Реактивное движение

Реактивное движение в природе. Применение реактивных двигателей для самолетов и ракет, не входящих за пределы атмосферы. Разработка баллистических ракет. Первый искусственный спутник Земли. Проект орбитальной станции. Современные космические аппараты.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 25.05.2014
Размер файла 110,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На большинстве современных космических аппаратов стоят жидкостные ракетные двигатели. Однако в невесомости непросто обеспечить для них устойчивую подачу топлива. В отсутствие силы тяжести любая жидкость под влиянием сил поверхностного натяжения стремится принять форму шара. Обычно внутри бака образуется множество плавающих шаров. Если компоненты топлива будут поступать неравномерно, чередуясь с газом, заполняющим пустоты, горение будет неустойчивым. В лучшем случае произойдет остановка двигателя -- он буквально «подавится» газовым пузырем, а в худшем -- взрыв. Поэтому для запуска двигателя нужно прижать топливо к заборным устройствам, отделив жидкость от газа. Один из способов «осадить» топливо -- включить вспомогательные двигатели, например, твердотопливные или работающие на сжатом газе. На короткое время они создадут ускорение, и жидкость по инерции прижмется к топливозаборнику, одновременно освободившись от пузырьков газа. Другой способ -- добиться, чтобы первая порция жидкости всегда оставалась в заборнике. Для этого возле него можно поставить сетчатый экран, который за счет капиллярного эффекта будет удерживать часть топлива для запуска двигателя, а когда он заработает, остальное «осядет» по инерции, как в первом варианте.

Но есть и более радикальный способ: залить топливо в эластичные мешки, помещенные внутрь бака, после чего закачивать в баки газ. Для наддува обычно используют азот или гелий, запасая их в баллонах высокого давления. Конечно, это лишний вес, зато при небольшой мощности двигателя можно избавиться от топливных насосов -- давление газа обеспечит подачу компонентов по трубопроводам в камеру сгорания. Для более мощных двигателей без насосов с электрическим, а то и с газотурбинным приводом не обойтись. В последнем случае турбину раскручивает газогенератор -- маленькая камера сгорания, сжигающая основные компоненты или специальное топливо.

Маневрирование в космосе требует высокой точности, а значит, нужен регулятор, который постоянно корректирует расход топлива, обеспечивая расчетную силу тяги. При этом важно поддерживать правильное соотношение горючего и окислителя. Иначе эффективность двигателя упадет, и вдобавок один из компонентов топлива кончится раньше другого. Расход компонентов измеряют, помещая в трубопроводы небольшие крыльчатки, частота вращения которых зависит от скорости потока жидкости. А в маломощных двигателях расход жестко задается калиброванными шайбами, установленными в трубопроводах.

Для безопасности двигательную установку снабжают аварийной защитой, выключающей неисправный двигатель до того, как он взорвется. Управляет ею автоматика, поскольку в экстренных ситуациях температура и давление в камере сгорания могут меняться очень быстро. В целом двигатели и топливно-трубопроводное хозяйство -- объект повышенного внимания в любом космическом аппарате. Запасом топлива во многих случаях определяется ресурс современных спутников связи и научных зондов. Часто создается парадоксальная ситуация: аппарат полностью исправен, но не может работать из-за исчерпания топлива или, например, утечки газа для наддува баков.

Современные космические аппараты становятся все технологичнее и меньше, и запускать такие спутники тяжелыми ракетами невыгодно. Вот тут и пригодится легкий "Союз". Первый старт и начало летных испытаний - уже в будущем году.

- Включаю гидравлику. Испытания начинаем. Перегрузка 0,2, частота 11.

Эта платформа - имитация железнодорожного вагона, на ней ценный груз - ракета. Идет проверка топливного бака ракеты "Союз 2-1В" - на прочность.

"Он должен выдержать всё, все нагрузки. Датчики должны показывать, что внутри не произошло какой-то аварийной ситуации", - рассказывает Борис Баранов, заместитель начальника исследовательско-испытательного комплекса ЦСКБ "Прогресс".

Ракету трясут не переставая 100 часов. Уровень нагрузки постоянно растет. В таких испытаниях создают всё, что может произойти в пути от Самары до места пуска - космодрома.

- Испытания закончены, всем спасибо.

Так от испытания к испытанию рождается новая ракета. Двухступенчатый легкий носитель "Союз 2 1В" - на финишной прямой. Это собранная первая ступень, та самая, которая отвечает за отрыв ракеты от земли.

- Двигатель НК-33 - мощный и очень экономичный.

Двигатель с легендарной историей. В 1968 году в связки из 34 штук он давал невообразимую мощь лунной ракете Н-1, "царь-ракете", которая должна была лететь на Луну.

