Нелинейные волны второго звука и акустическая турбулентность в сверхтекучем гелии
Типы нелинейности и особенности распространения волн в сверхтекучем гелии. Анализ процессов формирования бегущих ударных волн второго звука. Разработка методики формирования турбулентных состояний в системе волн второго звука в цилиндрическом резонаторе.
Рубрика | Физика и энергетика |
Вид | автореферат |
Язык | русский |
Дата добавления | 31.10.2018 |
Размер файла | 60,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
3. Были определены границы интенсивности нагрева источника волн второго звука, выше которых происходила интенсивная перекачка энергии не только в тепловые волны, но и в первый звук. Было определено, что высокая интенсивность волны второго звука за счет противотока нормальной и сверхтекучей компонент интенсивно раскачивает вихревую структуру гелия, что резко увеличивает затухание тепловой волны.
4. Впервые наблюдены волны разряжения первого звука в жидком гелии. Было показано, что при малых интенсивностях нагрева источника за счет температурной зависимости плотности гелия тепловое сжатие жидкости рождает волну разряжения первого звука. Экспериментальные значения отношения энергий, передаваемых нагревателем в волны первого и второго звука при таких процессах, хорошо коррелируют с теоретическими оценками.
5. Показано, что при распространении импульсных волн второго звука от точечного источника в трехмерной геометрии в сверхтекучем гелии возможна уникальная ситуация, когда нагреватель рождает сначала импульс нагрева с характерным для нелинейной волны разрывом либо на фронте, либо на хвосте волны, затем значительное время температура волны оставалась постоянной и равной температуре ванны и только затем от нагревателя приходил импульс охлаждения, с противоположным разрывом (либо на хвосте волны, либо на фронте). Были наблюдены N и U волны с разрывами на краях биполярного импульса или по его середине.
6. Была предложена и экспериментально опробована смешанная методика 3-D>1-D, которая позволяет при температурах близких к Tл исследовать биполярный импульс с разрывом посредине (U волны). Для таких импульсов характерно наличие дополнительного механизма поглощения на разрыве из-за встречного движения пиков в волне нагрева и волне охлаждения.
7. Впервые было исследовано поведение нелинейных волн при повышенных давлениях. Показано, что при повышении давления коэффициент нелинейности скорости второго звука меняет знак при более низких температурах, что соответствует теоретическим расчетам. Таким образом, при любых давлениях существует достаточно широкая область температур вблизи Tл, при которых коэффициент нелинейности остается отрицательным.
8. Разработана методика формирования турбулентных состояний в системе волн второго звука в цилиндрическом резонаторе. Развиты способы обработки полученных экспериментальных зависимостей, построения стационарных и динамических турбулентных распределений в частотном и частотно-временном пространстве.
9. Впервые в сверхтекучем гелии было экспериментально моделировано поведение волн Бюргерса (поведение слабо затухающих сильнонелинейных волн в среде с близким к линейному законом дисперсии) и исследована турбулентность волн Бюргерса.
10. Впервые было показано, что использование резонатора волн второго звука в сверхтекучем гелии может создавать сильно нелинейную волну при малом общем тепловом потоке, что позволяет исследовать акустическую турбулентность в частотном континууме с дискретным спектром.
11. Найдено, что при накачке на резонансной частоте в резонаторе с He-II возникает достаточно большое количество кратных гармоник (несколько десятков) , амплитуды которых в достаточно широком частотном интервале (инерционный интервал), описываются зависимостью типа Колмогоровской с дискретным спектром Af~f -m, где показатель степени m для развитых спектров приближается к 1.5, что близко к предсказываемым теоретическим зависимостям для слабой турбулентности.
12. Обнаружено, что для волн второго звука инерционный интервал кратных гармоник сменяется областью, где доминируют диссипативное процессы, которые достаточно хорошо описываются экспоненциальным затуханием. Граничная частота инерционного интервала пропорциональна интенсивности накачки и амплитуде основной гармоники.
13. Обнаружено возникновение комбинационных частот при накачке резонатора двумя резонансными частотами разной интенсивности приводит к образованию энергетический каскадов с комбинационными частотами. Как показали измерения, при подаче дополнительного слабого сигнала на резонансной частоте в дополнении к интенсивному сигналу более высокой частоты, который формирует прямой энергетический каскад, амплитуды гармоник заметно уменьшаются - происходит подавление прямого каскада за счет перераспределения энергии между добавочными степенями свободы, соответствующими комбинационным частотам.
