Системы электроснабжения промышленных предприятий
Расчёт электрических нагрузок по производственному цеху. Выбор количества и мощности трансформаторов цеховых подстанций. Расчет напряжения электроснабжения и компенсации мощности. Потери в силовых трансформаторах. Расчёт токов короткого замыкания.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.01.2020 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При токах 3000А применяются одно- и двухполосные шины. Выбор шин производится по нагреву.
В расчете примем однополосные шины, так как
Условия выбора:
(13.52)
где - допустимый ток на шины выбранного сечения, А
Рассчитываем токи:
(13.42)
(13.53)
Принимаем к установке однополосные алюминиевые шины с размерами (80х6) мм с допустимым током 1150 А.
Определяем расчётные токи продолжительных режимов:
(13.54)
Для неизолированных проводов и окрашенных шин принимаем
= 700 С; = 250 С; тогда:
(13.55)
Условие выполняется: , следовательно шины проходят по допустимому нагреву.
Проверку шин на термическую стойкость производим согласно условию:
(13.56)
где - минимальное сечение шины по термической стойкости.
- выбранное сечение.
Сечение проводника, отвечающее его термической стойкости определяем по формуле:
(13.57)
Где - полный импульс квадратичного тока КЗ.
Находим расчетное сечение:
(13.58)
,
Условие соблюдается, следовательно сечение шины выбрано правильно и проходит по термической стойкости.
Момент инерции:
(13.59)
Механический расчет однополосных шин.
Определяем наибольшее удельное усилие при токе КЗ:
(13.60)
- расстояние между фазами равно 0,25м.
Равномерно распределенная сила создает изгибающий момент:
(13.61)
где - длина пролета между опорными изоляторами шинной конструкции равна 1м.
Напряжение в материале шины, возникающее при воздействии изгибающего момента:
(13.62)
где - момент сопротивления шины.
Момент сопротивления шин при установке их вертикально:
(13.63)
Шины механически прочны, если соблюдается условие:
(13.64)
Условие механической прочности выполнено.
К установке принимаем алюминиевые шины прямоугольного сечения (80Ч6) с длительно допустимым током 1150 А.
12.3 Выбор проводниковой продукции и аппаратуры на стороне 0,4 кВ
Выбор автоматических выключателей
Выбор автоматических выключателей производится по трём условиям:
Uн ? Uуст; Iтр ? 1,15*Iнэ; (13.65) Iэр ? 1,25*Iпуск; (13.66)
где Iтр - ток теплового расцепителя автоматического выключателя;
Iэр - ток электромагнитного расцепителя автоматического выключателя;
Iнэ - номинальный ток электроприёмника;
Iпуск - пусковой ток электроприёмника.
(13.67)
Iпуск = Кп·Iнэ, (13.68)
где Кп - коэффициент пуска
Выбор магнитных пускателей
Магнитные пускатели предназначены для частых пусков и дистанционного включения. Защищает от исчезновения и чрезмерного снижения напряжения, а также от перегрузки при наличии теплового реле.
Выбор магнитных пускателей производится по току защитного элемента, по назначению и исполнению по степени защиты.
Выбор проводниковой продукции
Выбор проводниковой продукции производится по трём условиям:
Uн ? Uуст;
Iдоп ? ; (13.69)
Iдоп ? ; (13.70)
где Iз - ток защитного аппарата, для автомата - ток теплового расцепителя.
Кз - коэффициент, учитывающий требует ли сеть защиты от прегрузки.
Рассматриваем ШР - 1
Горизонтально-расточный станок
=
Iпуск = 7·29,6 = 207 А
Iтр ? 1,15·29,6 = 34,1А
Iэр? 1,25·207= 258,8А
Выбираем выключатель:
ВА13-29 Iтр=63А, Iэр=300А
Выбираем магнитный пускатель:
ПМЛ-323 Iн = 40А, реверсивный с тепловым реле, IP54 с кнопками «пуск» и «стоп».
