История развития механики
Основные понятия и методы механики, ее структура и место среди других разделов физики. Учения периода создания и становления механики, развитие её методов в XVIII-XIX вв. История развития механики в России и СССР, проблемы и современное состояние науки.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.02.2015 |
Размер файла | 50,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Крупнейшими проблемами динамики, постановка и решение которых относятся, главным образом, к XIX в., являются: движение тяжелого твердого тела, теория упругости равновесия и движения, а также тесно связанная с этой теорией задача о колебаниях материальной системы. Первое решение задачи о вращении тяжелого твердого тела произвольной формы вокруг неподвижного центра в частном случае, когда неподвижный центр совпадает с центром тяжести, принадлежит Эйлеру. Кинематические представления этого движения были даны в 1834 г. Л. Пуансо. Случай вращения, когда неподвижный центр, не совпадающий с центром тяжести тела, помещен на оси симметрии, был рассмотрен Лагранжем. Решение этих двух классических задач легло в основу создания строгой теории гироскопических явлений (гироскоп - прибор для наблюдения вращения). Выдающиеся исследования в этой области принадлежат французскому физику Л. Фуко (1819 - 1968), создавшему ряд гироскопических приборов. Примерами таких приборов могут служить гироскопический компас, искусственный горизонт, гироскоп и другие. Эти исследования указали на принципиальную возможность, не прибегая к астрономическим наблюдениям, установить суточное вращение Земли и определить широту и долготу места наблюдения. После работ Эйлера и Лагранжа, несмотря на усилия ряда выдающихся математиков, проблема вращения тяжелого твердого тела вокруг неподвижной точки долго не получала дальнейшего развития.
Основы теории движения твердого тела в идеальной жидкости были даны немецким физиком Г. Кирхгофом в 1869 г. С появлением в середине XIX в. нарезных орудий, что имело целью придание снаряду вращения, необходимого для устойчивости в полете, задача внешней баллистики оказалась тесно связанной с динамикой тяжелого твердого тела. Такая постановка задачи и решение ее принадлежит выдающемуся русскому ученому - артиллеристу Н. В. Маевскому (1823 - 1892).
Одной из важнейших проблем механики является задача об устойчивости равновесия и движения материальных систем. Первая общая теорема об устойчивости равновесия системы, находящейся под действием обобщенных сил, принадлежит Лагранжу и изложена в “Аналитической механике”. Согласно этой теореме, достаточным условием равновесия является наличие в положении равновесия минимума потенциальной энергии. Метод малых колебаний, примененный Лагранжем для доказательства теоремы об устойчивости равновесия, оказался плодотворным для исследования устойчивости установившихся движений. В “Трактате об устойчивости заданного состояния движения” английского ученого Э. Рауса, опубликованном в 1877 г., исследование устойчивости методом малых колебаний было сведено к рассмотрению распределения корней некоторого “характеристического” уравнения и указаны необходимые и достаточные условия, при которых эти корни имеют отрицательные вещественные части.
С иной, чем у Рауса, точки зрения задача об устойчивости движения была рассмотрена в сочинении Н. Е. Жуковского (1847 - 1921) “О прочности движения” (1882 г.), в котором изучается орбитальная устойчивость. Критерии этой устойчивости, установленные Жуковским, сформулированы в наглядной геометрической форме, столь характерной для всего научного творчества великого механика.
Строгая постановка задачи об устойчивости движения и указание наиболее общих методов ее решения, а также конкретное рассмотрение отдельных важнейших задач теории устойчивости принадлежат А. М. Ляпунову, и изложены им в фундаментальном сочинении “Общая задача об устойчивости движения” (1892). Им было дано определение устойчивого положения равновесия, которое выглядит следующим образом: если при данном (радиус сферы) можно выбрать такое, сколь угодно малое, но не равное нулю значение h (начальная энергия), что во все последующее время частица не выйдет за пределы сферы радиуса , то положение равновесия в данной точке называется устойчивым. Ляпунов связал решение задачи об устойчивости с рассмотрением некоторых функций, из сопоставления знаков которых со знаками их производных по времени можно заключить об устойчивости или неустойчивости рассматриваемого состояния движения (“вторая метода Ляпунова”). С помощью этого метода Ляпунов в своих теоремах об устойчивости по первому приближению указал границы применимости метода малых колебаний материальной системы около положения ее устойчивого равновесия (впервые изложенной в “Аналитической механике” Лагранжа).
