Альтернативные источники энергии

Энергетические характеристики ветра. Основные направления развития океанской энергетики. Принципы преобразования энергии ветра и работы ветродвигателя. Преобразование тепловой энергии океана. Идея Д'Арсонваля и работы Клода. Ветер как источник энергии.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 02.05.2016
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ветровые волны и зыбь хороши тем, что для использования их энергии не надо искать особых мест с благоприятными географическими условиями, как для приливных волн. Они бывают на любой акватории -- был бы ветер да пространство для разгона. Чтобы утилизировать энергию ветровых волн (и зыби), не надо строить больших и дорогих плотин, что также очень важное преимущество. Именно поэтому в разных странах ведутся исследования по выбору наилучших способов преобразования энергии ветровых волн и зыби. Созданы волноэнергетические установки разных мощностей, использующие различные физические принципы для преобразования энергии волн.

Почти полвека назад академик В. В. Шулейкин отметил три основных направления, по которым шла конструкторская мысль в решении проблемы использования энергии поверхностных волн . На одно из первых мест он ставил использование энергии качки: движение поплавка передается поршням насосов. Если учесть, что поплавок может иметь массу в сотни тонн, а размах колебательного движения принять порядка нескольких метров, то, очевидно, таким путем может быть получена весьма значительная мощность. Современные английские проекты использования волновой энергии («утка» Солтера и «плот» Коккереля) основываются именно на этом принципе. Второй способ -- использование ударного давления: волны ударяют в подвижную деталь волновой машины и отдают ей свою кинетическую энергию. Этот принцип с успехом применялся в конце прошлого столетия в установках, использовавших энергию волн для накачки воды. Не потерял он своего значения и в наши дни (правда, для маломощных установок). Третий путь -- использование гидравлического тарана. По этому способу была построена экспериментальная установка на станции Морского гидрофизического института АН СССР в Крыму. Ныне эта идея в большем масштабе реализуется на острове Маврикий и в других местах.

Различные виды энергии океана американский специалист Д. Д. Айзеке предложил условно оценивать одной мерой -- в метрах водяного столба 2. Эта величина называется им плотностью потока, она характеризует степень концентрации данного вида энергии. С помощью этого понятия удобно сравнивать между собой различные виды энергии в океане. Например, для теплового градиента (т. е. разности температур между теплым и холодным слоями) 20 °С плотность потока составляет 570 м водяного столба, ее напор как в грандиозном водохранилище, подпертом плотиной высотой более полукилометра. А для градиента 12 °С плотность потока равна 210 м. Обе цифры (210 и 570 м) рассчитаны с учетом КПД тепловой машины, работающей по циклу Карно. Такую плотность потока в океане имеет еще только энергия градиента солености (осмоса) -- 240 м. Другие виды энергии океана имеют значительно меньшие значения плотности потока. Так, для ветровых волн она составляет 1,5 м, а для океанских течений --лишь 0,05 м. Но, как сказал Д. Д. Айзеке, еще остаются неоткрытыми совершенно новые принципы, простые и сложные, обнаружив которые, можно использовать ресурсы океана, связанные с энергией, для блага человечества.

2.2 ПРЕОБРАЗОВАНИЕ ТЕПЛОВОЙ ЭНЕРГИИ ОКЕАНА. ИДЕЯ Д'АРСОНВАЛЯ И РАБОТЫ КЛОДА

В 20-е годы нашего века многие журналы мира обошел странный рисунок: из-под киля судна в глубину уходила труба больше самого судна. Столь необычная труба понадобилась французскому ученому Жоржу Клоду . для подъема из глубин океана холодной воды. Клод в те годы начал экспериментальные работы по использованию тепла океана для получения электрической энергии. \ Но чтобы извлечь энергию из теплой воды, одновременно необходима и холодная. Теплой воды сколько угодно на поверхности океана в тропиках, а холодная вода (4--5 °С) есть только на больших глубинах океана -- около 1 км. Для ее получения оттуда и понадобилась длинная труба, которая оказалась самой уязвимой частью энергетической установки и отломилась во время шторма, а судно потерпело аварию.

Это была уже не первая попытка Клода использовать тепло океана для выработки электрической энергии'. Перед опытом: с трубой на судне он испытывал энергетическую установку на берегу океана (Атлантического). Но чтобы с берега достать холодную воду, потребовалась труба длиной около 1,8 км (по другим данным, 2,5 км). Потери напора в длинной трубе были так велики, что на них шла значительная часть мощности, которую могла выработать установка. Слишком длинная труба практически не позволяла реализовать прекрасную идею. Длину трубы можно было бы значительно сократить, если смонтировать установку не на берегу, а на судне, трубу же опустить прямо с судна в глубину. Что и было сделано. Однако конструкция не выдержала первого шторма.

Но главное было сделано -- две недели установка проработала и дала мощность 22 кВт за счет тепла океана. Правда, на собственные нужды она потребила значительно больше. Однако правильность принципа была доказана -- и в этом заслуга Клода. Надо сказать, что соединить с судном трубу длиной более полукилометра -- далеко не простое дело.

Удовлетворительно решить этот вопрос удалось только в конце 80-х годов нашего века, когда была создана установка мини-ОТЕС.

Клод вместе с французским ученым Бушеро сделали несколько попыток по созданию энергетических тепловых установок в разных частях Атлантического океана: в заливе Мантанзас на Кубе, на побережье Абиджана и в прибрежных водах Бразилии. Но ни разу им не удалось получить из океана больше энергии, чем установка потребляла на собственные нужды, и поэтому для своей работы она требовала дополнительной энергии от вспомогательного источника. Эта печальная особенность отчасти была связана с малой мощностью установки, из-за чего различные потери составляли слишком высокий процент в общем балансе. Потерь оказалось больше, чем первоначально предполагалось.

