Курс лекций по языку Pascal

Понятие алгоритмического языка Pascal. Состав языка, описание языка. Элементарные конструкции. Основные символы. Концепция типа для данных. Стандартные типы данных. Константы. Переменные. Инициализация переменных. Структкра программы. Массивы.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 06.08.2008
Размер файла 67,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

var str: Record

FIO: String[20];

TEL: String[7]

end;

Обращение к записи в целом допускается только в операторах присваивания, где слева и справа от знака присваивания используются имена записей одинакового типа. Во всех остальных случаях оперируют отдельными полями записей. Чтобы обратиться к отдельной компоненте записи,необходимо задать имя записи и через точку указать имя нужного поля,например:

str.FIO, str.TEL

Такое имя называется составным. Компонентой записи может быть также запись, в таком случае составное имя будет содержать не два, а большее количество имен.

Обращение к компонентам записей можно упростить, если воспользоваться оператором присоединения with.

Он позволяет заменить составные имена, характеризующие каждое поле, просто на имена полей, а имя записи определить в операторе присоединения:

with M do OP;

Здесь М - имя записи, ОР - оператор, простой или составной.

Оператор ОР представляет собой область действия оператора присоединения, в пределах которой можно не использовать составные имена.

Иногда содержимое отдельной записи зависит от значения одного из ее полей. В языке ПАСКАЛЬ допускается описание записи, состоящей из

общей и вариантной частей. Вариантная часть задается с помощью конструкции

case P of,

где Р - имя поля из общей части записи. Возможные значения, принимаемые этим полем, перечисляются так же, как и в операторе варианта.

Однако вместо указания выполняемого действия, как это делается в операторе варианта, указываются поля варианта, заключенные в круглые

скобки. Описание вариантной части завершается служебным словом end.

Тип поля Р можно указать в заголовке вариантной части, например:

case P: Integer of

Инициализация записей осуществляется с помощью типизированных констант:

type

RecType= Record

x,y: Word;

ch: Char;

dim: Array[1..3] of Byte

end;

const

Rec: RecType= ( x: 127; y: 255;

ch: 'A';

dim: (2, 4, 8) );

{}

30. ФАЙЛЫ

Введение файлового типа в язык ПАСКАЛЬ вызвано необходимостью обеспечить возможность работы с периферийными (внешними) устройствами ЭВМ, предназначенными для ввода, вывода и хранения данных.

Файловый тип данных или файл определяет упорядоченную совокупность произвольного числа однотипных компонент.

Общее свойство массива, множества и записи заключается в том, что количество их компонент определено на этапе написания программы, тогда как количество компонент файла в тексте программы не определяется и может быть произвольным.

Понятие файла достаточно широко. Это может быть обычный файл на диске, коммуникационный порт ЭВМ, устройство печати, клавиатура или другие устройства.

При работе с файлами выполняются операции ввода - вывода. Операция ввода означает перепись данных с внешнего устройства (из входного файла) в основную память ЭВМ, операция вывода - это пересылка данных из основной памяти на внешнее устройство (в выходной файл).

Файлы на внешних устройствах часто называют физическими файлами.

Их имена определяются операционной системой. В программах на языке Паскаль имена файлов задаются с помощью строк. Например, имя файла на

диске может иметь вид:

'A:LAB1.DAT'

'c:\ABC150\pr.pas'

'lab3.pas'.

Операционная система MS-DOS не делает особого различия между файлами на дисках и лентах и устройствами ЭВМ и портами коммуникаций. В

TURBO PASCAL могут использоваться имена устройств и портов, определенные в MS-DOS, например:

'CON', 'LPT1', 'PRN', 'COM1', 'AUX', 'NUL'.

С файловой системой TURBO PASCAL связано понятие буфера ввода - вывода. Ввод и вывод данных осуществляется через буфер. Буфер - это область в памяти, которая выделяется для каждого файла. При записи в файл вся информация сначала направляется в буфер и там накапливается до тех пор, пока весь объем буфера не будет заполнен. Только после этого или после специальной команды сброса происходит передача данных на внешнее устройство. При чтении из файла данные вначале считываются в буфер, причем данных считывается не столько, сколько запрашивается, а сколько поместится в буфер.

Механизм буферизации позволяет более быстро и эффективно обмениваться информацией с внешними устройствами.

Для работы с файлами в программе необходимо определить файловую переменную. TURBO PASCAL поддерживает три файловых типа: текстовые файлы, компонентные файлы, бестиповые файлы.