Последующее развитие теории малых колебаний в XIX в. было связано, главным образом, с учетом влияния сопротивлений, приводящих к затуханию колебаний, и внешних возмущающих сил, создающих вынужденные колебания. Теория вынужденных колебаний и учение о резонансе появились в ответ на запросы машинной техники и, в первую очередь, в связи со строительством железнодорожных мостов и созданием быстроходных паровозов. Другой важной отраслью техники, развитие которой потребовало приложения методов теории колебаний, было регуляторостроение. Основоположником современной динамики процесса регулирования является русский ученый и инженер И. А. Вышнеградский (1831 - 1895). В 1877 г. в работе “О регуляторах прямого действия” Вышнеградский впервые сформулировал известное неравенство, которому должна удовлетворять устойчиво работающая машина, снабженная регулятором.
Дальнейшее развитие теории малых колебаний было тесно связано с возникновением отдельных крупных технических проблем. Наиболее важные работы по теории качки корабля при волнении принадлежат выдающемуся советскому ученому А. Н. Крылову, вся деятельность которого была посвящена применению современных достижений математики и механики к решению важнейших технических задач. В XX в. задачи электротехники, радиотехники, теории автоматического регулирования машин и производственных процессов, технической акустики и другие вызвали к жизни новую область науки - теорию нелинейных колебаний. Основы этой науки были заложены в трудах А. М. Ляпунова и французского математика А. Пуанкаре, а дальнейшее развитие, в результате которого образовалась новая, быстро растущая дисциплина, обязано достижениям советских ученых. К концу XIX в. выделилась особая группа механических задач - движение тел переменной массы. Основополагающая роль в создании новой области теоретической механики - динамики переменной массы - принадлежит русскому ученому И. В. Мещерскому (1859 - 1935). В 1897 г. им была опубликована фундаментальная работа “Динамика точки переменной массы”.
В XIX и начале XIX вв. были заложены основы двух важных разделов гидродинамики: динамики вязкой жидкости и газовой динамики. Гидродинамическую теорию трения создал русский ученый Н. П. Петров (1836 - 1920). Первое строгое решение задач этой области указал Н. Е. Жуковский.
К концу XIX в. механика достигла высокого уровня развития. XX в. принес глубокий критический пересмотр ряда основных положений классической механики и ознаменовался возникновением механики быстрых движений, протекающих со скоростями, близкими к скорости света. Механика быстрых движений, а также механика микрочастиц явились дальнейшими обобщениями классической механики. Ньютонова механика сохранила за собой обширное поле деятельности в основных вопросах техники.
Механика в России и СССР. Механика в дореволюционной России, благодаря плодотворной научной деятельности М. В. Остроградского, Н. Е. Жуковского, С. А. Чаплыгина, А. М. Ляпунова, А. Н. Крылова и других, достигла больших успехов и оказалась в состоянии не только справиться с задачами, выдвинутыми перед ней отечественной техникой, но и способствовать развитию техники во всем мире. Трудами “отца русской авиации” Н. Е. Жуковского были заложены основы аэродинамики и авиационной науки в целом. Работы Н. Е. Жуковского и С. А. Чаплыгина имели основное значение в развитии современной гидроаэромеханики. С. А. Чаплыгину принадлежит фундаментальное исследование в области газовой динамики, указавшее на многие десятки лет вперед пути развития аэродинамики больших скоростей. Работы А. Н. Крылова по теории устойчивости качки корабля на волнении, исследования по вопросам плавучести их корпуса, теория девиации компасов поставили его в ряд основоположников современной науки о кораблестроении.
Одним из важных факторов, способствовавших развитию механики в России, явился высокий уровень преподавания ее в высшей школе. В этом отношении многое было сделано М. В. Остроградским и его последователями.
