Разработка автоматизированного электропривода центрифуги
Расчет статических нагрузок центрифуги периодического действия. Двигатели, применяемые в электроприводе. Определение структуры настроек регулятора. Расчет динамических моментов и построение упрощенной нагрузочной и скоростной диаграммы электропривода.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | немецкий |
Дата добавления | 19.12.2018 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Возможность подключения к компьютеру через интерфейс RS485
Простота установки и подключения
Простая настройка через цифровую панель
Ограничения пускового тока заданным уровнем
Режим толчкового пуска
Характеристики:
Напряжение питания: 380 В ±20%, 50 Гц
Номинальный ток: 12 ~ 630 А
Мощность управляемого двигателя: 5.5 ~ 400 кВт
Пуск: ограничение пускового тока (1Iн - 4Iн), время плавного пуска (1-60 секунд)
Остановка: свободная остановка, время плавной остановки (1-60 секунд)
Функции защиты: пропадание фазы, перегрузка, короткое замыкание, перегрев.
Выбор и расчет датчика скорости.
В данной системе ЭП скорость вращения ротора двигателя измерялась с помощью тахогенератора. Из электротехнического справочника выбираем тахогенератор АТ-261 со следующими техническими данными:
Частота вращения 3000 обр/мин
Напряжение возбуждения 110В
Ток возбуждения 0,35А
Крутизна Uвых 4,8?5,8 мВмин/обр
Схема датчика представлена на рис.13.
Рис.10.1 Структурная схема датчика скорости
Порядок расчета датчика следующий.
Рассчитывают напряжение на выходе тахогенератора при работе двигателя постоянного тока с частой, равной частоте вращения при идеальном холостом ходе, В:
(10.1)
Рассчитывают делитель напряжения: входное напряжение делителя Uвх=Uтг, В, а выходное напряжение - Uвых=Uз.скор. мах:
(10.2)
где Uз.скор. мах - максимальное напряжение задания скорости в САУ.
Рис.10.2 Датчик скорости на основе тахогенератора
Выбирают из справочника резисторы, а затем уточняют значение выходного напряжения датчика скорости по формуле
(10.3)
Рассчитаем напряжения:
Входное напряжение делителя
,
Выбираем из справочника резисторы МЛТ-0.1-3.6Ом и МЛТ-0.1-2.7Ом.
Принципы построения систем управления автономным» инверторами. Системы управления преобразователями частоты с промежуточным звеном постоянного тока в большинстве случаев содержат систему управления выпрямителем, систему управления автономным инвертором и блок регулирования, осуществляющий регулирование частоты и напряжения в соответствии с принятыми законами частотного регулированиях[1].
Системы управления выпрямителями выполняются по тем же схемам, что и соответствующие системы для управляемых выпрямителей . Системы управления автономными инверторами, как правило, соответствуют структурной схеме, приведенной на рис. 10.3, и содержат задающий генератор U, распределитель импульсов UA и усилители-формирователи управляющих импульсов AD.
Рисунок.10.3 Структурная схема системы управления автономным инвертором
В нестоящее время наиболее перспективными являются системы управления, выполненные на базе интегральных микросхем. При этом удается ие только резко сократить габариты системы, но и существенно упростить технологию сборки и наладки схем, а также повысить их надежность. Поэтому рассмотренные ниже примеры практической реализации различных блоков системы управления предполагают использование современных интегральных микросхем.
Элемент U преобразует напряжения управления, снимаемые с выхода блока регулировании (или непосредственно с выхода
Рис. 10.4 Схема задающего генератора компарата, если блок регулирования отсутствует), в частоту следования управляющих импульсов
Частота выходных импульсов U однозначно определяет частоту выходного напряжения преобразователя. На рис. 10.4 показан пример выполнения схемы U. В схеме используется операционный усилитель А, работающий в режиме интегрирования управляющего напряжения, и триггер Шмидта D, который срабатывает, когда напряжение на выходе А достигнет порогового значения. После срабатывания D на вход А через резистор подается напряжение обратной полярности по отношению к напряжению управления, что приводит к быстрому разряду конденсатора. В связи с этим А возвращается в исходное положение и цикл работы повторяется. Если пренебречь временем разряда конденсатора по сравнению с временем его заряда, то частоту U можно определить по следующей формуле
где UD-напряжение переключения D.
На выходе U формируются положительные импульсы, длительность которых равна .времени разряда конденсатора.