Первым обратил внимание на громадные запасы тепловой энергии в океане французский ученый Жак Д'Арсонваль более 100 лет назад (1881 г.) и теоретически показал возможность ее использования. Жоржа Клода называют его учеником, но между ними были серьезные разногласия в вопросе о выборе наилучшей жидкости в качестве рабочего тела для океанической тепловой машины. Этот вопрос надо было решить прежде всего. Рабочая жидкость должна закипать при температуре нагревателя, а пары ее после совершения работы в турбине должны сконденсироваться при температуре холодильника.

Нагреватель -- теплая вода из верхних слоев океана. Наиболее высокая температура воды наблюдается в Персидском заливе в августе -- более 33 °С (а самая высокая температура воды зафиксирована в Красном море --плюс 36 °С). Но на максимальную температуру рассчитывать преобразователь нельзя: она встречается на ограниченных участках Мирового океана, а обширные районы имеют температуру поверхностного слоя около 25 °С. Это достаточно высокая температура, при которой кипят многие жидкости. Д'Арсонваль предложил применить в качестве рабочей жидкости аммиак -- жидкость с температурой кипения минус 33,4 °С, которая будет хорошо кипеть при 25 °С. При нормальной температуре (20 °С) аммиак -- бесцветный газ с едким запахом. При повышении давления газообразный аммиак снова превращается в жидкость. При 20 °С для этого давление надо повысить до 8,46 атм, но при 5 °С -- значительно меньше.

Выбор аммиака в качестве вторичного рабочего тела связан с отличными термодинамическими свойствами его паров. Пары аммиака имеют низкий молекулярный вес, достаточно большой удельный объем и хорошие характеристики теплопередачи. Они обеспечивают турбине вращение с большой скоростью, что очень важно. Благодаря этим качествам аммиак широко2применяется в наши дни в энергетических установках, использующих тепло океанских вод. При этом схема тепловой энергетической установки должна быть замкнутой, т. е. после холодильника жидкий аммиак снова закачивается в нагреватель. Цикл непрерывно повторяется, пока работает установка. Количество рабочей жидкости, залитой в систему теплового преобразователя, практически не изменяется в процессе работы. Замкнутый цикл имеет ряд преимуществ перед открытым циклом, предложенным Клодом, благодаря чему он получил широкое применение в наши дни в установках OTEG.

Но Клод не захотел воспользоваться аммиаком. Он решил в качестве рабочей жидкости использовать морскую воду. Чтобы добиться ее кипения при температуре поверхностных вод в тропиках, создал в установке пониженное давление. Если понизить атмосферное давление в 15 раз, т. е. примерно до 50 мм рт. ст., морская вода закипит при температуре не выше 27 °С. Образовавшийся пар пойдет в турбину, заставит ее вращаться и вращать электрогенератор. А потом пар поступит в холодильник, где с помощью холодной глубинной воды превратится в пресную воду. Клод спускал ее в море: тогда она была никому не нужна. Такой цикл называется открытым, или незамкнутым.

Схема энергетической установки, работающей по этому принципу, представлена на рис. 2.1. По этой схеме была построена первая экспериментальна!! установка Клода и Бушеро.

При практической реализации установки ее авторы столкнулись с рядом специфических трудностей. Одна из первых -- это создание низконапорной турбины.

Дело в том, что давление водяного пара, получаемого при невысокой температуре в условиях частичного вакуума, мало. Чтобы снять сколько-нибудь заметную мощность, турбина должна иметь большие размеры. С этим затруднением Клоду и Бушеро удалось справиться вполне удовлетворительно. Однако при первых же испытаниях обнаружив лась неожиданность. При нагреве из морской воды в большом количестве выделялся растворенный в ней воздух, что повышало давление в системе и нарушало процесс кипения. Для поддержания достаточного разрежения систему приходилось непрерывно откачивать, на что требовалась дополнительная мощность. В результате уменьшался и без того небольшой КПД установки. С этой проблемой изобретателям не удалось справиться. Были и другие проблемы. Поэтому в последующие годы основное внимание ученых и инженеров обращалось на разработку тепловых преобразователей с замкнутым циклом. Итог их усилий -- действующие ныне системы OTEG.

Рис. 2.1 Схема теплоэнергетической океанской установки открытого цикла: 1 -- испаритель, г -- турбина, 3 -- генератор, 4 -- конденсатор, 5 -- пресная вода, в -- теплая вода и,ч верхних слоев, 7 -- холодная вода с больших глубин

Но теперь, спустя более полувека, внимание снова привлечено к открытому циклу. «Открытый цикл вызывает огромный интерес. Он устраняет все проблемы, касающиеся обращения с аммиаком, фреоном и т. н. Пресная вода вырабатывается в качестве побочной продукции», -- считают американские специалисты. В США разрабатывается океанская энергетическая установка, которая одновременно с производством электроэнергии будет давать пресную воду -- один из самых ценных в наше время продуктов, особенно в жарких и индустриальных странах, где все острее ощущается ее недостаток.

Но остаются нерешенные проблемы, в частности создание больших низконапорных турбин и удаление из системы преобразователя выделяющегося из морской воды воздуха. Ближайшей задачей считается найти такой способ удаления воздуха, чтобы на него затрачивалось не более 10 % вырабатываемой энергии. Для ее решения в схему энергетической установки включается деаэратор -- камера, в которой морская вода будет дегазироваться перед поступлением в нагреватель.

Теоретически оба вида преобразователей -- с открытым и закрытым циклом -- имеют близкие и одинаково малые коэффициенты полезного действия.