Наибольшее техническое значение вопросы устойчивости движения имеют в задачах теории автоматического регулирования. Выдающаяся роль в развитии теории и техники регулирования машин и производственных процессов принадлежит И. Н. Вознесенскому (1887 - 1946). Проблемы динамики твердого тела развивались главным образом в связи с теорией гироскопических явлений.
Существенных результатов достигли советские ученые в области теории упругости. Ими были проведены исследования по теории изгиба плит и общим решениям задач теории упругости, по плоской задаче теории упругости, по вариационным методам теории упругости, по строительной механике, по теории пластичности, по теории идеальной жидкости, по динамике сжимаемой жидкости и газовой динамике, по теории фильтрации движений, что способствовало быстрому развитию советской гидроаэродинамики, были развиты динамические задачи в теории упругости. Результаты первостепенной важности, полученные учеными Советского Союза по теории нелинейных колебаний, утвердили за СССР ведущую роль в этой области. Постановка, теоретическое рассмотрение и организация экспериментального изучения нелинейных колебаний составляют важную заслугу Л. И. Мандельштама (1879 - 1944) и Н. Д. Папалекси (1880 - 1947) и их школы (А. А. Андронов и другие). Основы математического аппарата теории нелинейных колебаний заключены в работах А. М. Ляпунова и А. Пуанкаре. “Предельные циклы” Пуанкаре были поставлены А. А. Андроновым (1901 - 1952) в связь с задачей о незатухающих колебаниях, названных им автоколебаниями. Наряду с методами, основанными на качественной теории дифференциальных уравнений, развилось аналитическое направление теории дифференциальных уравнений.
4. ПРОБЛЕМЫ СОВРЕМЕННОЙ МЕХАНИКИ
К числу основных проблем современной механики систем с конечным числом степеней свободы относятся, в первую очередь, задачи теории колебаний, динамики твердого тела и теории устойчивости движения. В линейной теории колебаний важное значение имеет создание эффективных методов исследования систем с периодически изменяющимися параметрами, в частности, явления параметрического резонанса. Для изучения движения нелинейных колебательных систем разрабатываются как аналитические методы, так и методы, основанные на качественной теории дифференциальных уравнений. Проблемы колебаний тесно переплетаются с вопросами радиотехники, автоматического регулирования и управления движениями, а также с задачами измерения, предупреждения и устранения вибраций в транспортных устройствах, машинах и строительных сооружениях. В области динамики твердого тела наибольшее внимание уделяется задачам теории колебаний и теории устойчивости движения. Эти задачи ставятся динамикой полета, динамикой корабля, теорией гироскопических систем и приборов, применяемых главным образом в аэронавигации и кораблевождении. В теории устойчивости движения на первое место выдвигается исследование “особых случаев” Ляпунова, устойчивости периодических и неустановившихся движений, причем основным орудием исследования является так называемая “вторая метода Ляпунова”.
В теории упругости наряду с задачами для тела, подчиняющегося закону Гука, наибольшее внимание привлекают вопросы пластичности и ползучести в деталях машин и сооружений, расчет устойчивости и прочности тонкостенных конструкций. Большое значение приобретает также направление, ставящее себе целью установление основных законов связи напряжений с деформациями и скоростями деформаций для моделей реальных тел (реологические модели). В тесной связи с теорией пластичности развивается механика сыпучей среды. Динамические проблемы теории упругости связывают с сейсмологией, распространением упругих и пластичных волн вдоль стержней и динамическими явлениями, возникающими при ударе.
Наиболее важные задачи гидроаэродинамики связаны с проблемами больших скоростей в авиации, баллистике, турбостроении и двигателестроении. Сюда относятся, прежде всего, теоретическое определение аэродинамических характеристик тел при до-, около- и сверхзвуковых скоростях как при установившемся, так и неустановившемся движениях. Проблемы аэродинамики больших скоростей тесно переплетаются с вопросами теплоотдачи, горения и взрывов. Изучение движений сжимаемого газа при больших скоростях предполагает основную проблему газовой динамики, а при малых скоростях связывается с задачами динамической метеорологии. Основное значение для гидроаэродинамики имеет проблема турбулентности, до сих пор еще не получившая теоретического решения. На практике продолжают пользоваться многочисленными эмпирическими и полуэмпирическими формулами. Перед гидродинамикой тяжелой жидкости стоят проблемы пространственной теории волн и волнового сопротивления тел, волнобразования в реках и каналах и ряд задач, связанных с гидротехникой. Большое значение для последней, а также для вопросов добычи нефти имеют проблемы фильтрационного движения жидкостей и газов в пористых средах.