Распределитель импульсов UA предназначен для преобразования однофазных импульсов U в шестифазную систему импульсов, необходимую для управления тиристорами мостового инвертора. Кроме того, с помощью UA обеспечивается постоянная относительная длительность импульсов независимо от рабочей частоты (чаще всего для управления тиристорами мостового инвертора используются импульсы шириной 120 °). и А выполняется, как правило, по кольцевой пересчетной схеме, которая распределяет импульсы U по шести каналам. При этом частота импульсов U должна быть в 6 раз выше частоты выходных импульсов UА или, что то же самое, частоты выходного напряжения инвертора. Одна из возможных схем UA приведена на рис.10.5, а. Она содержит трн J-K триггера (D1-D3) и шесть элементов И-НЕ (D4-D9). На синхронизирующие входы триггеров приходят одновременно выходные импульсы U. Наличие перекрестных связей с выходов на входы триггеров приводит к тому, что триггеры переключаются поочередно с приходом запускающего импульса от U.
Рисунок. 10.5 Схема распределителя импульсов (а) и диаграмма напряжений (б)
Диаграмма напряжений на прямых и инвертирующих выходах триггеров показана на рис. 10.5,б. С помощью D4-D9 формируются импульсы длительностью 120°.В качестве элементов И-НЕ (D4-D9) желательно выбирать элементы с повышенной нагрузочной способностью с тем, чтобы их выходные импульсы можно было непосредственно подавать на входы усилителей-формирователей без какого-либо промежуточного усиления. Усилители-формирователи AD управляющих импульсов предназначены для усиления по мощности выходных импульсов UА их потенциального разделения, что необходимо для управления тиристорами мостового инвертора. Поэтому AD кроме ключевых транзисторов содержат, как правило, импульсные трансформаторы. С целью уменьшения габаритов импульсных трансформаторов для обеспечения возможности формирования широких управляющих импульсов.
Расчет тиристоров.
Среднее значение выпрямленного напряжения:
.
где - значение выпрямленного напряжения при угле управления ?=0;
- коэффициент схемы по ЭДС.
Ud=Ud0=2,34•220=514.8В.
Номинальный ток двигателя Iф,н=56.12А.
Среднее и действующее значения и тока через тиристор, А:
Необходимо, чтобы выполнялось соотношение:
;
где - коэффициент, учитывающий отклонение условий работы вентиля от номинальных.
Значения принимают из меньших значений, если условия работы выпрямителя лучше.
- коэффициент, запаса по току в рабочем режиме.
.
Максимально допустимое напряжение, прикладываемое к вентилю в схеме преобразователя не должно превышать допустимого значения повторяющегося импульсного напряжения, определяющего класс вентиля по напряжению:
;
где - коэффициент запаса по напряжению;
- коэффициент, учитывающий повышение напряжения сети;
- максимальное значение напряжения на вентиле.
Для трех фазной мостовой схемы выпрямления :
kз.и •kс •Uобр.м=1,3•1,1•930,806=1331В.
С учетом перегрузочной способности из справочника выбираем тиристоры Т131-40 со следующими параметрами:
Расчет и выбор силовых полупроводниковых приборов выпрямителя
Номинальный ток двигателя Iф,н=56.12А.
а) среднее значение тока вентиля
б.) действующее значение тока вентиля
в.) коэффициент формы тока
г.) условие выбора диодов по току
где: Кzo - коэффициент запаса по охлаждению, Кzo=0,9;
Кzpi - коэффициент запаса по рабочему току, Kzpi=1,3;
Ifav - максимально допустимый средний ток при заданных условиях,
Ifav = Ia = 37.4
Ifavmax - максимально допустимый средний ток;
д) максимальное напряжение на вентиле
Uвmax=Кео Кс Кр Еdo
где Кео - кратность напряжений, для трехфазной мостовой схемы
Кео=1,045;
Кс - коэффициент схемы, для трехфазной мостовой схемы Кс=1,1;
Кр - кратность мощностей, для трехфазной мостовой схемы Кр=1,05;
Еdo - выпрямленная ЭДС;
где Ке - кратность напряжений, для трехфазной мостовой схемы Ке=0,427;
Ufc - напряжение фазное сети, Ufc=220 В;
,
.
Выбираем диод 2Д230Ж
Iпр.ср.мах = 60 А;
Uобр. и пр.мах = 800 В.
Выбор элементной базы регуляторов и задатчика интенсивности.
Задатчик интенсивности и регуляторы построены на ОУ типа К140УД7 со следующими параметрами:
Коэффициент усиления: 50000.
Коэффициент ослабления синфазного сигнала: 70дб.
Напряжение смещения: 4мВ.
Напряжение питания: от 5 до 20В.