Примем температуру нагревателя T1=273+25=298 К, температуру холодильника T2=273+5=278 К. Согласно формуле Карно КПД будет равен

nk==(T1-T2)/T1=(298-278)/298=0,067, или 6,7 %,

Полученная цифра еще недавно считалась близкой к теоретическому пределу КПД для океанской тепловой машины при принятых значениях температуры нагревателя и холодильника (как и для любой другой). Но недавно было показано 2, что из-за специфических особенностей преобразования энергии тепла в океане теоретический КПД теплового цикла в этом случае следует оценивать по формуле n0=(T1-T2)/(T1+T2)

При малом значении разности температур ^T=T1-- Т2 КПД океанской тепловой машины может быть вдвое меньше теоретического значения, вычисленного по формуле Карно, т. е.

n0=1/2nk

Поправка весьма существенная. Фактически КПД преобразователя в любом случае будет еще меньше из-за неизбежных потерь в теплообменниках, насосах, трубопроводах и др. Величина потерь будет зависеть от степени совершенства конструкции тепловой машины. Для преобразователей с замкнутым циклом реальным считается получение КПД в пределах до 2--3 %. Эти цифры близки к КПД отвергнутого паровоза. Но он сжигал драгоценное топливо, а здесь энергия вырабатывается за счет дарового тепла океана, топлива не требуется.

Интересно отметить переоценку значения малых цифр КПД, происшедшую за последние полвека. Пятьдесят лет назад теоретическое значение КПД около7% считалось ничтожным и едва ли заслуживающим внимания. В наше же время строятся мощные океанские энергоцентрали с КПД примерно в половину этой величины. Существенного улучшения КПД можно ожидать только при использовании в океанских тепловых энергоцентралях большего перепада температуры между нагревателем и холодильником. Принципиально такая возможность имеется. В разных районах на дне океана обнаружены места, где разность температуры воды значительно превышает принятые .для расчета 20 °С. Например, в термальных впадинах на дне Красного моря температура воды достигает 60 СС, к тому же она ежегодно несколько повышается. А на дне Тихого океана бьют гидротермальные источники с температурой более 350 °С, как в котле вполне современной ТЭЦ высокого давления. Вблизи от этих горячих источников имеется вода с низкой температурой, пригодная для холодильника. При использовании такой воды возможно получение КПД океанской установки, как у лучших наземных ТЭЦ высокого давления. Однако применение горячих гидротермальных вод для выработки электрической энергии потребует особой технологии.

Системы Отес.

В августе 1979 г, вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная -- 53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее -- на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты энергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Три насоса потребовались из следующего расчета: один -- для подачи теплой воды из океана, второй -- для подкачки холодной воды с глубины около 700 м, третий -- для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочей жидкости применяется аммиак,

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Труба сваривалась на берегу из 58 секций. Выбор полиэтилена связан с тем, что он как будто не подвержен обрастанию и, следовательно коррозии (создание 700-метрового трубопровода было самым трудным делом). Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случае необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба--судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.

Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро достроить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа.

ОТЕС-1 -- плавучая лаборатория: как и мини-ОТЕС, она не предназначена для коммерческой выработки электрической энергии, хотя ее мощность достигает 1 МВт, т. е. в 20 раз больше, чем у мини-ОТЕС. В качестве вторичного рабочего тела в ОГЕС-1 также применяется аммиак. Питательный насос забирает воду из поверхностного слоя океана с температурой 27 °С и прогоняет ее через нагреватель аммиака, состоящий из 6304 титановых трубок диаметром 2 см. Это -- паровой котел установки. Аммиак распыляется в теплых трубках и вскипает. Пар аммиака идет в турбину и вращает ее, а оттуда, совершив работу, поступает в конденсатор -- холодильник. Конденсатор также сделан из тонких трубок, охлаждаемых водой с температурой немного более 4 °С. Там пары аммиака конденсируются и превращаются снова п жидкость, перекачиваемую обратно испаритель. Общая длина трубок в двух теплообменниках (испарителе и конденсаторе) составляет 140 км.

Под установку ОТЕС-1 переоборудован танкер с турбо-электрическим приводом. Электрическая силовая установка танкера позволяет с удобством использовать ее энергетические ресурсы во время проведения различных экспериментов для привода насосов и других целей. На этой установке предполагается проверить некоторые эксплуатационные характеристики ОТЕС, чтобы в дальнейшем их можно было использовать при создании опытного образца. Число вопросов, подлежащих изучению, достаточно велико. К ним относятся, например, следующие. Какого типа теплообменники будут оптимальными и из какого материала их следует делать? Титан -- дорог, нельзя ли его заменить на алюминий или что-нибудь другое? Как быстро будут развиваться морские оргаппзмы-обрастатели в теплообменниках и в других частях системы и как с ними бороться? Как повлияют на состояние окружающей морской среды мощные установки такого типа? Как лучше выполнить трубопровод для подъема холодной воды?

Последний вопрос становится традиционным для конструкторов всех установок ОТЕС. Для OTEG-1 он был решен в пользу применения трех параллельных полиэтиленовых труб диаметром 1 м каждая, длиной но 900 м. Трубы были доставлены на Гавайские острова секциями длиной по 27 м и сварены на берегу. Потом все три трубы были связаны вместе и уложены на тележки, установленные на специальном рельсовом пути, спускающемся прямо в океан. Суммарная масса трубопровода достигла 450 т, укладка его на тележки была выполнена с помощью лебедки. Для закрепления нижнего конца трубопровода вблизи дна потребовалось 50 т балласта. А для поддержания трубопровода в вертикальном положении его верхний конец окружен плавучим кольцом, имеющим буй, к которому прикреплен прочный конец; с его помощью трубопровод можно несколько перемещать. Такой способ крепления верхнего конца трубы к днищу судна позволил очень быстро (за 2 часа) произвести постановку трубы в океане. Так же просто происходит и разъединение трубопровода холодной воды с судном, если возникает сильное волнение или по какой-либо другой причине.