Описание файловых переменных текстового типа производится с помощью служебного слова Text, например:

var tStory: Text;

Описание компонентных файлов имеет вид:

var fComp: File of T;

где T - тип компоненты файла. Примеры описания файловой переменной компонентного типа:

type M= array[1..500] of Longint;

var f1: File of Real;

f2: File of Integer;

fLi: File of M;

Бестиповые файлы описываются с помощью служебного слова File:

var f: File;

Файловые переменные, которые описаны в программе, называют логическими файлами. Все основные процедуры и функции, обеспечивающие ввод - вывод данных, работают только с логическими файлами. Физический файл должен быть связан с логическим до выполнения процедур открытия файлов.

TURBO PASCAL вводит ряд процедур и функций, применимых для любых типов файлов: Assign, Reset, Rewrite, Close, Rename, Erase, Eof, IOResult.

Процедура Assign( var f; FileName: String ) связывает логический файл f с физическим файлом, полное имя которого задано в строке

FileName.

Процедура Reset( var f ) открывает логический файл f для последующего чтения данных или, как говорят, открывает входной файл. После успешного выполнения процедуры Reset файл готов к чтению из него первого элемента.

Процедура Rewrite ( var f ) открывает логический файл f для последующей записи данных (открывает выходной файл). После успешного выполнения этой процедуры файл готов к записи в него первого элемента.

Процедура Close ( var f ) закрывает открытый до этого логический файл. Вызов процедуры Close необходим при завершении работы с файлом.

Если по какой-то причине процедура Close не будет выполнена, файл все-же будет создан на внешнем устройстве, но содержимое последнего

буфера в него не будет перенесено. Для входных файлов использование оператора закрытия файла необязательно.

Логическая функция EOF( var f ): Boolean возвращает значение TRUE, когда при чтении достигнут конец файла. Это означает, что уже прочитан последний элемент в файле или файл после открытия оказался пуст.

Процедура Rename( var f; NewName: String ) позволяет переименовать физический файл на диске, связанный с логическим файлом f. Переименование возможно после закрытия файла.

Процедура Erase( var f ) уничтожает физический файл на диске, который был связан с файловой переменной f. Файл к моменту вызова процедуры Erase должен быть закрыт.

Функция IOResult: Integer возвращает целое число, соответствующее коду последней ошибки ввода - вывода. При нормальном завершении операции функция вернет значение 0. Значение функции IOResult необходимо присваивать какой - либо переменной, так как при каждом вызове функция обнуляет свое значение. Функция IOResult работает только при выключенном режиме проверок ошибок ввода - вывода или с ключом компиляции {$I-}.

31. ТЕКСТОВЫЕ ФАЙЛЫ

Особое место в языке ПАСКАЛЬ занимают текстовые файлы, компоненты которых имеют символьный тип. Для описания текстовых файлов в языке определен стандартный тип Тext:

var TF1, TF2: Text;

Текстовые файлы представляют собой последовательность строк, а строки - последовательность символов. Строки имеют переменную длину,каждая строка завершается признаком конца строки.

С признаком конца строки связана функция EOLn(var T:Text):Boolean,где Т - имя текстового файла. Эта функция принимает значение TRUE,если достигнут конец строки, и значение FALSE, если конец строки не достигнут.

Для операций над текстовыми файлами, кроме перечисленных, определены также операторы обращения к процедурам:

ReadLn(T) - пропускает строку до начала следующей;

WriteLn(T) - завершает строку файла, в которую производится запись, признаком конца строки и переходит к началу следующей.

Для работы с текстовыми файлами введена расширенная форма операторов ввода и вывода. Оператор

Read(T,X1,X2,...XK)

эквивалентен группе операторов

begin

Read(T,X1);

Read(T,X2);

Read(T,XK)

end;

Здесь Т - текстовый файл, а переменные Х1, Х2, ХК могут быть либо переменными целого, действительного или символьного типа, либо строкой. При чтении значений переменных из файла они преобразуются из текстового представления в машинное.

Оператор

Write(T,X1,X2,XK)

эквивалентен группе операторов

begin

Write(T,X1);

Write(T,X2);

Write(T,XK)

end;

Здесь Т - также текстовый файл, но переменные Х1,Х2,...ХК могут быть целого, действительного, символьного, логического типа или строкой. При записи значений переменных в файл они преобразуются из внутреннего представления в текстовый.

К текстовым файлам относятся стандартные файлы INPUT, OUTPUT.

Рассмотренные ранее операторы ввода - вывода являются частным случаем операторов обмена с текстовыми файлами, когда используются стандартные файлы ввода - вывода INPUT, OUTPUT.

Работа с этими файлами имеет особенности:

-имена этих файлов в списках ввода - вывода не указываются;

-применение процедур Reset, Rewrite и Close к стандартным файлам ввода - вывода запрещено;

-для работы с файлами INPUT, OUTPUT введена разновидность функции EOLn без параметров.

