Электричество и Магнетизм. Основные понятия и формулы
Закон Кулона, принцип суперпозиции, теорема Остроградского-Гаусса. Основные положения классической электронной теории. Связь плотности тока со скоростью направленного движения и концентрацией заряженных частиц. Закон Ома в дифференциальной форме.
Рубрика | Физика и энергетика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 17.06.2014 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Введение тока смещения позволило устранить противоречие в формуле Ампера для циркуляции магнитного поля, которая после добавления туда тока смещения стала непротиворечивой и составила последнее уравнение, позволившее корректно замкнуть систему уравнений (классической) электродинамики.
Строго говоря, ток смещения не является электрическим током, но измеряется в тех же единицах, что и электрический ток.
Закон Ампера -- Максвелла (синоним: обобщенная теорема Ампера о циркуляции) -- закон электромагнетизма, исторически завершивший создание замкнутой и непротиворечивой классической электродинамики.
Открыт Максвеллом, обобщившим теорему Ампера о циркуляции магнитного поля на общий случай, включающий переменные несоленоидальные (незамкнутые) токи и меняющиеся во времени поля.
Формулировка этого закона составляет четвёртое уравнение Максвелла:
Вектор Пойнтинга (также вектор Умова -- Пойнтинга) -- вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга Sможно определить через векторное произведение двух векторов:
(в системе СГС),
(в СИ),
где E и H -- векторы напряжённости электрического и магнитного полей соответственно.
Теория относительности указывает, как надо рассматривать физические явления в любой инерциальной системе отсчета. СТО исходит из полного равноправия всех инерциальных систем. Это означает, что основные уравнения, описывающие физические явления в природе, должны быть одинаковыми во всех инерциальных системах; конечно, для каждой системы отсчета они записываются в соответствующих переменных, т. е. для масштабов и часов данной системы отсчета.
Основная система уравнений, описывающих электромагнитные явления, -- это система уравнений Максвелла. Замечательно, что система уравнений Максвелла, сформулировапная за пятьдесят лет до появления специальной теории относительности, оказалась ковариантной по отношению к преобразованиям Лорепца, т. е. с точностью до обозначений переменных сохраняла свой вид, если к ней применялись преобразования Лоренца. Это и означает, что система уравнений Максвелла сохраняет свой вид в любой инерциальной системе отсчета, а нрницип относительности выполняется автоматически.
Таким образом, уравнения электродинамики с точки зрения СТО менять не нужно, и могло бы показаться, что теория относительности ничего существенного в электродинамику внести не может. Однако это совсем не так.
Прежде всего, до создания теории относительности было неясно, в каких системах отсчета справедлива система уравнений Максвелла. Из теории относительности сразу же следовало, что эта система уравнений годится для любой инерциальной системы отсчета. Далее, естественно было переписать систему уравнений Максвелла в четырехмерной форме. Такая запись позволяет установить формулы преобразования основных величин, входящих в теорию, при переходе от одной ИСО к другой. При переходе к четырехмерной записи мы обнаружим также неразрывное единство зарядов и токов, электрических и магнитных моментов, электрического и магнитного полей. Обнаружится связь и некоторых других физических величин. Такая тесная связь между определенными физическими величинами оставалась в тени до появления релятивистского подхода к электромагнитным явлениям.
Что касается преобразования компонент электрического и магнитного полей при переходе от одной инерциальной системы к другой, то это преобразование последовательно может быть проведено лишь в рамках теории относительности. Только теория относительности показывает, что для описания электромагнитного поля необходимо использовать четырехмерный антисимметричный тензор.
Напряжённость магнимтного помля (стандартное обозначение Н) -- векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
В Международной системе единиц (СИ):
где -- магнитная постоянная.
Диамагнетизм (от греч. dia… -- расхождение (силовых линий), и магнетизм) -- один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.