Конструкторы установки ОТЕС-1 ввели между трубопроводом холодной воды и судном новую деталь, которая сделала всю систему более надежной. Речь идет о карданном подвесе трубы к судну. При наличии кардана судно может произвольно качаться на волнах при относительно малоподвижном длинном трубопроводе, если волны не слишком велики (не более 2 м). А если волнение увеличивается, судно отцепляется от трубы и уходит в укрытие.

Защелка для быстрого разъединения судна с трубой была опробована еще в системе мини-ОТЕС. Применением карданного подвеса трубы и защелки решился старый спор судна с трубой, начавшийся еще при Клоде. Надо сказать, что, видимо, труба все же «победит» судно, в том смысле, что новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это -- одна грандиозная труба, в верхней части которой находится круглый машинный зал,, где размещены все необходимые устройства для преобразования энергии (рис. 29). Верхний конец трубопровода холодной воды расположится в океане на глубине 25--50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания системы и для связи с берегом. Это любопытный эпизод из новейшей истории развития техники преобразования тепла океана.

Намечено окончание строительства новой, третьей по счету, экспериментальной станции ОТЕС, мощность которой будет находиться в пределах 40--100 МВт. При строительстве этой станции используется модульный принцип, она собирается из отдельных блоков по 10 МВт каждый. Такой подход позволит легко наращивать мощность до желательной величины в установленных пределах. Трубопровод холодной воды по-прежнему остается одним из наиболее сложных узлов этой станции. Станции мощностью в 40 МВт требуется трубопровод диаметром 10 м и длиной 900 м. А для проектируемой коммерческой станции OTEG на 400 МВт при той же длине трубопровод должен иметь диаметр 30 м. Каждую секунду насосы через него будут прокачивать около 1500 м3 холодной воды. Столько же потребуется прокачать и теплой воды. Суммарный расход воды в этой мощной установке получится, как v реки Нил, -- 2600 м8/с, Полное водоизмещение корпуса станции на 400 МВт с заборной трубой оценивается цифрой около 500 тыс. т. Станция должна устанавливаться в районах океана с глубинами более 1200 м. Для ее удержания в районе постановки требуется якорная система с большой массой. В целом -- поистине циклопическое сооружение, строительство его предполагалось начать в 1985 г. Было также сообщение о строительстве станции типа ОТЕС в Японии, но значительно менее мощной.

Рис. 2.2 Один из вариантов станции ОТЕС на мощность в сотни мегаватт: I -- платформа, 2 -- труба холодной воды, з -- якорная система

Тепло из холода.

Энергию можно получать не только из теплых вод тропических или субтропических районов Мирового океана, но и из крайних северных или южных бассейнов планеты, т. е. из вод Арктики и Антарктики. Была бы только достаточная разность температур для эффективной работы тепловой машины. А разность там обычно есть, и иногда не меньше, чем в тропиках. Но не между слоями поверхностной и глубинной воды, как в тропиках.

Например, в Северном Ледовитом океане температура в поверхностном слое подо льдом близка к 0 °С. Ниже, на нескольких сотнях метров глубины, температура воды немного повышается и доходит примерно до 0,6 °С. Там находится теплый промежуточный слой, образовавшийся за счет притока вод атлантического происхождения. А глубже нескольких сот метров температура воды снова понижается до минус 1 °С. Самая холодная вода встречается в Датском проливе близ Гренландии, где температура ее падает до минус 2,2 °С; такая же холодная вода бывает и в море Уэддела в Антарктике. Где же при подобных условиях взять достаточно высокую разность температур в этих широтах планеты?

На помощь энергетикам приходит холодный воздух.

Во многих районах Арктики большую часть года температура воздуха ниже минус 10 °С. Например, на Новосибирских островах в году бывает всего 2--4 дня с температурой воздуха выше минус 10 °С, на побережье моря Лаптевых таких дней от 10 до 14, а на архипелаге Северная Земля их только 10--12. В остальное время года здесь царствуют морозы, временами значительно превышающие минус 10 °С.

На возможность использования энергетического потенциала высоких широт, по-видимому, первым обратил внимание в 1928 г. французский инженер Баржо. В качестве нагревателя им предлагалась морская вода с температурой,, близкой к 0 °С. Холодильником должен был служить морозный воздух. В качестве вторичного рабочего тела было предложено взять такое вещество, которое кипело бы при температуре несколько ниже 0 °С и конденсировалось бы в жидкость при температуре минус 20 °С. Баржо рекомендовал углеводородные соединения типа пропана, бутана или изобутана. Для предотвращения потерь рабочего вещества предлагался замкнутый цикл работы энергетической установки. Схема Баржо имеет много общего с идеей Д'Арсонваля. Но, учитывая арктические условия, Баржо предлагал вызывать кипение рабочего тела путем разбрызгивания в нагревателе морской воды, чтобы замерзая, она отдавала рабочему телу свою скрытую теплоту льдообразования. Это -- остроумное предложение, но, как лучше реализовать его, до сих пор неизвестно.

Предложение Баржо не было практически реализовано. Пятьдесят лет назад указывались минимум две причины этого: малый КПД установки и практически неприемлемые размеры теплообменника (нагревателя) для получения достаточной мощности из-за низкой рабочей температуры нагревателя.

А недавно опубликована работа А. К. Ильина, где показана возможность практической реализации преобразования тепловой энергии океана в арктических районах 3. В ней отмечается не только важность наличия достаточного градиента температуры, но также и необходимость достаточной скорости ветра и скорости течения воды в океане. Два последних условия, на которые раньше не обращалось должного внимания, необходимы для обеспечения нормальной работы теплообменников. Благоприятные условия для работы энергетических установок имеются в устье сибирских рек.