TURBO PASCAL вводит дополнительные процедуры и функции, применимые только к текстовым файлам, это SetTextBuf, Append, Flush, SeekEOLn,SeekEOF.

Процедура SetTextBuf( var f: Text; var Buf; BufSize: Word ) служит для увеличения или уменьшения буфера ввода - вывода текстового файла f. Значение размера буфера для текстовых файлов по умолчанию равно

128 байтам. Увеличение размера буфера сокращает количество обращений к диску. Рекомендуется изменять разиер буфера до открытия файла. Буфер файла начнется с первого байта переменной Buf. Размер буфера задается в необязательном параметре BufSize, а если этот параметр отсутствует, размер буфера определяется длиной переменной Buf.

Процедура Append( var f: Text ) служит для специального открытия выходных файлов. Она применима к уже существующим физическим файлам и открывает из для дозаписи в конец файла.

Процедура Flush( var f: Text ) применяется к открытым выходным файлам. Она принудительно записывает данные из буфера в файл независимо от степени его заполнения.

Функция SeekEOLn( var f: Text ): Boolean возвращает значение True,если до конца строки остались только пробелы.

Функция SeekEOF( var f: Text ): Boolean возвращает значение True,если до конца файла остались строки, заполненные пробелами.

32. КОМПОНЕНТНЫЕ ФАЙЛЫ

Компонентный или типизированный файл - это файл с объявленным типом его компонент. Компонентные файлы состоят из машинных представлений значений переменных, они хранят данные в том же виде, что и память ЭВМ.

Описание величин файлового типа имеет вид:

type M= File Of T;

где М - имя файлового типа, Т - тип компоненты. Например:

type

FIO= String[20];

SPISOK=File of FIO;

var

STUD, PREP: SPISOK;

Здесь STUD, PREP - имена файлов, компонентами которых являются

строки.

Описание файлов можно задавать в разделе описания переменных:

var

fsimv: File of Char;

fr: File of Real;

Компонентами файла могут быть все скалярные типы, а из структурированных - массивы, множества, записи. Практически во всех конкретных реализациях языка ПАСКАЛЬ конструкция "файл файлов" недопустима.

Все операции над компонентными файлами производятся с помощью стандартных процедур:

Reset, Rewrite, Read, Write, Close.

Для ввода - вывода используются процедуры:

Read(f,X);

Write(f,X);

где f - имя логического файла, Х - либо переменная, либо массив,либо строка, либо множество, либо запись с таким же описанием, какое имеет компонента файла.

Выполнение процедуры Read(f,X) состоит в чтении с внешнего устройства одной компоненты файла и запись ее в X. Повторное применение процедуры Read(f,X) обеспечит чтение следующей компоненты файла и запись ее в X.

Выполнение процедуры Write(f,X) состоит в записи X на внешнее устройство как одной компоненты. Повторное применение этой процедуры обеспечит запись X как следующей компоненты файла.

Для работы с компонентными файлами введена расширенная форма операторов ввода и вывода:

Read(f,X1,X2,...XK)

Write(f,X1,X2,...XK)

Здесь f - компонентный файл, а переменные Х1, Х2,...ХК должны иметь тот же тип, что и объявленный тип компонент файла f.

33. БЕСТИПОВЫЕ ФАЙЛЫ

Бестиповые файлы позволяют записывать на диск произвольные участки пвмяти ЭВМ и считывать их с диска в память. Операции обмена с бестиповыми файлами осуществляется с помощью процедур BlokRead и

BlockWrite. Кроме того, вводится расширенная форма процедур Reset и Rewrite. В остальном принципы работы остаются такими же, как и с компонентными файлами.

Перед использованием логический файл

var f: File;

должен быть связан с физическим с помощью процедуры Assign. Далее файл должен быть открыт для чтения или для записи процедурой Reset или Rewrite, а после окончания работы закрыт процедурой Close.

При открытии файла длина буфера устанавливается по умолчанию в 128 байт. TURBO PASCAL позволяет изменить размер буфера ввода - вывода,для чего следует открывать файл расширенной записью процедур

Reset(var f: File; BufSize: Word )

или

Rewrite(var f: File; BufSize: Word )

Параметр BufSize задает число байтов, считываемых из файла или записываемых в него за одно обращение. Минимальное значение BufSize - 1 байт, максимальное - 64 К байт.

Чтение данных из бестипового файла осуществляется процедурой

BlockRead( var f: File; var X; Count: Word; var QuantBlock: Word );

Эта процедура осуществляет за одно обращение чтение в переменную X количества блоков, заданное параметром Count, при этом длина блока равна длине буфера. Значение Count не может быть меньше 1. За одно обращение нельзя прочесть больше, чем 64 К байтов.