Диамагнетизм свойствен всем веществам. Диамагнетизм можно рассматривать как следствие индукционных токов, наводимых в заполненных электронных оболочках ионов внешним магнитным полем. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему полю (независимо от того, имелся ли первоначально собственный момент или нет и как он был ориентирован). Диамагнетизм, однако, невозможно описать с позиции только классической физики, это предельно квантовомеханическое явление.[1] Идеальный диамагнетизм носит некооперативный характер и характеризуется отрицательной, не зависящей от температуры магнитной восприимчивостью. Диамагнетизм входит в состав любого магнитного состояния вещества, но он обычно пренебрежимо мал по сравнению с магнетизмом, обусловленным наличием спонтанных магнитных моментов в системе. У чисто диамагнитных веществ электронные оболочки (молекул) не обладают постоянным моментом. Моменты, создаваемые отдельными электронами в таких в отсутствие внешнего поля взаимно скомпенсированы. В частности, это имеет место в ионах и молекулах с целиком заполненными электронными оболочками, например, в инертных газах, в молекулах.
Примерами чисто диамагнитных твёрдых тел (диамагнетиков) в классе кристаллических металлов и диэлектриков могут служить, соответственно, Cu и NaCl, а в классе аморфных твёрдых тел -- SiO2
Ферромагнетизм (англ. ferromagnetism) -- появление спонтанной намагниченности при температуре ниже температуры Кюри[1] вследствие упорядочения магнитных моментов, при котором большая их часть параллельна друг другу. Вещества, в которых возникает ферромагнитное упорядочение магнитных моментов, называются ферромагнетиками
Парамагнетики -- вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля (J^^H) и имеют положительную магнитную восприимчивость. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы .
Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.
Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствии внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.
К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород (О2), оксид азота (NO), оксид марганца(MnO), хлорное железо (FeCl3) и др.
Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).
Размещено на Allbest.ru
Подобные документы
Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения заряда. Електрическое поле. Напряженность электрического поля. Электрическое поле точечного заряда. Принцип суперпозиции полей. Электромагнитная индукция. Магнитный поток.
учебное пособие [72,5 K], добавлен 06.02.2009Фундаментальные взаимодействия в природе. Взаимодействие электрических зарядов. Свойства электрического заряда. Закон сохранения электрического заряда. Формулировка закона Кулона. Векторная форма и физический смысл закона Кулона. Принцип суперпозиции.
презентация [1,1 M], добавлен 24.08.2015Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц.
шпаргалка [126,6 K], добавлен 06.06.2010Понятие и предмет электростатики. Изучение свойств электрического заряда, закона сохранения заряда, закона Кулона. Особенности направления вектора напряженности. Принцип суперпозиции полей. Потенциал результирующего поля, расчет по методу суперпозиции.
презентация [773,6 K], добавлен 26.06.2015Причины электрического тока. Закон Ома для неоднородного участка цепи. Закон Ома в дифференциальной форме. Работа и мощность. Закон Джоуля–Ленца. Плотность тока, уравнение непрерывности. КПД источника тока. Распределение напряженности и потенциала.
презентация [991,4 K], добавлен 13.02.2016Сущность фундаментального закона Кулона, который количественно описывает взаимодействие заряженных тел. Его запись в векторном виде и схожесть с законом всемирного тяготения. Вычисления при помощи закона Кулона, требующие определения единицы заряда.
презентация [507,6 K], добавлен 04.02.2016Предмет, законы и понятия электростатики. Свойства электрических зарядов. Напряжённость электростатического поля. Силовые линии и принцип суперпозиции. Поток вектора напряжённости. Электростатическая теорема Остроградского-Гаусса. Электрические явления.
презентация [413,2 K], добавлен 19.06.2013Наиболее известные работы Ома. Сила тока, напряжение и сопротивление. Физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Закон Ома в интегральной форме, для участка цепи и переменного тока.
презентация [152,6 K], добавлен 21.02.2013Основной закон электростатики, его содержание и обстоятельства открытия известным французским ученым Ш. Кулоном в 1785 году. Взаимодействие заряженных тел, его принципы и направления. Схема опыта Кулона и анализ его результатов, математическая модель.
презентация [260,2 K], добавлен 04.09.2014Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.
реферат [61,6 K], добавлен 08.04.2011