Решение контактных задач теории упругости с использованием дискретного элемента конечных размеров
Изучение возможности решения контактных задач теории упругости, задачи о штампе, используя дискретную модель сплошной среды. Идея моделирования сплошной среды с использованием дискретного элемента конечных размеров. Метод последовательных перемещений.
Рубрика | Физика и энергетика |
Предмет | Физика |
Вид | статья |
Язык | русский |
Прислал(а) | А.Д. Шамровский |
Дата добавления | 22.03.2016 |
Размер файла | 722,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Метод конечных элементов (МКЭ) — численный метод решения задач прикладной физики. История возникновения и развития метода, области его применения. Метод взвешенных невязок. Общий алгоритм статического расчета МКЭ. Решение задач методом конечных элементов.
курсовая работа [2,0 M], добавлен 31.05.2012Теория напряженно-деформированного состояния в точке тела. Связь между напряженным и деформированным состоянием для упругих тел. Основные уравнения и типы задач теории упругости. Принцип возможных перемещений Лагранжа и возможных состояний Кастильяно.
реферат [956,3 K], добавлен 13.11.2011Модели сплошной среды–идеальная и вязкая жидкости. Уравнение Навье-Стокса. Силы, действующие в атмосфере. Уравнение движения свободной атмосферы. Геострофический ветер. Градиентный ветер. Циркуляция атмосферы. Образование волновых движений в атмосфере.
реферат [167,4 K], добавлен 28.12.2007Понятие о возможных перемещениях. Действительные работы внешних и внутренних сил. Потенциальная энергия стержневой системы. Теоремы Клапейрона и Бетти. Применение интеграла и формулы Мора, закона Гука. Определение перемещений методами теории упругости.
презентация [219,6 K], добавлен 24.05.2014- Вариант определения напряженно-деформированного состояния упругого тела конечных размеров с трещиной
Изучение процесса разрушения твердых тел при распространении трещины. Возникновение метода конечных элементов. Введение локальной и глобальной нумерации узлов. Рассмотрение модели трещины в виде физического разреза и материального слоя на его продолжении.
курсовая работа [2,7 M], добавлен 26.12.2014 Построение задач термоупругости. Модели сплошной среды. Термоупругая среда с внутренними параметрами состояния. Плоские гармонические термоупругие волны расширения в неограниченной среде. Отражение преломления термоупругих волн в матричной формулировке.
курсовая работа [437,4 K], добавлен 26.04.2010Разработка математических методов и построенных на их основе алгоритмов синтеза законов управления. Обратные задачи динамики в теории автоматического управления. Применение спектрального метода для решения обратных задач динамики, характеристики функций.
курсовая работа [1,4 M], добавлен 14.12.2009Нахождение дискретных преобразований Фурье заданного дискретного сигнала. Односторонний и двусторонний спектры сигнала. Расчет отсчетов дискретного сигнала по полученному спектру. Восстановление аналогового сигнала по спектру дискретного сигнала.
курсовая работа [986,2 K], добавлен 03.12.2009Свойства независимых комбинаций продольной и поперечной объемных волн. Закон Гука в линейной теории упругости при малых деформациях. Коэффициент Пуассона, тензоры напряжения и деформации. Второй закон Ньютона для элементов упругой деформированной среды.
реферат [133,7 K], добавлен 15.10.2011Подходы к построению физических моделей. Физический принцип регистрации землетрясений. Теория деформации, основанная на физических закономерностях о сжимаемости и деформируемости. Распространение сейсмических волн при влиянии неидеальной упругости среды.
дипломная работа [6,8 M], добавлен 14.07.2015