14. Акустическая турбулентность в сверхтекучем гелии при дискретном спектре обладает свойствами и сильной, и слабой турбулентности, что проявляется в стохастизации фаз высоких кратных гармоник. Связь между фазами основной гармоники на частоте накачки и фазами кратных гармониках, теряется на высших гармониках. Если вырезать из спектра сигнал от первых трех-четырех гармоник, то отфильтрованный сигнал высших гармоник описывается достаточно хорошо гауссианом, характерным для волн со случайной фазой. Перемешивание фаз высших гармоник в резонаторе происходит, по-видимому, из-за их взаимодействия друг с другом.
15. Впервые было показано, что при формировании прямого каскада, после включения сигнала накачки, кратные гармоники в волне Бюргерса в резонаторе ведут себя как слабо взаимодействующие инерционные осцилляторы, амплитуда которых достаточно медленно нарастает со временем.
16. Найдено, что при ступенчатом выключении накачки распад прямого каскада происходит с одновременным уменьшением всех кратных гармоник. При этом наиболее быстро ослабевает амплитуда высших кратных гармоник, подпитка которых энергией уменьшается при выключении накачки и уменьшении потока энергии. При этом высокочастотный край инерционного интервала сдвигается в сторону низких частот. После затухания кратных гармоник в резонаторе наблюдается стоячая волна на частоте основной гармоники. Таким образом, удалось разделить вклады нелинейного взаимодействия волн и вязкого затухания.
17. Впервые обнаружена возможность возникновения обратного волнового каскада одновременно с прямым каскадом, когда наряду с кратными гармониками в резонаторе возбуждаются еще и субгармоники. Поток энергии от источника накачки при формировании субгармоник перераспределяется между прямым и обратным каскадами. Взаимодействие субгармоник с кратными гармониками прямого каскада приводит к возникновению большого количества комбинационных частот. Было наблюдено, что при возникновении обратного каскада амплитуда волн в прямом каскаде уменьшается, т.е. происходит подавление прямого каскада за счет перераспределения потока энергии в прямом каскаде между основными гармониками и дополнительными колебаниями с комбинационными частотами, как и при накачке на двух частотах.
18. Впервые экспериментально было показано, что в процессе формирования обратного каскада в резонаторе возможно рождение единичных низкочастотных волн с амплитудой, сильно превосходящей окружение. Таким образом, показано, что одиночные волны большой амплитуды (”freak waves”) могут возникать и в бездисперсионной среде при акустической турбулентности в конденсированной фазе (в турбулентности Бюргерса), т.е. эксперименты с нелинейными волнами второго звука в сверхтекучем гелии могут быть использованы для выяснения природы формирования одиночных ”freak waves” - «волн убийц».
19. Проведены эксперименты по адиабатическому расширению жидкого гелия для моделирования рождения линейных дефектов (струны во Вселенной - вихри в гелии) при расширении Вселенной при Большом Взрыве. Ударные волны второго звука были использованы для тестирования концентрации вихрей, формирующихся при быстром переходе в сверхтекучее состояние из нормального гелия. Было показано, что образующаяся концентрация вихрей определяется, в основном, не нарушением симметрии волновой функции гелия, а неустойчивостью вихревой структуры в гелии-4 к потокам нормальной и сверхтекучей компонент He-II.
Литература
L1. S. J.,Putterman, Superfluid Hydrodynamics. North Holland Publishing Comp., London, 1974
L2. С.К. Немировский, Нелинейная акустика сверхтекучего гелия, УФН, 160, 6, 51 (1990)
L3. О.В.Руденко, Гигантские нелинейности структурно-неоднородных сред и основы методов нелинейной акустической диагностики. УФН, 176, 1, 77, (2006).