Необязательный параметр QuantBlock возвращает число блоков (буферов), прочитанных текущей операцией BlockRead. В случае успешного завершения операции чтения QuantBlock = Count, в случае аварийной ситуации параметр QuantBlock будет содержать число удачно прочитанных блоков. Отсюда следует, что с помощью параметра QuantBlock можно контролировать правильность выполнения операции чтения.

Запись данных в бестиповой файл выполняется процедурой BlockWrite( var f: File; var X; Count: Word; var QuantBlock: Word ); которая осуществляет за одно обращение запись из переменной X количества блоков, заданное параметром Count, при этом длина блока равна длине буфера.

Необязательный параметр QuantBlock возвращает число блоков (буферов), записанных успешно текущей операцией BlockWrite.

34. ПОСЛЕДОВАТЕЛЬНЫЙ И ПРЯМОЙ ДОСТУП

Смысл последовательного доступа заключается в том, что в каждый момент времени доступна лишь одна компонента из всей последовательности. Для того, чтобы обратиться (получить доступ) к компоненте с номером К, необходимо просмотреть от начала файла К-1 предшествующую компоненту. После обращения к компоненте с номером К можно обращаться к компоненте с номером К+1. Отсюда следует, что процессы формирования (записи) компонент файла и просмотра (чтения) не могут произвольно чередоваться. Таким образом, файл вначале строится при помощи последовательного добавления компонент в конец, а затем может последовательно просматриваться от начала до конца.

Рассмотренные ранее средства работы с файлами обеспечивают последовательный доступ.

TURBO PASCAL позволяет применять к компонентным и бестиповым файлам, записанным на диск, способ прямого доступа. Прямой доступ означает возможность заранее определить в файле блок, к которому будет применена операция ввода - вывода. В случае бестиповых файлов блок равен размеру буфера, для компонентных файлов блок - это одна компонента файла.

Прямой доступ предполагает, что файл представляет собой линейную последовательность блоков. Если файл содержит n блоков, то они нумеруются от 1 через 1 до n. Кроме того, вводится понятие условной границы между блоками, при этом условная граница с номером 0 расположена перед блоком с номером 1, граница с номером 1 расположена перед блоком с номером 2 и, наконец, условная граница с номером n находится после блока с номером n.

Реализация прямого доступа осуществляется с помощью функций и процедур FileSize, FilePos, Seek и Truncate.

Функция FileSize( var f ): Longint возвращает количество блоков в открытом файле f.

Функция FilePos( var f ): Longint возвращает текущую позицию в файле f. Позиция в файле - это номер условной границы. Для только что открытого файла текущей позицией будет граница с номером 0. Это значит, что можно записать или прочесть блок с номером 1. После чтения или записи первого блока текущая позиция переместится на границу с номером 1, и можно будет обращаться к ьлоку с номером 2. После прочтения последней записи значение FilePos равно значению FileSize.

Процедура Seek ( var f; N: Longint) обеспечивает назначение текущей позиции в файле (позиционирование). В параметре N должен быть задан номер условной границы, предшествующей блоку, к которому будет производиться последующее обращение. Например, чтобы работать с блоком 4,необходимо задать значение N, равное 3. Процедура Seek работает с открытыми файлами.

Процедура Truncate( var f ) устанавливает в текущей позиции признак конца файла и удаляет (стирает) все последующие блоки.

Пример. Пусть на НМД имеется текстовый файл ID.DAT, который содержит числовые значения действительного типа по два числа в каждой строке - значения аргумента и функции соответственно. Количество пар чисел не более 200. Составить программу, которая читает файл, значения аргумента и функции записывает в одномерные массивы, подсчитывает их количество, выводит на экран дисплея и записывает в файл компонентного типа RD.DAT.

Program F;

var

rArg, rF: Array[1..200] of Real;

inf: Text;

outf: File of Real;

n, l: Integer;

begin

Assign(inf,'ID.DAT');

Assign(outf,'RD.DAT');

Reset(inf);

Rewrite(outf);

n:=0;

while not EOF(inf) do

begin

n:=n+1;

ReadLn(inf,rArg[n],rF[n])

end;

for l:=1 to n do

begin

WriteLn(l:2,rArg[l]:8:2,rF[l]:8:2);

Write(outf,rArg[l], rF[l]);

end;

close(outf)

end.

35. УКАЗАТЕЛИ.

Операционная система MS - DOS все адресуемое пространство делит на сегменты. Сегмент - это участок памяти размером 64 К байт. Для задания адреса необходимо определить адрес начала сегмента и смещение относительно начала сегмента.