Допустимая максимальная степень охлаждения воды в арктических силовых установках определяется неравенством

Тж-Тз=Т<2К

где Тж -- температура морской воды, забираемой в нагреватель преобразователя; Т3 -- температура замерзания морской воды при данной солености.

Физический смысл этого неравенства заключается в том, что морскую воду нельзя доводить до точки замерзания, как предлагал в свое время Баржо. Если ола будет замерзать в теплообменнике, служащем нагрева! ел ем для вторичной рабочей жидкости, то образуется лед. который нарушит работу преобразователя.

По расчетам Ильина, КПД энергетической установки мощностью около 50 кВт в арктических условиях получается в пределах 0,79--2,08 %. Речь идет о КПД использования тепла воды, что же касается КПД самой установки, то он достаточно высок и достигает 43 %. Эта цифра относится к аммиачной установке мощностью 1 МВт. На основании детальных расчетов автор приходит к выводу, что в арктических районах океана зимой энергия, обусловленная разностью температур между морской водой подо льдом и атмосферным воздухом, может использоваться достаточно эффективно.

Имеется и другой путь использования тепловой энергии океана в высоких широтах. Речь идет о термоэлектрических преобразователях, на перспективность применения которых для этой цели указывал академик А. Ф. Иоффе еще в 1932 г. В наше время этот вопрос исследуется в Тихоокеанском океанологическом институте . По расчетам, при разности температур 10 °С и разности глубин 100 м при использовании термоэлектрических преобразователей энергии с КПД 1 % с 1 км2 поверхности океана можно получить электрическую мощность около 100 МВт. Необходимым условием является наличие течения со скоростью не менее 0,1 м7с. Отмечается, что «общая энергия Мирового океана, которую можно использовать подобным образом, превышает 1020 Дж в год, т. е. сравнима

С энергией, получаемой от сжигания химического топлива на Земном шаре в течение года».

Использование новых источников энергии весьма важно для развития энергетики Крайнего Севера.

2.3 ПРЕОБРАЗОВАТЕЛЬ С КОЛЕБЛЮЩИМИСЯ МАГНИТАМИ

Фарадей открыл закон электромагнитной индукции с помощью постоянного магнита в виде стержня, который он вводил (рукой) в катушку с медной проволокой. При каждом вводе или выводе магнита в катушку на концах ее обмотки наблюдалось возникновение электрического напряжения. Согласно закону электромагнитной индукции, величина возникающей электродвижущей силы прямо пропорциональна скорости изменения магнитного потока через катушку и числу витков катушки.

Закон электромагнитной индукции определил путь развития электрических машин. Их главный принцип: чтобы получить быстрые изменения магнитного потока, надо вращать магнит при неподвижной катушке или, наоборот, вращать катушку при неподвижном магните. Именно так действовала первая электрическая машина, изобретенная итальянцем Граммом более 100 лет назад и спустя примерно 50 лет после открытия Фарадеем электромагнитной индукции, -- так называемое «Кольцо Грамма». «Кольцом» она была названа по той причине, что в качестве якоря имела тороидальное кольцо из тонких железных проволок, вращавшееся на оси в поле подковообразного постоянного магнита. На кольце крепилось несколько катушек из медной проволоки. Кольцо приводилось во вращение рукой с помощью ременной передачи.

Грамм не мог вращать магнит, поскольку 100 лет назад магниты должны были быть достаточно длинными. Теперь же новейшие магниты (типа РЗМ) хорошо работают только при малой длине, поэтому конструктивно их просто привести во вращение. РЗМ -- редкоземельные магниты, или магниты на основе редких земель, -- самые сильные (но хрупкие) постоянные магниты. РЗМ сделаны на основе самария в соединении с кобальтом (SmCo5). Речь идет преимущественно об электрических машинах малой мощности, когда желательно избежать применения коллектора или контактных колец. Это важно для машин, длительно работающих в тяжелых условиях эксплуатации, без частых осмотров и своевременной профилактики, например велогенераторов, генераторов для тракторов и т. п. Для волновых энергетических установок также удобнее бесконтактные генераторы, особенно для установок в открытом море.

Электрические машины в своем развитии прошли громадный путь, теория электрических машин -- одна из наиболее разработанных глав современной электротехники. Но вращение якоря или ротора и сегодня остается основным принципом получения высокой скорости изменения магнитного потока и соответственно высокой электрической мощности, необходимой современной индустрии . Однако в наше время развиваются и иные способы получения большой электрической мощности, не обязательно связанные с вращательным движением. Например, МГД-генераторы не имеют вращающихся частей. Струя раскаленной плазмы с большой скоростью пронизывает сильное магнитное поле (силовые линии поля расположены по нормали к струе), в плазме индуцируется электрический ток, отводящийся с помощью системы электродов.

Вместо вращательного или прямолинейного движений для получения электрической энергии можно применить также колебательное движение. Так (или почти так), как это делал Фарадей, только работу (движения) руки заменить работой волн. Мысль об использовании колебательного движения, естественно, возникает при поиске способов использования энергии поверхностных волн: как известно, волны являются самым наглядным примером колебательного движения. Можно по-разному выполнить преобразователь для работы в колебательном режиме. Схема одного из простейших (макета) изображена на рис. 5. Приемником энергии волн здесь служит тонкая плоская плита (пластина) 1, в которую ударяют набегающие волны. Под давлением волн плита совершает колебания относительно горизонтальной оси 2. Ось может вращаться в подшипниках В. До сих пор это устройство очень походило на первую волноэнергетическую установку в Ошен-Грове. Однако дальше начинаются серьезные различия.