L4. Б.Б.Кадомцев, В.И.Карпман, Нелинейные волны. УФН, 103, 2, 1937 (1971)
L5. С.Н.Гурбатов, Д.И.Саичев, И.Г.Якушкин, Нелинейные волны и одномерная турбулентность в бездиссипативных средах. УФН, 141, 2, 221
L6. H. Davidowitz, Y. Lvov, and V. Steinberg, Amplitude Dependence of the Velocity of Second Sound. Physica D 84, 635 (1995)
L7. Е.М.Лифшиц, Излучение звука в гелий. ЖЭТФ, 14, 116 (1944)
L8. W.F.Vinen, Mutual friction in a heat current in liquid helium-II. Proc. Royal Soc., , 114 (1957); ibid, 242, N1231, 128-143 (1957)
L9. S. Nemirovskii and A. Tsoi, Transient thermal and hydrodynamic processes in superfluid helium, Cryogenics, 29, 10, 985 (1989)
L10. А.Н.Колмогоров, Локальная структура турбулентности в несжимаемой вязкой жидкости при очень больших числах Рейнольдса. ДАН, 30, 299, 1941;
L11. V. E. Zakharov, V. S. L'vov, and G. Fal'kovich, Kolmogorov Spectra of Turbulence, Vol. 1, Springer-Verlag, Berlin, 1992.
L12. Е.А. Кузнецов, Турбулентные спектры, порождаемые сингулярностями. Письма в ЖЭТФ, 80, 2, 92 (2004)
L13. М.Ю.Бражников, Г.В.Колмаков, А.А.Левченко, Л.П.Межов-Деглин, Подавление высокочастотных турбулентных колебаний поверхности жидкости дополнительной низкочастотной накачкой. Письма в ЖЭТФ, 82, 9, 642 (2005)
L14. A.I.Dyachenko, V.E.Zakharov, Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves. Письма в ЖЭТФ, 81, 318 (2005)
L15. D.R.Solli, C.Ropers, P.Koonath, B.Jalali, Optical rogue waves, Nature, 450, 1045-1057 (2007)
L16. A. Ezersky,A. Slunyaev, D. Mouaze, W. Chokchai, Occurrence of standing surface gravity waves modulation in shallow water, European Journal of Mechanics B/Fluids, 28, 521 (2009)
L17. T. W. B. Kibble, Topology of cosmic domains and strings. J. Phys. A 9, 1387 (1976)
L18. W. H. Zurek, Cosmological experiments in superfluid helium? Nature (London), 317, 505 (1985)
L19. A.P.Finne et al, An intrinsic velocity-independent criterion for superfluid turbulence. Nature, 424 1022 (2003)
L20. P. Brusov, J. M. Parpia, P. Brusov, and G. Lawes, Sound conversion in impure superfluids, Phys. Rev. B, 63, 140507(R) (2001)
L21. M.J.McKenna, T.Slawecki, J.D.Maynard, Observation of a second-sound-like mode in superfluid-filled aerogel, Phys. Rev. Lett., 66, 14, 1878 (1991)
L22. M. Chan, N. Mulders, J. Reppy, Helium in aerogel, Physics Today, 49, 8, 30 (1996)
Публикации по теме диссертации:
1. И.Борисенко, В.Ефимов, Л.Межов-Деглин, Нелинейные волны второго звука в жидком гелии в резонаторе. ФНТ, 14, 11, 1123 (1988)
2. G.V.Kolmakov, V.B.Efimov, A.S.Kuliev, L.P.Mezhov-Deglin Evolution of a solitary second sound pulse in a long waveguide. Czech.Journ.of Phys., 46, S1, 83 (1996)
3. V.B.Efimov, G.V.Kolmakov, A.S.Kuliev, L.P.Mezhov-Deglin Propagation of short nonlinear second sound pulses through He-II in one and three dimentional geometry. ФНТ, 24, 2, 81 (1998)
4. V.B. Efimov, G.V.Kolmakov, L.P.Mezhov-Deglin, A.B.Trusov Nonlinear second sound in He-II under pressure. ФНТ, 25, 6, 551 (1999)
5. В.Б.Ефимов, Г.В. Колмаков, Е.В.Лебедева, Л.П.Межов-Деглин, А.Б.Трусов, Волны сжатия и разряжения первого звука в сверхтекучем HeII. Письма ЖЭТФ, 69, 10, 767 (1999)
6. V.B.Efimov, G.V.Kolmakov, E.V.Lebedeva, L.P.Mezhov-Deglin, A.B.Trusov Nonlinear second sound in super fluid 4 He under pressure Physica B, 284-288, 39 (2000)
7. V.B.Efimov, G.V.Kolmakov, E.V.Lebedeva, L.P.Mezhov-Deglin, A.B.Trusov Generation of the first sound by a heater in superfluid and normal 4He. Physica B, 284-288, 37 (2000)
8. V.B.Efimov, G.V.Kolmakov, E.V.Lebedeva, L.P.Mezhov-Deglin, A.B.Trusov Generation of the Second and the First Sound Waves by a Pulse Heater in Fluid Helium J. of Low Temp. Phys., 119, 3/4, 309 (2000)