В TURBO PASCAL определен адресный тип Pointer - указатель. Переменные типа Pointer

var p: Pointer;

содержат адрес какого - либо элемента программы и занимают 4 байта,при этом адрес хранится как два слова, одно из них определяет сегмент, второе - смещение.

Переменную типа указатель можно описать другим способом.

type NameType= ^T;

var p: NameType;

Здесь p - переменная типа указатель, связанная с типом Т с помощью имени типа NameType. Описать переменную типа указатель можно непосредственно в разделе описания переменных:

var p: ^T;

Необходимо различать переменную типа указатель и переменную, на которую этот указатель ссылается. Например если p - ссылка на переменную типа Т, то p^ - обозначение этой самой переменной.

Для переменных типа указатель введено стандартное значение NIL,которое означает, что указатель не ссылается ни к какому объекту.

Константа NIL используется для любых указателей. Над указателями не определено никаких операций, кроме проверки на равенство и неравенство.

Переменные типа указатель могут быть записаны в левой части оператора присваивания, при этом в правой части может находиться либо функция определения адреса Addr(X), либо выражение @ X, где @ - унарная операция взятия адреса, X - имя переменной любого типа, в том числе процедурного.

Переменные типа указатель не могут быть элементами списка ввода -вывода.

36. ДИНАМИЧЕСКИЕ ПЕРЕМЕННЫЕ

Статической переменной (статически размещенной) называется описанная явным образом в программе переменная, обращение к ней осуществляется по имени. Место в памяти для размещения статических переменных определяется при компиляции программы.

В отличие от таких статических переменных в программах, написанных на языке ПАСКАЛЬ, могут быть созданы динамические переменные. Основное свойство динамических переменных заключается в том, что они создаются и память для них выделяется во время выполнения программы.

Размещаются динамические переменные в динамической области памяти (heap - области).

Динамическая переменная не указывается явно в описаниях переменных и к ней нельзя обратиться по имени. Доступ к таким переменным осуществляется с помощью указателей и ссылок.

Работа с динамической областью памяти в TURBO PASCAL реализуется с помощью процедур и функций New, Dispose, GetMem, FreeMem, Mark, Release, MaxAvail, MemAvail, SizeOf.

Процедура New( var p: Pointer ) выделяет место в динамической области памяти для размещения динамической переменной p^ и ее адрес присваивает указателю p.

Процедура Dispose( var p: Pointer ) освобождает участок памяти,выделенный для размещения динамической переменной процедурой New, и значение указателя p становится неопределенным.

Проуедура GetMem( var p: Pointer; size: Word ) выделяет участок памяти в heap - области, присваивает адрес его начала указателю p, размер участка в байтах задается параметром size.

Процедура FreeMem( var p: Pointer; size: Word ) освобождает участок памяти, адрес начала которого определен указателем p, а размер - параметром size. Значение указателя p становится неопределенным.

Процедура Mark( var p: Pointer ) записывает в указатель p адрес начала участка свободной динамической памяти на момент ее вызова.

Процедура Release( var p: Pointer ) освобождает участок динамической памяти, начиная с адреса, записанного в указатель p процедурой Mark, то есть, очищает ту динамическую память, которая была занята после вызова процедуры Mark.

Функция MaxAvail: Longint возвращает длину в байтах самого длинного свободного участка динамической памяти.

Функция MemAvail: Longint полный объем свободной динамической памяти в байтах.

Вспомогательная функция SizeOf( X ): Word возвращает объем в байтах, занимаемый X, причем X может быть либо именем переменной любого типа, либо именем типа.

Рассмотрим некоторые примеры работы с указателями.

var

p1, p2: ^Integer;

Здесь p1 и p2 - указатели или пременные ссылочного типа.

p1:=NIL; p2:=NIL;

После выполнения этих операторов присваивания указатели p1 и p2 не будут ссылаться ни на какой конкретный объект.

New(p1); New(p2);

Процедура New(p1) выполняет следующие действия:

-в памяти ЭВМ выделяется участок для размещения величины целого типа;

-адрес этого участка присваивается переменной p1:

Аналогично, процедура New(p2) обеспечит выделение участка памяти,адрес которого будет записан в p2:

После выполнения операторов присваивания

p1^:=2; p2^:=4;

в выделенные участки памяти будут записаны значения 2 и 4 соответственно:

В результате выполнения оператора присваивания

p1^:=p2^;

в участок памяти, на который ссылается указатель p1, будет записано значение 4:

После выполнения оператора присваивания

p2:=p1;

оба указателя будут содержать адрес первого участка памяти:

Переменные p1^, p2^ являются динамическими, так как память для них выделяется в процессе выполнения программы с помощью процедуры New.