Колебания плиты с помощью штанги 4 передаются не поршню гидравлического насоса, а генератору электрической энергии. Он размещен подальше от поверхности воды, поэтому потребовалась достаточно длинная штанга. Нижний конец штанги болтами скреплен с плитой, а на ее верхнем конце укреплена перемычка (ярмо)5 из трансформаторного железа с двумя магнитами 6. Перемычка с магнитами является существенной частью колебательного генератора, она соответствует ротору или якорю в обычном генераторе. Неподвижная часть генератора (статор) состоит из магнитопровода 7 П-образной формы, собранного из полосок тонкого трансформаторного железа. Применение трансформаторного железа для магнитопровода и перемычки необходимо для уменьшения потерь на вихревые токи. На вертикальных стержнях (частях) магнитопровода насажены две катушки 8, каждая имеет по 400 витков толстого медного изолированного провода. Катушки соединены последовательно и включены на общую нагрузку. Вся конструкция связана сварной рамой 9 из угловой стали (на ней укреплены и два подшипника скольжения, поддерживающие ось), которая крепится к причалу. Под ударами волн плита периодически совершает колебания, т. е. качается. Качается и жестко связанная с ней штанга, поэтому перемычка с магнитами периодически замыкает и размыкает цепь магнитопровода. В тот момент, когда перемычка с магнитами замыкает магнитопровод, в нем появляется нарастающий магнитный поток, пересекающий витки обеих катушек. А когда волна продвигает плиту дальше, перемычка с магнитами размыкает магнитопровод, поэтому магнитный поток уменьшается, снова пересекая витки катушек.

Рис. 2.3 Графики, поясняющие процесс индукции: Ф--изменение магнитного потока в цепи магнитопровода, Е-- индуцированная электродвижущая сила

По закону электромагнитной индукции в обоих случаях в цепи катушек возникает электродвижущая сила, вызывающая электрический ток.

В качестве примера оценим электрическую мощность, которая может быть получена в режиме колебаний с помощью описанного устройства при следующих условиях: период поверхностных волн Т=6 с; амплитуда поверхностных волн А-=1 м; размер постоянных магнитов в направлении качания перемычки (т. е. ярма) 6=0,05 м (эта величина равна соответствующей стороне поперечного сечения магнитопровода); полное число витков на двух катушках WB-=800; максимальное значение магнитного потока через магнитопровод Ф=BS = 1,7-105; максимальное значение индукции в сердечнике магнитопровода g=8000 Гс; площадь поперечного сечения магнитопровода S=19,6 см2.

Определим время, в течение которого магнитный поток в сердечнике будет нарастать от начального значения, близкого к нулю, до максимальной величины, принятой в расчете (1,7 -105 силовых линий). Нарастание потока начнется при подходе перемычки с магнитами к магнитопро-воду и будет продолжаться до тех пор, пока она не встанет точно под ним. Совпадение проекций плоскостей поперечного сечения вертикальных стержней магнитопровода с плоскостями магнитов на перемычке будет соответствовать максимуму магнитного потока через сердечник; при дальнейшем движении перемычки магнитный поток будет уменьшаться.

При выходе перемычки с магнитами РЗМ за площадь проекций стержней магнитопровода магнитный поток снова примет значение, близкое к нулю. Для упрощения расчетов примем площади поперечного сечения стержней магнитопровода и магнитов РЗМ одинаковыми, а скорость движения перемычки неизменной и равной максимальной скорости орбитального движения частиц воды в волне при принятой амплитуде (А--1м). Тогда длительность индукции, определяемая нами как время достижения магнитным потоком своего максимального или минимального значений, определится формулой

Фактически оно будет несколько больше, так как рост магнитного потока начнется через воздушный зазор несколько раньше подхода кромки магнитов к краю стержня. Вычислим максимальное значение электродвижущей силы, возникающей на концах обмотки при принятых условиях. Согласно формуле Максвелла, она будет равна

Для определения мощности необходимо вычислить квадрат эффективного значения электрического напряжения за период поверхностной волны. Искомая величина определится выражением од

где (w=2тс/=62,8 -- угловая частота переменного тока, возбуждаемого в обмотках преобразователя (800 витков) при колебаниях перемычки с постоянными магнитами РЗМ;

f=1/2t=(2-3,14-0,05)-1-10 Гц.

Чтобы вычислить квадрат действующего значения электрического напряжения за период поверхностной волны согласно приведенному выше интегралу, воспользуемся подстановкой

sin2 wt = 1/2 -- 1/2 cos 2wt = 1/2(1 -- cos 2wt)

Подставляя принятые выше значения, получаем

Чтобы вычислить электрическую мощность, необходимо знать внутреннее сопротивление обмотки и сопротивление полезной нагрузки. Сопротивление обмотки преобразователя, состоящей из 800 витков медной проволоки диаметром 2,56 мм, равно примерно 1 Ом. Исходя из условия получения максимальной мощности, примем сопротивление полезной нагрузки также в 1 Ом; в этом случае суммарная электрическая мощность преобразователя

Nэл=6,1/1+1=3,1 Вт.

При равенстве сопротивления нагрузки внутреннему сопротивлению генератора электрический КПД преобразователя составляет 50 %. Следовательно, на полезной нагрузке выделится только половина от полученной цифры, т. е. всего 1,55 Вт.

По поводу этого расчета необходимо сделать несколько замечаний. Если правильно выбрать размеры плиты, то за один период поверхностной волны движимая ее энергией плита совершит два полуколебания.

Первое -- при прохождении гребня в направлении его движения, второе -- при прохождении ложбины волны, в этом случае направление движения плиты будет прямо противоположно направлению ее движения за счет гребня. Чтобы плита в действительности совершала эти колебания, ее размер по вертикали ап должен быть достаточно велик и составлять не менее 2,5 А (где А -- амплитуда поверхностной волны). Это условие определяется необходимостью иметь достаточную смоченную поверхность плиты во время прохождения ложбины волны. При его выполнении полезная электрическая мощность преобразователя удвоится, т. е. мы получим не 1,55, а около 3,1 Вт.