Тепловое реле РТЛ-80 Iн = 80А, пределы регулирования срабатывания 30-40А, максимальный ток продолжительности режима 40А.
Выбор проводниковой продукции
Так как сеть требует защиты от перегрузки, то проводники выбираем по следующему условию:
(13.71)
Кз =1,15. Температуру в помещении примем равной 20 градусов. Прокладка проводников будет проводиться открыто в трубах во избежание механических повреждений.
(13.72)
Кn=0,8 - Расстояние в свету 100мм. (13,табл. 1.3.26)
Кt=1,07 При нормированной температуре жил 60С (13,табл. 1.3.3)
Так как все приемники с ПВ=100%, то Кпв=1
Выбираем АПВ 1(3х35). Iдоп = 95А.
От РУ 0,4кВ к РП:
(13.73)
(ПУЭ 1.3.3)
Выбираем АВВГ 1(3х70+3х50). Iдоп = 140А.
Выбор остальных элементов производится аналогично.
Результаты расчета сведены в таблицу 10.9.
Результаты расчёта и выбора заносим в таблицу 13.3.1
Таблица 12.3.1 Выбор проводниковой продукции и аппаратуры на ШР1
№ |
Наименование |
Pн |
Кп |
Iн.д. |
Iпуск |
Iт.р. |
Тип |
Iт.р. |
Тип М.П. |
Тип |
Iн.э. |
Марка |
Iдоп. |
|
оборудования |
КПД |
Cosц |
Iэ.р. |
автомата |
Iэ.р. |
реле |
провода |
|||||||
сечение |
||||||||||||||
1 |
Горизонтально-расточный станок |
10,5 |
7 |
29,6 |
207 |
34,1 |
ВА 13-29 |
63 |
ПМЛ-323 |
РТЛ-80 |
30-40 |
АПВ |
95 |
|
0,9 |
0,6 |
258,8 |
300 |
40 |
3(1х35) |
|||||||||
2 |
Краны консольные поворотные |
3,25 |
7 |
11,1 |
77,7 |
12,8 |
ВА 13-25 |
16 |
ПМЛ-223 |
РТЛ-25 |
9,5-14 |
АПВ |
22 |
|
0,89 |
0,6 |
97,1 |
112 |
14 |
3(1х3) |
|||||||||
3 |
Агрегатно-расточный станок |
14 |
7 |
39,4 |
276 |
45,31 |
ВА 13-29 |
63 |
ПМЛ-323 |
РТЛ-80 |
30-40 |
АПВ |
95 |
|
0,9 |
0,6 |
345 |
378 |
40 |
3(1х35) |
|||||||||
4 |
Токарно-шлифовальный станок |
11 |
7 |
28,6 |
200,2 |
32,9 |
ВА 13-25 |
63 |
ПМЛ-323 |
РТЛ-80 |
30-40 |
АПВ |
95 |
|
0,9 |
0,6 |
250,3 |
300 |
40 |
3(1х35) |
|||||||||
5 |
Радиально-сверлильный станок |
5,2 |
7 |
14,7 |
102,5 |
16,9 |
ВА 13-25 |
25 |
ПМЛ-223 |
РТЛ-25 |
13-19 |
АПВ |
40 |
|
0,9 |
0,6 |
128,1 |
175 |
19 |
3(1х8) |
|||||||||
6 |
Продольно-фрезерный станок |
33 |
7 |
94,1 |
658,7 |
108,2 |
ВА 51-33 |
125 |
ПМЛ-623 |
РТЛ-200 |
95-125 |
АПВ |
70 |
|
0,89 |
0,6 |
823,4 |
1250 |
125 |
3(1х95) |
Примечание: способ прокладки - в трубе, Кпопр = 1, t=25C, длительный режим работы.