Динамические переменные могут входить в состав выражений, например:

p1^:=p1^+8; Write('p1^=',p1^:3);

Пример. В результате выполнения программы:

Program DemoPointer;

var p1,p2,p3:^Integer;

begin

p1:=NIL; p2:=NIL; p3:=NIL;

New(p1); New(p2); New(p3);

p1^:=2; p2^:=4;

p3^:=p1^+Sqr(p2^);

writeln('p1^=',p1^:3,' p2^=',p2^:3,' p3^=',p3^:3);

p1:=p2;

writeln('p1^=',p1^:3,' p2^=',p2^:3)

end.

на экран дисплея будут выведены результаты:

p1^= 2 p2^= 4 p3^= 18

p1^= 4 p2^= 4

37. ДИНАМИЧЕСКИЕ СТРУКТУРЫ ДАННЫХ

Структурированные типы данных, такие, как массивы, множества, записи, представляют собой статические структуры, так как их размеры неизменны в течение всего времени выполнения программы.

Часто требуется, чтобы структуры данных меняли свои размеры в ходе решения задачи. Такие структуры данных называются динамическими, к ним относятся стеки, очереди, списки, деревья и другие. Описание динамических структур с помощью массивов, записей и файлов приводит к неэкономному использованию памяти ЭВМ и увеличивает время решения задач.

Каждая компонента любой динамической структуры представляет собой запись, содержащую по крайней мере два поля: одно поле типа указатель, а второе - для размещения данных. В общем случае запись может содержать не один, а несколько укзателей и несколько полей данных.

Поле данных может быть переменной, массивом, множеством или записью.

Для дальнейшего рассмотрения представим отдельную компоненту в виде:

где поле p - указатель;

поле D - данные.

Описание этой компоненты дадим следующим образом:

type

Pointer = ^Comp;

Comp = record

D:T;

pNext:Pointer

end;

здесь T - тип данных.

Рассмотрим основные правила работы с динамическими структурами данных типа стек, очередь и список, базируясь на приведенное описание компоненты.

38. СТЕКИ

Стеком называется динамическая структура данных, добавление компоненты в которую и исключение компоненты из которой производится из одного конца, называемого вершиной стека. Стек работает по принципу

LIFO (Last-In, First-Out) -

поступивший последним, обслуживается первым.

Обычно над стеками выполняется три операции:

-начальное формирование стека (запись первой компоненты);

-добавление компоненты в стек;

-выборка компоненты (удаление).

Для формирования стека и работы с ним необходимо иметь две переменные типа указатель, первая из которых определяет вершину стека, а вторая - вспомогательная. Пусть описание этих переменных имеет вид:

var pTop, pAux: Pointer;

где pTop - указатель вершины стека;

pAux - вспомогательный указатель.

Начальное формирование стека выполняется следующими операторами:

New(pTop);

pTop^.pNext:=NIL;

pTop^.D:=D1;

Последний оператор или группа операторов записывает содержимое поля данных первой компоненты.

Добавление компоненты в стек призводится с использованием вспомогательного указателя:

Добавление последующих компонент производится аналогично.

Рассмотрим процесс выборки компонент из стека. Пусть к моменту начала выборки стек содержит три компоненты:

Первый оператор или группа операторов осуществляет чтение данных из компоненты - вершины стека. Второй оператор изменяет значение указателя вершины стека:

D3:=pTop^.D pTop:=pTop^.pNext;

Как видно из рисунка, при чтении компонента удаляется из стека.

Пример. Составить программу, которая формирует стек, добавляет в него произвольное количество компонент, а затем читает все компоненты

и выводит их на экран дисплея, В качестве данных взять строку символов. Ввод данных - с клавиатуры дисплея, признак конца ввода - строка символов END.

Program STACK;

uses Crt;

type

Alfa= String[10];

PComp= ^Comp;

Comp= Record

sD: Alfa;

pNext: PComp

end;

var

pTop: PComp;

sC: Alfa;

Procedure CreateStack(var pTop: PComp; var sC: Alfa);

begin

New(pTop);

pTop^.pNext:=NIL;

pTop^.sD:=sC

end;

Procedure AddComp(var pTop: PComp; var sC: Alfa);

var pAux: PComp;

begin

NEW(pAux);

pAux^.pNext:=pTop;

pTop:=pAux;

pTop^.sD:=sC

end;

Procedure DelComp(var pTop: PComp; var sC:ALFA);

begin

sC:=pTop^.sD;

pTop:=pTop^.pNext

end;

begin

Clrscr;

writeln(' ВВЕДИ СТРОКУ ');

readln(sC);

CreateStack(pTop,sC);

repeat

writeln(' ВВЕДИ СТРОКУ ');

readln(sC);

AddComp(pTop,sC)

until sC='END';

writeln('ВЫВОД РЕЗУЛЬТАТОВ );

repeat

DelComp(pTop,sC);

writeln(sC);

until pTop = NIL

end.