Фактически мощность была даже несколько больше при меньшей амплитуде поверхностных волн. Увеличение мощности произошло благодаря некоторым нелинейным эффектам, не учтенным в расчете 8. Речь идет прежде всего о силе притяжения магнитов РЗМ к сердечнику преобразователя из трансформаторного железа. Сила эта достаточно велика; она не подчиняется закону синуса и зависит от многих параметров, в том числе от положения магнитов относительно сердечника. Существенную нелинейность вносит тангенциальная составляющая этой силы, изменяющаяся hj направлению и величине от нуля до максимума при колебаниях перемычки с магнитами РЗМ под действием волн. Максимальная величина тангенциальной составляющей силы притяжения при применении двух магнитов РЗМ достигает 40 кг; цифра эта достаточно велика для маленького макета. Она сравнима по своей величине с силой давления both на плиту, которая также не подчиняется гармоническому закону.

Оценим величину си ты давления волн на плиту по формуле

F=KpuSa,

где F -- суммарная сила давления волн, кг; К=1 -- коэффициент обтекания плиты (приближенное значение); ря=102 кгс2/м4 -- массовая плотность воды; Sn--0,5 м2 -- площадь плиты; Vc=l м/с -- горизонтальная составляющая волновой скорости;

F=l*102*0,5*l2=50 кг.

Расчет силы давления соответствует моменту, когда гребень волны набегает на плиту, стоящую неподвижно в положении равновесия. Принимается, что перед набеганием волны плита висит вертикально под действием силы тяжести и силы притяжения магнитов РЗМ к торцам сердечника; в этот момент тангенциальная составляющая силы притяжения магнитов равна нулю.

Расчет показывает, что при принятых параметрах величина силы волнового давления близка к силе статического притяжения магнитов. Если сила волнового давления по какой-либо причине уменьшится до 40 кг. то плита не сдвинется заметным образом or положения равновесия и акта индукции не произойдет. Это может случиться, например, при прохождении ложбины волны, так как смоченная площадь плиты будет значительно меньше, чем во время прохождения гребня. Это свидетельствует о том, что у преобразователя имеется порог срабатывания по орбитальной скорости поверхностных волн; если горизонтальная составляющая орбитальной скорости и соответственно давление волн на плиту становятся ниже некоторой величины, то колебания плиты прекращаются.

Поэтому процесс возбуждения электрических колебаний имеет существенно нелинейный характер, что подтверждается осциллограммой. Осциллограмма показывает электрическое напряжение, зарегистрированное на омической нагрузке преобразователя во время его испытаний на морском причале. Импульсы электрического напряжения на нагрузке весьма далеки от синусоидальной формы кривой; они имеют сложную форму, причем большие импульсы чередуются с малыми, что объясняется сложной игрой нелинейных сил.

На осциллограмме, соответствующей одному периоду поверхностной волны, можно увидеть всего четыре относительно больших импульса электрического напряжения. Первый импульс (считая слева направо) соответствует выходу магнитов из-под торцов сердечника под давлением гребня подошедшей волны; максимальное значение напряжения достигает 3 В. После прохождения гребня давление волны на плиту ослабевает и она возвращается в положение равновесия; магниты входят под торцы сердечника. Процесс этот совершается быстрее их выхода, поэтому индуцируемое напряжение достигает примерно 4,5 В. Третий импульс соответствует второму выходу магнитов за счет прохождения ложбины волны, его максимальное значение напряжения достигает лишь 2,5 В.

По Окончании прохождения ложбины плита и связанная с ней перемычка с магнитами снова возвращаются в положение равновесия, при этом возбуждается четвертый импульс величиной около 4 В.

Большие импульсы напряжения получаются, когда магниты входят в рабочий зазор сердечника. В этом случае направление момента тангенциальной составляющей силы притяжения магнитов совпадает с моментом силы тяжести плиты и штанги; кроме того, при окончании любой фазы волны (т. е. гребня или ложбины) направление момента силы давления от начинающейся новой фазы совпадает с моментами этих двух сил. Поэтому возрастает скорость движения магнитов, увеличивается скорость изменения магнитного потока через магнитопровод, возрастает индуцируемая ЭДС и напряжение на нагрузке. Пики напряжения меньшей величины всегда наблюдались при выходе перемычки с магнитами из положения равновесия. В этом случае момент тангенциальной составляющей силы притяжения противоположен моменту силы волнового давления. Естественно, что скорость движения магнитов меньше, меньше индуцируемая ЭДС и напряжение на нагрузке.

На осциллограмме рис. 7 после второго импульса можно увидеть еще два импульса малой амплитуды; их происхождение, возможно, связано с отраженными от берега волнами.

Во время проведения экспериментов отмечено влияние собственной частоты колебаний плиты на генерируемую мощность.

При более строгом анализе процесса преобразования энергии необходимо также учесть так называемую пондеро-моторную силу (или силу Ампера). Она вызвана взаимодействием индуцированного тока в обмотках с магнитным полем возбуждающих магнитов. Пондеромоторную силу можно оценить по формуле

Fa=1,02BlI10 7 кг,

где В -- магнитная индукция в зазоре, Гс; I -- суммарная длина провода обмотки, см; / -- ток через обмотку, А.Расчет показывает, что в нашем случае значение силы Fa не превосходит 0,25 кг, поэтому в ориентировочном расчете ею можно пренебречь. Незначительность этой величины свидетельствует, в частности, о том, что у преобразователя имеются значительные возможности в смысле увеличения генерируемой мощности. Этого можно достигнуть различными путями.