9. V B Efimov, O Griffiths, P C Hendry and P V E McClintock, Cosmological Experiment in liquid helium, Thesis of 3 International Chernogolovka Workshop-2002, Chernogolovka, 24 (2002)
10. M.Giltrow, M.J.Boylett, N.S.Lawson, A.Hammiche, O.J.Griffiths, J.K.Wigmore, V.Efimov, The fabrication and characterization of polycrystalline CuSn bolometers, Meas. Sci. Technol., 14, N69 (2003)
11. G.Kolmakov, L.P.Mezhov-Deglin, V.B.Efimov, E.V.Lebedeva, Nonlinearity and interaction of second sound waves in superfluid 4He-3He mixture, Phys. Stat. Sol. (c), 1, 11, 3007 (2004)
12. M.Yu.Brazhnikov, V.B.Efimov, G.V.Kolmakov, A.A.Levchenko, E.V.Lebedeva, L.P.Mezhov-Deglin, Turbulence of second sound waves in superfluid He II, ФНТ, 30, 6, 590 (2004)
13. G.V.Kolmakov, A.A.Levchenko, M.Yu.Brazhnikov, V.B.Efimov, E.V.Lebedeva, L.P.Mezhov-Deglin, Nonlinear Second Sound Waves in Superfluid Helium in a Resonator, J. of LTP, 138, 3/4, 525 (2005)
14. G.V. Kolmakov, V. B. Efimov, A. N. Ganshin, P.V. E. McClintock, and L. P. Mezhov-Deglin, Formation of a Direct Kolmogorov-Like Cascade of Second-Sound Waves in He II, Phys. Rev. Lett., 97, 155301 (2006)
15. G. V. Kolmakov, V. B. Efimov, A. N. Ganshin, P. V. E. McClintock, E. V. Lebedeva, and L . P. Mezhov-Deglin, “Nonlinear and shock waves in superfluid He-II”, Физика Низких Температур 32 (11), 1320 (2006).
16. V. B. Efimov, O. J. Griffiths, P. C. Hendry, G. V. Kolmakov, P. V. E. McClintock, and L. Skrbek. Experiments on the rapid mechanical expansion of liquid 4He through its superfluid transition, Phys. Rev. E 74, 5, 056305 (2006)
17. V. B. Efimov, A. N. Ganshin, G.V. Kolmakov, P.V. E. McClintock, and L. P. Mezhov-Deglin, Experimental Study of the Nonlinear Second-Sound Wave Interaction in Superfluid 4He, J. of LTP, 145, 1/4, 155 (2006)
18. V. B. Efimov, A. N. Ganshin, G.V. Kolmakov, P.V. E. McClintock, and L. P. Mezhov-Deglin, Nonlinear Second sound Waves and Acoustic Turbulence in Superfluid 4He, J. of LTP, 148, ѕ, 251 (2007)
19. A. N. Ganshin, V. B. Efimov, G.V. Kolmakov, P.V. E. McClintock, and L. P. Mezhov-Deglin, Observation of giant low-frequency waves in developed acoustic turbulence in superfluid helium, Phys. Rev. Lett. 101, 065303 (2008)
20. P.V. E. McClintock, A. N. Ganshin, V. B. Efimov, G.V. Kolmakov, , and L. P. Mezhov-Deglin, Mixing of different waves at acoustic turbulence and suppression of Kolmogorov-like cascade, J. of LTP, 150, ѕ, 394 (2008)
21. V. B. Efimov, A. N. Ganshin, G.V. Kolmakov, P.V. E. McClintock, and L. P. Mezhov-Deglin, Observation of acoustic turbulence in a system of nonlinear second sound waves in superfluid 4He ФНТ 34 (4/5), 367 (2008)
22. V. B. Efimov, A. N. Ganshin, P.V. E. McClintock, Statistical properties of strongly nonlinear waves within a resonator, Phys Rev E, 78, 066611 (2008)
23. V. B. Efimov, A. N. Ganshin, G.V. Kolmakov, P.V. E. McClintock, and L. P. Mezhov-Deglin, Wave Turbulence in Superfluid 4He: Energy Cascade and Rogue Wave in the Laboratory, CP1076: 7 International Summer School and Conference, edited M. Robnik and V. Romanovski, 53 (2009)
24. A N Ganshin, V B Efimov, G V Kolmakov, L P Mezhov-Deglin, P V E McClintock, Energy cascades and rogue waves in superfluid 4He, New Journal of Physics: Conference Series 150, 032056 (2009)
25. V. B. Efimov, A. N. Ganshin, G. V. Kolmakov, P. V. E. McClintock and L. P. Mezhov-Deglin, Acoustic Turbulence in Superfluid 4He, JLTP, 156, 3/6, 95 (2009)