ЗАКЛЮЧЕНИЕ
Механика Галилея - Ньютона прошла длинный путь развития и далеко не сразу завоевала право называться классической. Ее успехи, особенно в XVII-XVIII столетиях, утвердили эксперимент в качестве основного метода проверки теоретических построений. Практически до конца XVIII столетия механика занимала ведущее положение в науке, и ее методы оказали большое влияние на развитие всего естествознания.
В дальнейшем механика Галилей - Ньютона продолжала интенсивно развиваться, но ее ведущее положение постепенно начало утрачиваться. На передний край науки стали выходить электродинамика, теория относительности, квантовая физика, ядерная энергетика, генетика, электроника, вычислительная техника. Механика уступила место лидера в науке, но не утратила своего значения. По-прежнему все динамические расчеты любых механизмов, работающих на земле, под водой, в воздухе и космосе, основаны в той или иной степени на законах классической механики. На далеко не очевидных следствиях из основных ее законов построены приборы, автономно, без вмешательства человека, определяющие местонахождение подводных лодок, надводных кораблей, самолетов; построены системы, автономно ориентирующие космические аппараты и направляющие их к планетам Солнечной системы, комете Галлея. Аналитическая механика - составная часть классической механики - сохраняет “непостижимую эффективность” в современной физике. Поэтому, как бы ни развивалась физика и техника, классическая механика всегда будет занимать свое достойное место в науке.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. БСЭ, т. 3, 4, 9, 10, 11, 13, 14, 17, 20, 22, 27, 29, 30, 31, 33, 36, 39, 40, 42, 44.
2. Бухгольц Н. Н. Основной курс теоретической механики (часть первая). - М.: Наука, 1972.
3. Дягилев Ф. М. Из истории физики и жизни ее творцов. - М.: Просвещение, 1986.
4. Корн Г. и Корн Т. Справочник по математике. - М.: Наука, 1968.
5. Костко О. К. Универсальный справочник по физике школьникам и абитуриентам. - М.: Лист Нью, 2002.
6. Купер Л. Физика для всех (том 1). - М.: Мир, 1973.
7. Меркин Д. Р. Краткая история классической механики Галилея - Ньютона. - М.: Физматлит, 1994.
8. Мир физики. Книга I. Механика. / Хрестоматия. (Сост.: Ганин В. В., Ганина Н. В., Фистуль М. В.) - М.: изд. Российского открытого института, 1992.
ПРИЛОЖЕНИЕ
Гидромеханика - раздел физики, занимающийся изучением законов движения и равновесия жидкости и её взаимодействия с омываемыми твердыми телами.
Аэромеханика - наука о равновесии и движении газообразных сред и твердых тел в газообразной среде, в первую очередь в воздухе.
Газовая механика - наука, изучающая движение газов и жидкостей в условиях, когда свойство сжимаемости имеет существенное значение.
Аэростатика - часть механики, изучающая условия равновесия газов (в особенности воздуха).
Кинематика - раздел механики, в котором изучаются перемещения тел без учета взаимодействий, определяющих эти движения. Основные понятия: мгновенная скорость, мгновенное ускорение.
Баллистика - наука о движении снаряда. Внешняя баллистика изучает движение снаряда в воздухе. Внутренняя баллистика изучает движение снаряда под действием пороховых газов, механическая свобода которого ограничена какими-либо усилиями.
Гидравлика - наука об условиях и законах равновесия и движения жидкостей и способах применения этих законов к решению практических задач. Может быть определена как прикладная механика жидкости.
Инерциальная система координат - такая система координат, в которой выполняется закон инерции, т.е. в которой тело при компенсации оказываемых на него внешние воздействий движется равномерно и прямолинейно.
Давление - физическая величина, равная отношению нормальной составляющей силы, с которой тело действует на поверхность соприкасающейся с ним опоры, к площади соприкосновения или иначе - нормальная поверхностная сила, действующая на единицу площади.
