрд. долл. Однако в 2003 г. рынок существенно оживился, предполагается, что объемы превысят рекорд 2000 г. и возрастут до 13 млрд. По мнению Semico Research, к 2007 г. обороты на рынке флэш-памяти достигнут невероятных значений -- 43 млрд. долл.

5.6 О будущем флэш-памяти

Компания Motorola уже ведет разработки в области улучшения технологий изготовления флэш-памяти. Скоро ожидается представление прототипа, созданного с использованием нанокристаллов. Проблема заключается в том, что растущие запросы на использование флэш-памяти требуют новых технологических решений. В стремлении сделать флэш-чипы более компактными и дешевыми производители уже почти исчерпали возможности традиционной флэш-архитектуры, и к 2007 году, если не будет найдено новых решений, в этой области может наступить застой. В данный момент все крупнейшие фирмы-производители флэш-памяти сконцентрировали свои усилия на поиске альтернативных технологий. Фирма AMD пытается создать чипы с четырехбитными ячейками памяти вместо однобитных, а также совместно с Intel и Matrix ведет разработки в области полимерной памяти. Инженеры IBM заняты поиском способов манипулирования спином электрона в атоме, что теоретически позволит создать "вечную память”. Intel ведет самостоятельные разработки универсальной памяти "овоникс" (Ovonics Unified Memory), которая базируется на материале, использующемся для производства DVD. Motorola, в свою очередь, предлагает решение, при котором двуокись кремния, применяющаяся в качестве изолятора в транзисторах, будет заменена слоем кремниевых нанокристаллов. В обычных условиях кремний является проводником электричества, но на уровне нанокристаллов проявляет свойства изолятора. Это позволит уменьшить толщину изоляционного слоя и, соответственно, размер ячейки памяти. В результате, удастся почти вдвое увеличить плотность размещения памяти в чипе. Если новая технология оправдает ожидания, то налаживание производства на ее основе можно ожидать в 2005-2006 гг. В то же время, Motorola не ограничивается одним направлением и ведет изыскания в различных областях, таких как Sonox-память и MRAM (Magnetic RAM). Видимо, до конца этого года специалисты Motorola вряд ли определятся, какое направление считать приоритетным.

Предполагается, что рост продаж будет обусловлен увеличением объемов реализации различных мобильных устройств. Тенденция четко прослеживается, и никаких сомнений в прогнозе не возникало. Компании-производители инвестируют громадные суммы в расширение производства, поскольку аналитики грозили неспособностью флэш-индустрии удовлетворить нужды всех своих потребителей. А в таковые записались практически все сегменты IT-рынка.

Как бы то ни было, но флэш-память еще находится на стадии развития, и неизвестно, что нас ждет через несколько лет. По компьютерным прогнозам, через 5-6 лет произойдет расцвет Flash на полупроводниковом рынке, в результате которого у этого вида энергонезависимой памяти практически не будет конкурентов. Хотя утверждать что-либо с уверенностью еще рано - быть может, будут созданы принципиально новые технологии, против которых не устоит даже Flash

5.7 Портативные USB-накопители

Быстрорастущий рынок портативных жестких дисков, предназначенных для транспортировки больших объемов данных, привлек к себе внимание одного из самых крупных производителей винчестеров. Компания Western Digital объявила о выпуске сразу двух моделей устройств под названием WD Passport Portable Drive. В продажу поступили варианты емкостью 40 и 80 Гб. Портативные устройства WD Passport Portable Drive основаны на 2,5-дюймовых HDD WD Scorpio EIDE. Они упакованы в прочный корпус, оборудованы поддержкой технологии Data Lifeguard, и не нуждаются в дополнительном источнике питания (питание через USB). Производитель отмечает, что накопители не греются, работают тихо и потребляют мало энергии. К тому же, цены на WD Passport Portable Drive установлены вполне демократические. Так модель емкостью 40Гб обойдется в $200, ну а за вдвое большую емкость придется заплатить $250. Прекрасная альтернатива продукции ZiV.


Подобные документы

  • Современные достижения в разработке накопителей информации. Принципы работы запоминающих устройств ЭВМ и голографической памяти. Возможности персональных компьютеров и мультимедийных систем. Перспективы развития оптических накопителей и жестких дисков.

    презентация [4,0 M], добавлен 27.02.2012

  • Изучение видов и функций периферийных устройств, с помощью которых компьютер обменивается информацией с внешним миром. Классификация устройств ввода-вывода информации. Приборы местоуказания (манипуляторы), сканеры, мониторы, принтеры, микрофоны, наушники.

    контрольная работа [359,1 K], добавлен 10.03.2011

  • Особенности работы микро ЭВМ, которая сопровождается интенсивным обменом информацией между МП, ЗУ и УВВ. Характеристика функций интерфейса: дешифрация адреса устройств, синхронизация обмена информацией, согласование форматов слов, дешифрация кода команды.

    контрольная работа [183,1 K], добавлен 22.08.2010

  • Общий вид вычислительной системы. Начальная последовательность действий. Элементы организации основных блоков ЭВМ. Архитектурная организация процессора ЭВМ. Организация систем адресации и команд ЭВМ. Система внешних устройств. Средства вывода информации.

    курсовая работа [39,5 K], добавлен 28.01.2012

  • Изучение устройств ввода информации как приборов, осуществляющих перевод языка человека на машинный язык для занесения информации в компьютер. Функциональные возможности устройств ввода: клавиатура, мышь, джойстик, сканер, камера и графический планшет.

    презентация [2,7 M], добавлен 02.05.2011

  • Виды, основные характеристики и тенденции развития накопителей информации. Виды и основные характеристики устройств для хранения данных. Описание расчета инвариантной сметы расходов с помощью электронных таблиц Excel. Построение диаграммы структуры.

    курсовая работа [324,5 K], добавлен 09.11.2008

  • Анализ используемой системы обработки информации на предприятии, ее структура и анализ эффективности функционирования. Содержание и принципы организации входной и выходной информации. Аппаратные и программные средства обеспечения, описание интерфейса.

    дипломная работа [1,1 M], добавлен 24.08.2016

  • Характеристика флэш-памяти, особого вида энергонезависимой перезаписываемой полупроводниковой памяти. Исследование особенностей организации флэш-памяти. Общий принцип работы ячейки. Обзор основных типов карт памяти. Защита информации на флеш-накопителях.

    презентация [9,3 M], добавлен 12.12.2013

  • Назначение и группы периферийных устройств. Назначение внешних накопителей, флэш-карты, модема. Периферийные устройства вывода (мониторы, принтеры, аудиосистема) и ввода информации (клавиатура, сканер, графический планшет). Манипуляторы и Web-камеры.

    реферат [898,6 K], добавлен 09.12.2010

  • Основные виды периферийных устройств в персональных компьютерах. Классификация периферийных устройств. Устройства ввода, вывода и хранения информации. Передача информации с помощью периферийных устройств. Организация сетей на основе программных средств.

    контрольная работа [1,7 M], добавлен 11.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.