Потребляемый ток: 3мА.
Все сопротивления выбираем типа МЛТ-0,125 с номиналами, рассчитанными для соответствующих схем.
Конденсаторы выбираем типа К10-17-25В с соответствующими рассчитанными номиналами.
Датчик тока.
В системах автоматического управления электроприводом сигналы, пропорциоанальные току, снимаются с шунтов, трансформаторов тока. Эти сигналы используются как в чистом виде, так и преобразованные для выделения сигналов, соответствующих ЭДС, мощности, потоку и т.д.
Основными проблемами при создании датчиков тока и напряжения являются проблемы гальванического разделения силовых цепей и цепей управления, проблемы обеспечения высокого быстродействия и точности.
Устройства потенциальной развязки бывают двух типов:
трансформаторные, типа модулятор - демодулятор;
оптоэлектронные с модуляцией светового потока и линейные.
В нашей системе управления электроприводом сигналы тока, снимаются с помощью трансформаторов тока ТЛ-10 в нагрузку которых включено сопротивление МЛТ-0,125-1.2Ом. Далее эти сигналы поступают на неуправляемый трехфазный выпрямитель, где преобразуются в пропорциональный току сигнал напряжения. Далее сигнал поступает на блок гальванической развязки, реализованный на оптроне.
Номиналы на регуляторах задаются исходя из их настроек. Все ОУ применяемые в схеме регулирования марки LM101A
Поз.обозначение |
Наименование |
Кол-во |
Примечание |
|
VD1 - VD6, VD7, VD10,VD11, VD14, VD15, VD18 |
Тиристор 131-40 |
18 |
||
Резистор |
||||
R1 |
МЛТ-0,125-100KОм |
1 |
||
R2=R3 |
МЛТ-0,125-220KОм |
2 |
||
R4 |
МЛТ-0,125-1МОм |
1 |
||
R6-R8 |
МЛТ-0,125-1Ом |
3 |
||
R9 |
МЛТ-0,125-36кОм |
1 |
||
R10 |
МЛТ-0,125-1кОм |
1 |
||
R12 |
МЛТ-0,125-1кОм |
1 |
||
R13 |
МЛТ-0,125-0.36МОм |
1 |
||
R14 |
МЛТ-0,125-0.36МОм |
1 |
||
R15 |
МЛТ-0,125-180 KОм |
1 |
||
R16-R17 |
МЛТ-0,125-220KОм |
3 |
||
R18 |
МЛТ-0,125-200KОм |
1 |
||
R19 |
МЛТ-0,125-100KОм |
1 |
||
R20 |
МЛТ-0,125-150кОм |
1 |
||
R21 |
МЛТ-0,125-100кОм |
1 |
||
R23-R24 |
МЛТ-0,125-1МОм |
2 |
||
Конденсатор |
||||
С1 |
К10-17-25В-10нФ |
1 |
||
С2-C7 |
К10-17-25В-0.1нФ |
6 |
||
С8 |
К10-17-25В-1мкФ |
1 |
||
С9 |
К10-17-25В-0.1нФ |
1 |
||
С10 |
К10-17-25В-100нФ |
1 |
||
С11 |
К10-17-25В-10мкФ |
1 |
||
С12 |
К10-17-25В-1мкФ |
1 |
||
С13 |
К10-17-25В-330мкФ |
1 |
||
С14 |
К10-17-25В-430нФ |
1 |
||
VD8-VD9-VD12 VD13-VD16- VD17 |
2Д230Ж |
1 |
||
Операционный усилитель |
||||
DA1.1-1.6 |
LM101A |
6 |
Заключение
Целью данного курсового проекта являлась разработка автоматизированного электропривода центрифуги. Исходя из требуемых данных, была рассчитана мощность двигателя. Для обеспечения требуемого технологического режима была синтезирована система управления электродвигателем. Данная система является системой векторного управления. Для неё были рассчитаны параметры регуляторов. Система была промоделирована в Simulink пакета Matlab6.5. В процессе моделирования мы выяснили, что рассчитанная система удовлетворяет заданным требованиям.
При выполнении курсового проекта использовались пакеты Matlab6.5, MathCAD 13.
Список используемой литературы
1. Справочник по автоматизированному электроприводу//Под редакцией Елисеева В.А., Шинянского А.В. -М.; «ЭНЕРГОАТОМИЗДАТ»,1983г. «Химия»,1978г.
2. Иванов Г.М., Онищенко Г.Б. Автоматизированный электропривод в химической промышленности. -М.; «МАШИНОСТРОЕНИЕ»,1975г.