Вязкость (или внутреннее трение) - свойство жидкостей и газов оказывать сопротивление при перемещении одной части жидкости относительно другой.
Ползучесть - процесс малой непрерывной пластичной деформации, протекающей в металлах в условиях длительного статического нагружения.
Релаксация - процесс установления статического равновесия в физической или физико-химической системе. В процессе релаксации макроскопические величины, характеризующие состояние системы, асимптотически приближаются к своим равновесным значениям.
Механические связи - ограничения, наложенные на движение или положение системы материальных точек в пространстве и осуществляемые при помощи поверхностей, нитей, стержней и других. Математические соотношения между координатами или их производными, характеризующие осуществляемые механические связи ограничения движения, называют уравнениями связей. Чтобы движение системы было возможно, число уравнений связей должно быть меньше числа координат, определяющих положение системы.
Оптический метод исследования напряжений - метод изучения напряжений в поляризованном свете, основанный на том, что частицы аморфного материала при деформации становятся оптически анизотропными. При этом главные оси эллипсоида показателей преломления совпадают с главными направлениями деформации, а главные световые колебания, проходя через деформированную пластину поляризованного света, получают разность хода.
Тензометр - прибор для измерения приложенных к какой-либо системе растягивающих или сжимающих усилий по деформациям, вызываемым этими усилиями.
Небесная механика - раздел астрономии, посвященный изучению движения космических тел. Сейчас термин применяют по другому и предметом небесной механики обычно считают только общие методы изучения движения и силового поля тел солнечной системы.
Теория упругости - раздел механики, в котором изучаются перемещения, упругие деформации и напряжения, возникающие в твердом теле под действием внешних сил, от нагревания и от других воздействий. Ставит своей задачей определить количественные соотношения, характеризующие деформацию или внутренние относительные перемещения частиц твердого тела, находящегося под влиянием внешних воздействий в состоянии равновесия или малого внутреннего относительного движения.
Размещено на Allbest.ru
Подобные документы
Определение механики, ее место среди других наук, подразделения механики. Развитие методов механики с XVIII в. до нашего времени. Механика в России и СССР. Современные проблемы теории колебаний, динамики твердого тела и теории устойчивости движения.
реферат [47,3 K], добавлен 19.06.2019Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.
презентация [303,7 K], добавлен 08.04.2012Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.
контрольная работа [29,8 K], добавлен 16.08.2009Особенности развития гидравлики в период Древней Греции и Древнего Рима, в период XV - начало XVIII века. Научные основы механики жидкости заложены учеными XVIII в.: Бернулли, Эйлером и Д'Аламбером. Зарождение и развитие гидравлики в ХІХ в. в России.
реферат [297,5 K], добавлен 14.09.2010- История возникновения и формирования квантовой механики и квантово-механической теории твердого тела
Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.
доклад [473,4 K], добавлен 24.09.2019 История числа пи. Принципы реальной механики, базирующейся на философских понятиях: реализм-центризм-циклизм. Ее пространственно-временная система координат, материально-энергетическая система. Законы реальной механики. Энергетическая составляющая МЭС.
статья [1,0 M], добавлен 21.10.2014Диссипативная модификация квантовой механики. Суперструнные модели; дилатонное скалярное поле и инфляция. Микроскопический струнный подход к описанию диссипативного варианта квантовой механики. Сравнение теории с наблюдениями, построение графиков.
контрольная работа [3,3 M], добавлен 05.08.2015Сила инерции как геометрическая сумма сил противодействия движущейся материальной частицы телам, сообщающим ей ускорение. Знакомство с основными принципами механики, анализ. Рассмотрение особенностей движений механической системы с идеальными связями.
презентация [152,6 K], добавлен 09.11.2013Физический смысл волн де Бройля. Соотношение неопределенности Гейзенберга. Корпускулярно-волновая двойственность свойств частиц. Условие нормировки волновой функции. Уравнение Шредингера как основное уравнение нерелятивистской квантовой механики.
презентация [738,3 K], добавлен 14.03.2016"Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.
реферат [90,7 K], добавлен 21.11.2011