39. ОЧЕРЕДИ

Очередью называется динамическая структура данных, добавление компоненты в которую производится в один конец, а выборка осуществляется с другого конца. Очередь работает по принципу:

FIFO (First-In, First-Out) -

поступивший первым, обслуживается первым.

Для формирования очереди и работы с ней необходимо иметь три переменные типа указатель, первая из которых определяет начало очереди, вторая - конец очереди, третья - вспомогательная.

Описание компоненты очереди и переменных типа указатель дадим следующим образом:

type

PComp=^Comp;

Comp=record

D:T;

pNext:PComp

end;

var

pBegin, pEnd, pAux: PComp;

где pBegin - указатель начала очереди, pEnd - указатель конца очереди, pAux - вспомогательный указатель.

Тип Т определяет тип данных компоненты очереди.

Начальное формирование очереди выполняется следующими операторами:

Добавление компоненты в очередь производится в конец очереди:

New(pAux);

pAux^.pNext:=NIL;

Добавление последующих компонент производится аналогично.

Выборка компоненты из очереди осуществляется из начала очереди,одновременно компонента исключается из очереди. Пусть в памяти ЭВМ сформирована очередь, состоящая из трех элементов:

Выборка компоненты выполняется следующими операторами:

D1:=pBegin^.D;

pBegin:=pBegin^.pNext;

Пример. Составить программу, которая формирует очередь, добавляет в нее произвольное количество компонент, а затем читает все компоненты и выводит их на экран дисплея. В качестве данных взять строку сим-

волов. Ввод данных - с клавиатуры дисплея, признак конца ввода - строка символов END.

Program QUEUE;

uses Crt;

type

Alfa= String[10];

PComp= ^Comp;

Comp= record

sD:Alfa;

pNext:PComp

end;

var

pBegin, pEnd: PComp;

sC: Alfa;

Procedure CreateQueue(var pBegin,pEnd: PComp; var sC: Alfa);

begin

New(pBegin);

pBegin^.pNext:=NIL;

pBegin^.sD:=sC;

pEnd:=pBegin

end;

Procedure AddQueue(var pEnd:PComp; var sC:Alfa);

var pAux: PComp;

begin

New(pAux);

pAux^.pNext:=NIL;

pEnd^.pNext:=pAux;

pEnd:=pAux;

pEnd^.sD:=sC

end;

Procedure DelQueue(var pBegin: PComp; var sC: Alfa);

begin

sC:=pBegin^.sD;

pBegin:=pBegin^.pNext

end;

begin

Clrscr;

writeln(' ВВЕДИ СТРОКУ ');

readln(sC);

CreateQueue(pBegin,pEnd,sC);

repeat

writeln(' ВВЕДИ СТРОКУ ');

readln(sC);

AddQueue(pEnd,sC)

until sC='END';

writeln(' ***** ВЫВОД РЕЗУЛЬТАТОВ *****');

repeat

DelQueue(pBegin,sC);

writeln(sC);

until pBegin=NIL

end.

40. ЛИНЕЙНЫЕ СПИСКИ

В стеки или очереди компоненты можно добавлять только в какой - либо один конец структуры данных, это относится и к извлечению компонент.

Связный (линейный) список является структурой данных, в произвольно выбранное место которого могут включаться данные, а также изыматься оттуда.

Каждая компонента списка определяется ключом. Обычно ключ - либо число, либо строка символов. Ключ располагается в поле данных компоненты, он может занимать как отдельное поле записи, так и быть частью поля записи.

Основные отличия связного списка от стека и очереди следующие:

-для чтения доступна любая компонента списка;

-новые компоненты можно добавлять в любое место списка;

-при чтении компонента не удаляется из списка.

Над списками выполняются следующие операции:

-начальное формирование списка (запись первой компоненты);

-добавление компоненты в конец списка;

-чтение компоненты с заданным ключом;

-вставка компоненты в заданное место списка (обычно после компоненты с заданным ключом);

-исключение компоненты с заданным ключом из списка.

Для формирования списка и работы с ним необходимо иметь пять переменных типа указатель, первая из которых определяет начало списка, вторая - конец списка, остальные- вспомогательные.