Уже тогда реактивная тяга двигателя составляла 154 тонны.

"Ракета не пошла, двигатель остался, и сейчас мы используем его для новых разработок. Он прекрасно работает на всех испытаниях", - рассказал первый заместитель генерального директора, генеральный конструктор ЦСКБ "Прогресс" Равиль Ахметов.

Интерес к этому двигателю и в те - годы был огромен. Часть НК-33 купили американцы, испытали их и даже лицензировали. Уже были произведены несколько запусков носителей с этим двигателем по американской космической программе. Спустя десятилетия в стенах российского ЦСКБ "Прогресс" рождается новая ракета с хорошо отработанным сердцем. "По прошествии времени двигатель отработал без замечаний. Мы решили наши заделы, нашу интеллектуальную собственность реализовать в "Союз 2-1В", - рассказал генеральный директор ЦСКБ "Прогресс" Александр Кирилин. С таким привычным названием "Союз", с такой сложной шифровкой "2-1В". Конструкторы утверждают - "Союз" должен быть во всех модификациях, тем более в легкой. Современные космические аппараты - всё технологичнее и меньше, и запускать такие спутники тяжелыми ракетами невыгодно. "Это проект, где фактически отсутствуют боковые блоки, ракета представляет собой центральный блок, но увеличенный в размерах, всё это позволяет реализовать возможность выведения аппаратов легкого класса на орбиты. Уникальность легкого "Союза" в том, что мы его удачно вписали в существующие стартовые сооружения", - поясняет первый заместитель генерального директора, главный инженер ЦСКБ "Прогресс" Сергей Тюлевин. Легкий "Союз" будет доставлять в космос спутники весом до трех тонн. Первый старт и начало летных испытаний - уже в начале будущего года.

Размещено на Allbest.ur


Подобные документы

  • Реактивное движение среди растительного и животного мира. Примеры ракетных двигателей. Применение ракет в военном деле, в научных и метеорологические исследования, для нужд космонавтики, в любительских и профессиональных целях, в ракетных автомобилях.

    презентация [4,2 M], добавлен 30.09.2012

  • Принципы реактивного движения, которые находят широкое практическое применение в авиации и космонавтике. Первый проект пилотируемой ракеты с пороховым двигателем известного революционера Кибальчича. Устройство ракеты-носителя. Запуск первого спутника.

    презентация [1,3 M], добавлен 23.01.2015

  • Реактивное движение, его применение: двигатели, оружие; проявление закона сохранения импульса тела при запуске многоступенчатой ракеты. История создания реактивной техники К.Э. Циолковским, Ю.А. Гагариным, С.П. Королевым. Реактивное движение в природе.

    реферат [93,1 K], добавлен 08.08.2011

  • Реактивное движение: сохранение импульса изолированной механической системы тел как сущность и принцип его возникновения. Примеры реактивного движения в природе и технике: "бешеный" огурец, морские животные, насекомые. Конструкция водометного двигателя.

    реферат [3,0 M], добавлен 27.02.2011

  • Реактивное движение - движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. История создания реактивного двигателя, его основные элементы и принцип работы. Физические законы Циолковского, устройство ракеты-носителя.

    презентация [1,0 M], добавлен 20.02.2012

  • Понятие реактивного движения, его проявление в ракете. Строение ракеты и ракетное топливо. Применение ракет в научной деятельности, космонавтике, военном деле. Создание модели с использованием явления перехода потенциальной энергии воды в кинетическую.

    реферат [61,2 K], добавлен 03.11.2014

  • Процессы, которые происходят при взаимодействии тел. Закон сохранения импульса, условия применения. Основа вращения устройства "сигнерова колеса". История проекта ракеты с пороховым двигателем. Технические характеристики корабля-спутника "Восток-1".

    презентация [439,5 K], добавлен 06.12.2011

  • Знакомство с основными особенностями реактивного движения. Рассмотрение первых пороховых фейерверочных и сигнальных ракет. Кальмар как наиболее крупный беспозвоночный обитатель океанских глубин. Общая характеристика конструкции космической ракеты.

    презентация [62,6 M], добавлен 20.01.2017

  • Движение, возникающее при отделении от тела со скоростью какой-либо его части. Использование реактивного движения моллюсками. Применение реактивного движения в технике. Основа движения ракеты. Закон сохранения импульса. Устройство многоступенчатой ракеты.

    реферат [1,4 M], добавлен 02.12.2010

  • Импульс тела и силы. Изучение закона сохранения импульса и условий его применения. Исследование истории реактивного движения. Практическое применение принципов реактивного движения тела в авиации и космонавтике. Характеристика значения освоения космоса.

    презентация [629,8 K], добавлен 19.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.