Нейробум: поэзия и проза нейронных сетей

Нейрокомпьютеры – новая техническая революция, которая приходит к нам в виде интеллектуальной игрушки. Для любой задачи, которую может решить техника нового поколения, можно построить более стандартную специализированную ЭВМ, которая решит ее не хуже.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 17.03.2009
Размер файла 120,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Каждый автомат имеет несколько входов (n), несколько выходов (p) и конечный набор (s) параметров состояния. Он вычисляет s+p функций от n+s переменных. Аргументы этих функций _ входные сигналы (их n) и текущие параметры состояния (их s). Значения функций - выходные сигналы (их p) и параметры состояния на следующем шаге (их s). Каждый такой автомат можно представить как систему из s+p более простых автоматов (рис. 9). Эти простые автоматы вычисляют по одной функции от n+s переменных. Смена состояний достигается за счет того, что часть значений этих функций на следующем шаге становится аргументами - так соединены автоматы (см. рис. 9).

Таким образом, без потери общности можно рассматривать сеть автоматов как набор устройств, каждое из которых вычисляет функцию нескольких переменных f(x1, ... ,xn). Этот простой, но фундаментальный факт позволяет использовать предыдущие результаты. Нейронные сети позволяют с любой точностью вычислять произвольную непрерывную функцию f(x1, ... ,xn). Следовательно, с их помощью можно сколь угодно точно аппроксимировать функционирование любого непрерывного автомата.

Рис. 9. Представление общего автомата с помощью модулей, вычисляющих функции многих переменных от входных сигналов: на верхней схеме представлено функционирование автомата, на нижней он разложен на отдельные модули. Приняты обозначения:

In _ входные сигналы, Out _ выходные сигналы, S _ параметры состояния, T _ дискретное время, Out(In,S) _ зависимость выходных сигналов от значений входных и параметров состояния, S(In,S) _ зависимость состояния в следующий момент дискретного времени от входных сигналов и текущего состояния, f1-fp _ функции переменных (In,S) _ компоненты вектора Out(In,S), fp+1-fp+s _ функции переменных (In,S) _ компоненты вектора S(In,S), индексами T, T1 обозначены соответствующие моменты времени.

Литература

1. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных. Докл. АН СССР, 1956. Т. 108, No. 2. С.179-182.

2. Арнольд В.И. О функциях трех переменных. Докл. АН СССР, 1957. Т. 114, No. 4. С. 679-681.

3. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиции непрерывных функций одного переменного. Докл. АН СССР, 1957. Т. 114, No. 5. С. 953-956.

4. Витушкин А.Г. О многомерных вариациях. М.: Физматгиз, 1955.

5. Арнольд В.И. О представлении функций нескольких переменных в виде суперпозиции функций меньшего числа переменных // Математическое просвещение, 19 № с. 41-61.

6. Stone M.N. The generalized Weierstrass approximation theorem. Math. Mag., 1948. V.21. PP. 167-183, 237-254.

7. Шефер Х. Топологические векторные пространства. М.: Мир, 1971. 360 с.

8. Cybenko G. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989. Vol. 2. PP. 303 - 314.

9. Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 1989. Vol. 2. PP. 359 - 366.

10. Kochenov D.A., Rossiev D.A. Approximations of functions of C[A,B] class by neural-net predictors (architectures and results). AMSE Transaction, Scientific Siberian, A. 1993, Vol. 6. Neurocomputing. PP. 189-203. Tassin, France.

11. Gilev S.E., Gorban A.N. On completness of the class of functions computable by neural networks. Proc. of the World Congress on Neural Networks (WCNN'96). Sept. 15-18, 1996, San Diego, CA, Lawrens Erlbaum Accociates, 1996. PP. 984-991.

12. Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. Новосибирск: Наука (Сиб. отделение), 1996. 276 с.


Подобные документы

  • Нейрокомпьютеры и их применение в современном обществе. Некоторые характеризующие нейрокомпьютеры свойства. Задачи, решаемые с помощью нейрокомпьютеров. Типы искусственных нейронов. Классификация искусственных нейронных сетей, их достоинства и недостатки.

    курсовая работа [835,9 K], добавлен 17.06.2014

  • Разработка технологии защиты информации беспроводных сетей, которая может применяться для повышения защиты компьютера пользователя, корпоративных сетей, малых офисов. Анализ угроз и обеспечения безопасности беспроводной сети. Настройка программы WPA.

    дипломная работа [2,9 M], добавлен 19.06.2014

  • Исследование задачи и перспектив использования нейронных сетей на радиально-базисных функциях для прогнозирования основных экономических показателей: валовый внутренний продукт, национальный доход Украины и индекс потребительских цен. Оценка результатов.

    курсовая работа [4,9 M], добавлен 14.12.2014

  • Описание технологического процесса напуска бумаги. Конструкция бумагоделательной машины. Обоснование применения нейронных сетей в управлении формованием бумажного полотна. Математическая модель нейрона. Моделирование двух структур нейронных сетей.

    курсовая работа [1,5 M], добавлен 15.10.2012

  • Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.

    дипломная работа [3,8 M], добавлен 27.06.2011

  • Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.

    контрольная работа [135,5 K], добавлен 30.11.2015

  • Изучение архитектуры искусственных нейронных сетей, способов их графического изображения в виде функциональных и структурных схем и программного представления в виде объектов специального класса network. Неокогнитрон и инвариантное распознавание образов.

    курсовая работа [602,6 K], добавлен 12.05.2015

  • Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.

    реферат [158,2 K], добавлен 16.03.2011

  • Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.

    презентация [582,1 K], добавлен 25.06.2013

  • Нейрокомпьютеры - это системы, в которых алгоритм решения задачи представлен логической сетью элементов частного вида - нейронов с полным отказом от булевских элементов типа И, ИЛИ, НЕ. Нейронные сети. Биологический и искусственный нейрон - их связь.

    реферат [225,2 K], добавлен 04.06.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.