26. V. B. Efimov, A. N. Ganshin, G. V. Kolmakov, P. V. E. McClintock and L. P. Mezhov-Deglin, Nonlinear effects in formation and decay of acoustic turbulence in He-II, Theses of conference LT-25, Amsterdam, (2008)
27. V. B. Efimov, A. N. Izotov, A.V.Lokhov, L. P. Mezhov-Deglin, V.V.Nesvizhevsky, C.Dewhurst, Experimental investigation of nanocluster condensate in superfluid He-4, Тезисы конференции РСНЭ-НБИК 2009, Москва, 16-21 ноября 2009
28. A N Ganshin, V B Efimov, G V Kolmakov, L P Mezhov-Deglin, P V E McClintock, Experiments on wave turbulence: evolution and growth of second sound acoustic turbulence in superfluid 4He confirm self-similarity - New Journal of Physics 12, 8, 08047 (2010)
29. V. B. Efimov, A. N. Ganshin, G. V. Kolmakov, P. V. E. McClintock and L. P. Mezhov-Deglin, Rogue waves in superfluid helium, Euro Phys. J., Special Topics, 185, 181 (2010)
Размещено на Allbest.ru
Подобные документы
Распространение звуковых волн в атмосфере. Зависимость скорости звука от температуры и влажности. Восприятие звуковых волн ухом человека, частота и сила звука. Влияние ветра на скорость звука. Особенность инфразвуков, ослабление звука в атмосфере.
лекция [1,3 M], добавлен 19.11.2010Параметры упругих гармонических волн. Уравнения плоской и сферической волн. Уравнение стоячей волны. Распространение волн в однородной изотропной среде и принцип суперпозиции. Интервалы между соседними пучностями. Скорость распространения звука.
презентация [155,9 K], добавлен 18.04.2013Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.
реферат [28,2 K], добавлен 04.06.2010Звук как источник информации. Причина и источники звука. Амплитуда колебаний в звуковой волне. Необходимые условия распространения звуковых волн. Длительность звучания камертона на резонаторе и без него. Использование в технике эхолокации и ультразвука.
презентация [3,7 M], добавлен 15.02.2011Изучение механизма работы человеческого уха. Определение понятия и физических параметров звука. Распространение звуковых волн в воздушной среде. Формула расчета скорости звука. Рассмотрение числа Маха как характеристики безразмерной скорости течения газа.
реферат [760,2 K], добавлен 18.04.2012Что такое звук. Распространение механических колебаний среды в пространстве. Высота и тембр звука. Сжатие и разрежение воздуха. Распространение звука, звуковые волны. Отражение звука, эхо. Восприимчивость человека к звукам. Влияние звуков на человека.
реферат [32,6 K], добавлен 13.05.2015Расчет напряжения и токов в узлах в зависимости от времени. Графики напряжений, приходящих и уходящих волн. Метод бегущих волн и эквивалентного генератора. Перемещение и запись волн в массивы. Моделирование задачи в Matlab. Проектирование схемы в ATP.
лабораторная работа [708,4 K], добавлен 02.12.2013Отражение звука от поверхностей и его влияние на качество распространения звуковых волн низкой частоты. Объемно-планировочное решение залов и рассеянное отражение звука от сложного профиля поверхности потолка или стены. Проект драматического театра.
презентация [1,8 M], добавлен 26.05.2015Типы волн и их отличительные особенности. Понятие и исследование параметров упругих волн: уравнения плоской и сферической волн, эффект Доплера. Сущность и характеристика стоячих волн. Явление и условия наложения волн. Описание звуковых и стоячих волн.
презентация [362,6 K], добавлен 24.09.2013Интерференция и дифракция волн на поверхности жидкости. Интерференция двух линейных волн, круговой волны в жидкости с её отражением от стенки. Отражение ударных волн. Электромагнитные и акустические волны. Дифракция круговой волны на узкой щели.
реферат [305,0 K], добавлен 17.02.2009