13. Расчёт молниезащиты
Вероятность поражения какого-либо сооружения, не оборудованного молниезащитой, может оцениваться формулой:
1/год (14.1)
Где - ожидаемое количество поражений в год, 1/год, - среднее число поражений в год на единицу площади в данном районе, 1/(м *год), при продолжительности грозовой деятельности 10-80 ч/год эта величина составляет 1/(м *год); а = 35м,b = 24м,h = 8,25м длина, ширина и высота объекта соответственно.
Чтобы быть полностью защищенным объект должен находиться в зоне действия молниеотвода.
Поверхность ограничивающая зону защиты стержневого молниеотвода может быть представлена ломанной линией.
Рис. 13.1
Отрезок ав - часть прямой соединяющий вершину молниеотвода с точкой поверхности земли, удаленной на от оси молниеотвода.
Отрезок вс - часть прямой, соединяющей точку молниеотвода на высоте с точкой поверхности земли удаленной на . Точка находится на высоте .
Радиус защиты на высоте
:
(14.2)
А на высоте :
(14.3)
Зона защиты двумя молниеотводами имеет большие размеры, чем сумма защиты двух одиночных молниеотводов.
Расчетная зона одиночного стержневого молниеотвода высотой представляет собой конус
Рис. 13.2
ОРУ располагаются на большой территории и их приходится защищать несколькими молниеотводами.
Размеры ОРУ: 35х24х8,5.
Предполагаем для защиты ОРУ использовать четыре молниеотвода, располагаемых по углам защищаемой территории.
Задаемся высотой стержня от земли
(14.4)
Радиус защиты на высоте = 5м:
(14.5)
на высоте =16м:
(14.6)
на высоте = 13,3м:
(14.7)
(14.8)
Строим конус образованный молниеотводами.
На высоте равной 8,5м радиус защиты будет равен:
(14.9)
Как видно из нижеприведенного рисунка площадь перекрываемая молниеотводами, где вероятность поражения сведена к минимуму, перекрывает площадь ОРУ.
Заключение
В настоящее время созданы методы расчета и проектирования цеховых сетей, выбора мощности трансформаторов, методика определения электрических нагрузок, выбора напряжений, сечений проводов и жил кабелей. Главной проблемой является создание рациональных систем электроснабжения промышленных предприятий. Созданию таких систем способствует: выбор и применение рационального числа трансформаций; выбор и применение рациональных напряжений, что дает значительную экономию в потерях электрической энергии; правильный выбор места размещения цеховых и главных распределительных и понизительных подстанций, что обеспечивает минимальные годовые приведенные затраты; дальнейшее совершенствование методики определения электрических нагрузок. Проведение расчета молниезащиты обеспечивает необходимую защиту электротехнического персонала при аварийных ситуациях.
Рациональный выбор числа и мощности трансформаторов, а также схем электроснабжения и их параметров ведет к сокращению потерь электроэнергии, повышению надежности и способствует осуществлению общей задачи оптимизации построения систем электроснабжения. Общая задача оптимизации систем внутризаводского электроснабжения включает рациональные решения по выбору сечений проводов и жил кабелей, способов компенсации реактивной мощности, автоматизации и диспетчеризации и другие технические и экономические решения в системах электроснабжения.
Список литературы
1. Справочник по проектированию электроснабжения /Под редакцией Ю.Г.Барыбина -М:Энергоатомиздат 1990-576 с
2. Федоров А.А, Каменева В.В. Основы электроснабжения промышленных предприятий: Учебник для вузов -М: Энергия, 1979-408 с
3. Федоров А.А, Старкова Л.Е.Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий -М:Энергоатомиздат, 1987.
4. Кудрин Б.И., Прокопчик В.В. Электроснабжение промышленных предприятий. Учебное пособие для вузов. Минск: Высшая школа, 1988 - 357 с
5. Справочник по электроснабжению промышленных предприятий: Электрооборудование и автоматизация. Под редакцией А.А.Федорова и др. -М:Энергоиздат, 1981
6. Справочник по электроснабжению промышленных предприятий: Промышленные электрические сети. Под редакцией А.А.Федорова - М:Энергия, 1980
7. Справочник по электроснабжению промышленных предприятий. Под редакцией А.А.Федорова в 2-х книгах. М.Энергия, 1973
8. Электротехнический справочник в 3-х томах. Том 3 кн.1. Под общей редакцией профессоров МЭИ-М:Энергоатомиздат 1988
9. Электротехнический справочник Том 2. Под редакцией П.Г.Грудинского и др. М:Энергия 1975
10. Указания по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий, М:Тяжпромэлектропроект 1984.