3. Анхимюк В.Л., Опейко О.Ф. Теория автоматического управления -Мн.; «Дизайн ПРО»,2002г.
4. Коновалов Л.И., Петелин Д.П. - Элементы и системы автоматики. - М.; «Высшая школа», 1985г.
5. Сабинин Ю.А. ,В.А. Грузов. - Частотоно - регулируемые асинхронные электроприводы. - Л., «ЭНЕРГОИЗДАТ», 1985г.
6. Фираго Б.И., Павлячик Л.Б. - Теория электропривода. - М., «Техноперспектива», 2004г.
Приложение I
clc,clear,clf
mm=2; mp=1.4; mi=7;
snom=0.02;
n0=1500; nnom=n0-n0*snom; fnom=50;
Pnom=30000; KPDnom=0.91; cos_fi_nom=0.81;
w0=pi*n0/30; wnom=pi*nnom/30; Unom=220;
Mnom=Pnom/wnom;
Jep=2.44;
A1=(mm-1)*mp/(mm-mp);
sk=(snom+sqrt(snom*A1))/(1+sqrt(snom*A1));
Ks=(mp/mm*(1/sk+sk)-2)/(1-sk^2);
I_1nom=Pnom/(3*Unom*KPDnom*cos_fi_nom);
I_puska=mi*I_1nom;
Zk=Unom/I_puska;
M_puska=mp*Mnom;
k1=90*Unom^2/(pi*n0);
R22=M_puska*Zk^2/k1;
j=0.3;
cos_fi_puska=cos_fi_nom*(mp*KPDnom/(mi*(1-snom))+j*(1-KPDnom));
sin_fi_puska=sqrt(1-cos_fi_puska^2);
R1=Zk*cos_fi_puska-R22;
Xk=Zk*sin_fi_puska;
X22=Xk/2;
X1=X22;
sin_fi_nom=sqrt(1-cos_fi_nom^2);
I0=I_1nom*(sin_fi_nom-snom/sk*cos_fi_nom);
I22=Unom/sqrt((R1+R22/snom)^2+(R22/sk)^2);
Xm=sin_fi_nom*Unom/I0-X1;
w=0:1:4*w0;
v=w/w0;
s=1-v;
K1=Mnom*mm;
q=[1798 946 4600]
K2=2;
K3=(s./sk+sk./s);
M=K1.*K2./K3;
w00=[18.84 129.8 7.33];
%f=[12 82 5];
%a=f/fnom;
a=[0.24 1.64 0.1]
s1=a(1)-v;
K2a=2;
K1=q(1);
K3a=(s1./sk+sk./s1);
M1=K1.*K2a./K3a;
s1=a(2)-v;
K2a=2;
K1=q(2);
K3a=(s1./sk+sk./s1);
M2=K1.*K2a./K3a;
s1=a(3)-v;
K2a=2;
K1=q(3);
K3a=(s1./sk+sk./s1);
M3=K1.*K2a./K3a;
S=0.0166;
s=0.008;
I3=sqrt(((I_1nom^2-I0^2)*Mnom*S)/(Mnom*s)+I0^2);
vk=R22/(X22+Xm);
Ie=sqrt(2/3)*I3;
Mk=-2*(3*Ie^2*Xm^2)/(2*w0*(X22+Xm));
M4=2.*Mk./(v./vk+vk./v);
%figure(1)
plot(M1,v,'k',M2,v,'k',M3,v,'k',M,v,'k'),grid on
axis([-40 5000 0 2])
xlabel('M , H*m');
ylabel('s , %')
figure(2)
plot(M4,w,'k'),grid on
axis([-500 4 0 200])
xlabel('M , H*m');
ylabel('w , rad/s')
Приложении II
clc,clear
format compact
mm=2.2; mp=1.4; mi=7; snom=0.02;
n0=1500; nnom=n0-n0*snom; fnom=50;
Pnom=30000; Unom=220; KPDnom=0.91; cos_fi_nom=0.89;
w0=pi*n0/30
wnom=pi*nnom/30
Mnom=Pnom/wnom
U_l_nom=sqrt(3)*Unom
Jep=2.44;
p=4
A1=(mm-1)*mp/(mm-mp)
sk=(snom+sqrt(snom*A1))/(1+sqrt(snom*A1))
Ks=(mp/mm*(1/sk+sk)-2)/(1-sk^2)
M_dv_max=0.9^2*mm*Mnom
M_dv_puska=0.9^2*mp*Mnom
Mmax=Mnom*mm
I_1nom=Pnom/(3*Unom*KPDnom*cos_fi_nom)
I_puska=mi*I_1nom
Zk=Unom/I_puska
M_puska=mp*Mnom
k1=90*Unom^2/(pi*n0)
R22=M_puska*Zk^2/k1
j=0.3
cos_fi_puska=cos_fi_nom*(mp*KPDnom/(mi*(1-snom))+j*(1-KPDnom))
sin_fi_puska=sqrt(1-cos_fi_puska^2);
R1=Zk*cos_fi_puska-R22
Xk=Zk*sin_fi_puska
X22=Xk/2
X1=X22
sin_fi_nom=sqrt(1-cos_fi_nom^2)
I0=I_1nom*(sin_fi_nom-snom*cos_fi_nom/sk)
I22=Unom/sqrt((R1+R22/snom)^2+(Xk)^2)
dP0=Pnom*(1-KPDnom)/KPDnom-3*(I_1nom^2*R1+I22^2*R22)-0.0005*Pnom
cos_fi_0=dP0/(sqrt(3)*U_l_nom*I0)
sin_fi_0=sqrt(1-cos_fi_0^2);
Xm=Unom*sin_fi_0/I0-X1
dPst=0.02*Pnom/KPDnom
Rm=dPst/(3*I0^2)
Te=1/(2*pi*fnom*sk)
Tm=Jep*(w0-wnom)/Mnom
b=Mnom/(wnom*snom)
Koc=10/wnom
Kt=10/Mnom
Tn=0.005;
Km1=Mnom/I_1nom
Km2=Mnom/I0
Km3=Mnom/I22
Ku=Unom/wnom