Описание компоненты списка и переменных типа указатель дадим следующим образом:

type

PComp= ^Comp;

Comp= record

D:T;

pNext:PComp

end;

var

pBegin, pEnd, pCKey, pPreComp, pAux: PComp;

где pBegin - указатель начала списка, pEnd - указатель конца списка,pCKey, pPreComp, pAux - вспомогательные указатели.

Начальное формирование списка, добавление компонент в конец списка выполняется так же, как и при формировании очереди.

Для чтения и вставки компоненты по ключу необходимо выполнить поиск компоненты с заданным ключом:

pCKey:=pBegin;

while (pCKey<>NIL) and (Key<>pCKey^.D) DO

pCKey:=pCKey^.pNext;

Здесь Key - ключ, тип которого совпадает с типом данных компоненты.

После выполнения этих операторов указатель pСKey будет определять компоненту с заданным ключом или такая компонента не будет найдена.

Пусть pCKey определяет компоненту с заданным ключом. Вставка новой компоненты выполняется следующими операторами:

New(pAux);

pAux^.D:= DK1;

‹ pCKey

ҐҐҐ”

pBegin pEnd

pAux

pAux^.pNext:=pCKey^.pNext;

pCKey^.pNext:=pAux;

Для удаления компоненты с заданным ключом необходимо при поиске нужной компоненты помнить адрес предшествующей:

pCKey:=pBegin;

while (pCKey<>NIL) and (Key<>pCKey^.D) do

begin

pPreComp:=pCKey;

pCKey:=pCKey^.pNext

end;

Здесь указатель pCKey определяет компоненту с заданным ключом, указатель pPreComp содержит адрес предидущей компоненты.

Удаление компоненты с ключом Key выполняется оператором:

pPreComp^.pNext:=pCKey^.pNext;


Подобные документы

  • Элементы языка Object Pascal: идентификаторы, константы, переменные, выражения. Структура проекта Delphi. Операторы и метки. Типы данных языка OPascal. Статические и динамические массивы. Записи с вариантными полями. Совместимость и преобразование типов.

    курс лекций [385,4 K], добавлен 18.02.2012

  • Характеристика и основные особенности языка Pascal. Создание числового массива с использованием встроенной функции. Использование записей, массивов и файлов. Обработка и графическая визуализация данных средствами табличного процессора и пакета MathCAD.

    курсовая работа [1,0 M], добавлен 22.08.2012

  • Лингвистическая концепция языка Паскаль. Интегрированная инструментальная оболочка. Основы построения программ на ТП 7.0. Алфавит языка и специфика использования символов. Простые типы данных: константы и переменные. Циклические конструкции и операции.

    курсовая работа [284,6 K], добавлен 02.07.2011

  • Понятие и общая характеристика языка программирования РНР, принципы и этапы его работы, синтаксис и ассоциируемые массивы. Обработка исключений в языке Java. Работа с базами данных с помощью JDBC. Изучение порядка разработки графического интерфейса.

    презентация [192,3 K], добавлен 13.06.2014

  • История создания и применение языка Basic. Стандартные математические и строковые функции. Операции и выражения языка. Блоки данных и подпрограммы. Операторы управления, цикла, ввода-вывода и преобразования информации. Константы, переменные, массивы.

    контрольная работа [2,3 M], добавлен 04.05.2015

  • Понятие и история развития языка Turbo Pascal, оценка его графических возможностей и особенностей. Инициализация графического режима. Управление экраном и окнами, цветом и фоном, принципы работы с текстом. Построение графиков функций и изображений.

    курсовая работа [159,9 K], добавлен 17.12.2014

  • Символьный тип данных как составляющая языка программирования: управляющие символы, лексемы и разделители. Разработка программного обеспечения для практической реализации решения задач, содержащих символьные величины языка программирования Turbo Pascal.

    курсовая работа [37,7 K], добавлен 03.05.2012

  • Взаимосвязь стадий процесса проектирования сложных программных систем. Создание компилятора подмножества языка высокого уровня (Pascal) на язык Ассемблера. Структура входных и выходных данных, алгоритмы их обработки. Рабочая документация программы.

    курсовая работа [256,7 K], добавлен 27.07.2014

  • Переменные и операции языка СИ: используемые символы, константы, идентификаторы и ключевые слова. Использование комментариев в тексте программы. Типы данных и их объявление. Приоритеты операций и порядок вычислений. Функции, переменные, макроподстановки.

    учебное пособие [135,0 K], добавлен 17.02.2012

  • Изучение текстового режима языка программирования Turbo Pascal. Написание игры "Змейка" с помощью средств, процедур и функций языка программирование Turbo Pascal. Структурное и функциональное описание разработки. Листинг и общие примеры работы программы.

    контрольная работа [286,3 K], добавлен 10.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.