Например, для увеличения генерируемой мощности в 10 раз можно увеличить магнитный поток в \/10, т. е. примерно в 3,16 раза; для этого потребуются два магнита РЗМ площадью по 6 J см2. При выполнении этого условия легко получить мощность в 30--40 Вт. Такой мощности вполне достаточно для обеспечения энергоснабжения навигационного буя или буя для передачи информации о гидрофизических параметрах океана. Для увеличения мощности в 100 раз, т. е. для получения 300--400 Вт, магнитный поток при всех остальных неизменных данных потребуется увеличить в 10 раз; этого можно добиться применением нескольких пар магнитов РЗМ вместо одной. Такой способ удобнее, так как позволяет ввести автоматическую компенсацию силы статического притяжения магнитов, что облегчит условия работы преобразователя и позволит говорить о создании генераторов такого типа мощностью до нескольких десятков киловатт.

Вопрос стоит о цене киловатта в зависимости от размеров установки.

Преобразователи этого типа отличаются простотой, но дорога основная часть -- магниты РЗМ. Возможная область их применения -- малая энергетика, т. е. небольшие силовые установки для отдельных ферм, рыбозаводов или совхозов, расположенных вблизи побережья.

Основное преимущество устройств подобного типа --предельная простота устройства. Они вполне соответствуют второму типу преобразователей приведенной выше классификации. Преобразование идет по короткой схеме: волны -- механический приемник энергии волн--генератор электрической энергии; эта схема отличается от идеальной (схемы I) введением лишь одного элемента -- приемника энергии в виде плиты.

Одна из особенностей преобразователей с колебательным движением заключается в необходимости применения постоянных магнитов типа РЗМ (с другими известными ныне типами постоянных магнитов нужного эффекта не получится из-за недостаточности их остаточной индукции), но РЗМ -- относительно дороги и дефицитны, что скажется на их применении.

Для нормальной работы преобразователей рассмотренного типа необходимо иметь неподвижное основание, на чем можно было бы укрепить раму, поддерживающую горизонтальную ось, относительно которой колеблется плита со штангой и магнитами. Подобное требование не всегда можно выполнить в условиях открытого моря, однако имеются способы обойти это затруднение. Первый из них заключается в применении якоря. Он может обеспечить достаточную неподвижность одной из частей преобразователя, относительно которой будет колебаться вторая часть, несущая магниты или обмотки. В этом случае конструкция преобразователя должна несколько измениться. Еще лучше вместо якоря использовать стабилизированный буй (типа «вехи Фрудл») с достаточной плавучестью. Можно решить эту задачу н на принципиально ином физическом принципе, использовав силы инерции вместо прямого давления волн на плиту.

Описанный преобразователь динамоэлектрического типа в колебательном режиме дает переменный ток, частота которого колеблется так же, как и его эффективное значение. Непосредственная подача такого тока потребителям вряд ли окажется приемлемой, поэтому перед подачей его параметры должны быть улучшены. Проще всего это сделать с помощью аккумулятора того или иного типа.

ЗАКЛЮЧЕНИЕ

Неоспорима роль энергии в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы - прямо или косвенно - больше энергии, чем ее могут дать мускулы человека.

Потребление энергии - важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж: в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом - 100 МДж.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма».

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая». Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед. Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому. следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: «Нет простых решений, есть только разумный выбор».

СПИСОК ЛИТЕРАТУРЫ

1. Баланчевадзе В. И., Барановский А. И. и др.; Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. - М.: Энергоатомиздат, 1990. - 344 с.

2. Шефтер Я.И. Использование энергии ветра 2 издание.., перераб, и доп. Энергоатомиздат.

3. Шейдлин А. Е. Новая энергетика. - М.: Наука, 1987. - 463 с.

4. Юдасин Л. С.. Энергетика: проблемы и надежды. - М.: Просвещение, 1990. 207с.

5. Вершинский Н. В. Энергия океана - М. Наука, 1986 - 144с.

6. Шулейкин В. В. Физика моря - М. ОНТИ, 1938 - 314с.

Размещено на Allbest.ur


Подобные документы

  • Ветроэнергетика: история развития, ветер как источник энергии. Принципы преобразования энергии и работы ветродвигателя. Энергия Мирового океана: альтернативная океаническая энергетика, тепловая энергия океана-идеи Д'Арсонваля и работы Клода.

    дипломная работа [313,6 K], добавлен 02.11.2007

  • Ветер как источник энергии. Выработка энергии ветрогенератором. Скорость ветра как важный фактор, влияющий на количество вырабатываемой энергии. Ветроэнергетические установки. Зависимость использования энергии ветра от быстроходности ветроколеса.

    реферат [708,2 K], добавлен 26.12.2011

  • Ветер как источник энергии. Принципы преобразования энергии ветра и работы ветродвигателя. Принцип действия ветряных электростанций. Принцип работы ветроколеса. Положительные и отрицательные стороны развития ветроэнергетики сегодня в России и за рубежом.

    курсовая работа [944,9 K], добавлен 08.12.2014

  • История использования энергии ветра. Современные методы генерации электроэнергии, конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения. Мировые мощности ветряной энергетики, проблемы, экологические аспекты и перспективы развития.

    реферат [580,7 K], добавлен 21.11.2010

  • Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат [3,0 M], добавлен 18.10.2013

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Описания ветроэнергетики, специализирующейся на преобразовании кинетической энергии воздушных масс в атмосфере в любую форму энергии, удобную для использования в народном хозяйстве. Изучение современных методов генерации электроэнергии из энергии ветра.

    презентация [2,0 M], добавлен 18.12.2011

  • Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат [4,5 M], добавлен 29.03.2011

  • Преобразованная энергия солнечного излучения. Потенциал и перспектива использования нетрадиционных и возобновляемых источников энергии. Выработка электроэнергии с помощью ветра. Ветроэнергетика в Украине. Развитие нетрадиционной энергетики Крыма.

    реферат [677,3 K], добавлен 20.01.2011

  • Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация [1,1 M], добавлен 25.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.