Размещено на Allbest.ru
Подобные документы
Анализ технологического процесса. Предварительный расчет мощности и выбор двигателя, построение нагрузочной диаграммы. Проектирование электрической функциональной схемы электропривода и его наладка. Расчет экономических показателей данного проекта.
дипломная работа [1,5 M], добавлен 17.06.2013Формулирование требований к автоматизированному электроприводу и системе автоматизации. Построение нагрузочной диаграммы механизма. Расчёт параметров и выбор элементов силовой цепи. Проектирование узла системы автоматизированного электропривода.
дипломная работа [1,1 M], добавлен 30.04.2012Расчет мощности двигателя электропривода грузоподъемной машины. Выбор элементов силовой части электропривода. Расчет доводочной скорости. Построение нагрузочной диаграммы и тахограммы работы двигателя. Проверка двигателя по пусковым условиям и теплу.
курсовая работа [251,3 K], добавлен 16.12.2012Выбор структуры энергетического и информационного каналов электропривода и их техническую реализацию. Расчет статических и динамических характеристик и моделирование процессов управления. Разработка электрической схемы электропривода и выбор её элементов.
курсовая работа [545,5 K], добавлен 21.10.2012Расчет и выбор параметров позиционного электропривода, определение статических и динамических параметров силовой цепи. Выбор и описание регуляторов и датчиков. Создание, расчет и исследование системы модального управления с наблюдателем состояния.
дипломная работа [2,0 M], добавлен 07.12.2015Расчет и построение полной диаграммы работы электропривода. Расчет динамического торможения электродвигателя. Определение сопротивлений секций реостата. Расчет времени работы ступеней реостата. Разработка принципиальной схемы автоматического управления.
курсовая работа [599,4 K], добавлен 11.11.2013Характеристика процесса построения нагрузочной диаграммы двигателя без учета динамических моментов. Выбор комплектующих для разработки системы на базе ПЛК компании Delta Electronics. Программируемый логический контроллер, электрическая схема подключения.
контрольная работа [293,4 K], добавлен 11.03.2019Требования, предъявляемые к системе электропривода УЭЦН. Качественный выбор электрооборудования для насосной станции. Расчет мощности электродвигателя и выбор системы электропривода. Анализ динамических процессов в замкнутой системе электропривода.
курсовая работа [369,8 K], добавлен 03.05.2015Расчет циклограмм скоростей, радиуса тамбура картона, угловой скорости, нагрузочной диаграммы механизма. Предварительный выбор двигателя. Синтез и моделирование системы автоматического регулирования электропривода раската продольно-резательного станка.
курсовая работа [1,3 M], добавлен 16.10.2013Построение диаграммы скорости и нагрузочной диаграммы производственного механизма. Расчет механических и электромеханических характеристик для двигательного и тормозного режимов. Схема управления электродвигателем и его проверка по нагреву и перегрузке.
курсовая работа [2,3 M], добавлен 12.09.2014