Диссипативные структуры и нестационарные процессы в межфазной гидродинамике
Особенности применения методики Галёркина для решения задачи в приближении Буссинеска с учётом несжимаемости и вязкости жидкости. Анализ основных причин образования пространственно-временных диссипативных структур в различных конвективных средах.
Рубрика | Физика и энергетика |
Предмет | Физика |
Вид | автореферат |
Язык | русский |
Прислал(а) | И.Ю. Макарихин |
Дата добавления | 15.02.2018 |
Размер файла | 819,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Результаты теории диссипативных структур. Представление диссипативной системы в фазовом пространстве. Характерные примеры временных структур: турбулентность, ячейки Бенара и сверхрешетка пор. Диссипативные структуры и самоорганизация неравновесных систем.
реферат [607,4 K], добавлен 07.09.2016Проведение численных исследований конвективных течений в программном комплексе ANSYS, формирующихся вследствие локализованного нагрева в цилиндрическом слое жидкости. Сравнение основных результатов расчетов в CFX и FLUENT для различных режимов течения.
дипломная работа [4,1 M], добавлен 27.03.2015Поляризация вакуума как единственный механизм образования материи и информации и их пространственно-временных многообразий. Дифференциальный оператор и его место среди поляризационных векторных. Поляризация пространственно-временных состояний.
контрольная работа [529,7 K], добавлен 23.11.2009Расчет кинематического коэффициента вязкости масла при разной температуре. Применение формулы Убеллоде для перехода от условий вязкости к кинематическому коэффициенту вязкости. Единицы измерения динамического и кинематического коэффициентов вязкости.
лабораторная работа [404,7 K], добавлен 02.02.2022Обратимые и необратимые термодинамические процессы. Диссипативные динамические системы. Термодинамическая энтропия. Флуктуация основных термодинамических величин. Закон сохранения энергии в адиабатическом процессе. Средние квадраты флуктуации энергии.
реферат [116,2 K], добавлен 18.12.2013Экспериментальная проверка формулы Стокса и условий ее применимости. Измерение динамического коэффициента вязкости жидкости; число Рейнольдса. Определение сопротивления жидкости, текущей под действием внешних сил, и сопротивления движущемуся в ней телу.
лабораторная работа [339,1 K], добавлен 29.11.2014Вязкость - свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одного слоя вещества относительно другого. Определение коэффициента вязкости жидкости методом Стокса. Законы и соотношения, использованные при расчете формулы.
лабораторная работа [531,3 K], добавлен 02.03.2013Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.
презентация [571,8 K], добавлен 06.04.2015Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.
курсовая работа [531,8 K], добавлен 24.12.2013Причина возникновения сил вязкого трения в жидкостях. Движение твердого тела в жидкости. Определение вязкости жидкости по методу Стокса. Экспериментальная установка. Вязкость газов. Механизм возникновения внутреннего трения в газах.
лабораторная работа [61,1 K], добавлен 19.07.2007