11. «Электрооборудование станций и подстанций» Рожкова Л.Д., Козулин В.С., М. Энергоатомиздат, 1987.
12. Методические указания по проектированию СЭС
13. Правила устройства электроустановок
Размещено на Allbest.ru
Подобные документы
Определение электрических нагрузок от силовых электроприёмников. Выбор количества и мощности трансформаторов цеховых подстанций. Выбор напряжения и схемы электроснабжения. Расчёт токов короткого замыкания. Выбор и проверка оборудования и кабелей.
курсовая работа [817,1 K], добавлен 18.06.2009Расчёт нагрузок напряжений. Расчет картограммы нагрузок. Определение центра нагрузок. Компенсация реактивной мощности. Выбор числа и мощности трансформаторов цеховых подстанций. Варианты электроснабжения завода. Расчёт токов короткого замыкания.
дипломная работа [840,8 K], добавлен 08.06.2015Определение электрических нагрузок, выбор цеховых трансформаторов и компенсации реактивной мощности. Выбор условного центра электрических нагрузок предприятия, разработка схемы электроснабжения на напряжение выше 1 кВ. Расчет токов короткого замыкания.
курсовая работа [304,6 K], добавлен 23.03.2013Расчет трехфазных электрических нагрузок 0.4 кВ. Выбор числа и мощности цехового трансформатора с учётом компенсации реактивной мощности. Защита цеховых электрических сетей. Выбор кабелей и кабельных перемычек, силовых пунктов, токов короткого замыкания.
курсовая работа [2,7 M], добавлен 02.06.2015Расчет электрических нагрузок систем электроснабжения. Нагрузка группы цехов. Обоснование числа, типа и мощности трансформаторных подстанций. Расчет токов короткого замыкания. Выбор токопроводов, изоляторов и средств компенсации реактивной мощности.
дипломная работа [3,0 M], добавлен 06.04.2014Выбор напряжения для силовой и осветительной сети. Расчёт освещения цеха. Определение электрических нагрузок силовых электроприёмников. Выбор мощности и числа цеховых трансформаторных подстанций, компенсирующих устройств. Расчёт токов короткого замыкания.
курсовая работа [736,3 K], добавлен 14.11.2012Расчет электрических нагрузок. Компенсация реактивной мощности. Выбор места, числа и мощности трансформаторов цеховых подстанций. Выбор схемы распределения энергии по заводу. Расчет токов короткого замыкания. Релейная защита, автоматика, измерения и учет.
курсовая работа [704,4 K], добавлен 08.06.2015Расчет электрических нагрузок промышленного предприятия. Выбор числа, мощности и типа трансформаторов цеховых трансформаторных подстанций предприятия. Технико-экономическое обоснование схемы внешнего электроснабжения. Расчет токов короткого замыкания.
дипломная работа [1,2 M], добавлен 13.03.2010Определение электрических нагрузок предприятия. Выбор цеховых трансформаторов и расчет компенсации реактивной мощности. Разработка схемы электроснабжения предприятия и расчет распределительной сети напряжением выше 1 кВ. Расчет токов короткого замыкания.
дипломная работа [2,4 M], добавлен 21.11.2016Определение электрических нагрузок предприятия. Выбор числа и мощности силовых трансформаторов; рационального напряжения внешнего электроснабжения. Расчет трехфазных токов короткого замыкания; издержек на амортизацию, обслуживание и потери электроэнергии.
курсовая работа [877,4 K], добавлен 21.05.2014