Предмет физики пласта

Рассмотрение понятия физики пласта, как науки, изучающей физические свойства пород нефтяных и газовых коллекторов, свойства пластовых жидкостей, газов и газоконденсатных смесей, методы их анализа, а также физические основы увеличения газоотдачи пластов.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 05.05.2014
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Объём нефти в пластовых условиях всегда больше объёма сепарированной нефти (Vпл > Vсеп). Используя объёмный коэффициент, можно определить величину усадки нефти U - степень уменьшения объёма пластовой нефти при извлечении её на поверхность:

Размещено на http://www.allbest.ru/

2.4.8 Различие свойств нефти в пределах нефтеносной залежи

Физические свойства и состав нефти в пределах одного и того же продуктивного пласта не всегда остаются постоянными (Рис.2.8).

Изменения свойств нефти в залежи зависят от многих факторов: генезиса пластовых флюидов, глубины залегания пласта, термобарического режима и других факторов.

В сводовой части залежи всегда больше газа. Состав газа в куполе складки имеет больше азота, метана, этана, пропана приблизительно на 2 %, чем в крыльях. Распределение тяжёлых углеводородов газа увеличивается от свода к крыльям залежи. Бутановых углеводородов больше находится в крыльях.

Давление насыщения нефти газом и количество растворенного газа в единице объёма нефти уменьшается по направлению к водонефтяному контакту, а, следовательно, и объёмный коэффициент нефти уменьшается к крыльям складки.

В залежах, не имеющих выхода на поверхность и окруженных краевыми водами, плотность нефти и количество смол увеличиваются с глубиной залегания. Изменение этих величин в залежи происходит за счёт гравитационного распределения.

Кроме того, в залежи величина плотности нефти возрастает от купола к крыльям и к подошве, что частично объясняется функцией распределения растворенного в ней газа. Ближе к зонам водонефтяного контакта происходят окислительные процессы, что сказывается на увеличении плотности нефти в приконтурных зонах.

Вязкость нефти увеличивается от купола свода к крыльям и к зоне водонефтяного контакта. К зонам водонефтяного контакта вязкостные характеристики пластовой нефти возрастают за счёт гравитационного перераспределения высокомолекулярных компонентов нефти и диспергирования их в переходную зону на границе водонефтяного контакта.

Каждая залежь имеет свой комплекс причин изменения свойств нефти по пласту (табл. 2.1) и на стадии исследования процессов разработки их необходимо изучать. Причины изменения свойств нефти по площади месторождения весьма разнообразны. Геологические и структурные особенности строения залежи, наличие выходов пласта на поверхность, химические, бактериологические, физико-химические и другие процессы, происходящие в пласте, прямо или косвенно влияют на состав и свойства нефтей.

Таблица 2.1 Различие свойств нефти в пределах пласта Д1 Туймазы

Показатели

Номера скважин

128

19

18

251

951

611

1039

Центральная часть залежи

Приконтурная зона

Давление насыщения, МПа

9,67

9,63

9,63

8,81

0,58

0,37

0,09

Плотность пластовой нефти при Р = 17,5 МПа и Т = 30 °С, кг/м3

795

794

798

798

799

805

810

Плотность дегазиро-ванной нефти, кг/м3

845

844

845

845

848

850

848

Усадка, % объёмный

13,5

13,6

13,9

12,5

13,0

11,7

10,6

Газовый фактор после се-парации при Т=20 °С, м33

54,0

53,3

51,6

46,6

49,0

43,6

41,3

Объемный коэффи-циент

при Р = 17,5 МПа и Т = 30 °С

1,161

1,16

1,152

1,142

1,499

1,13

1,119

Одним из методов исследования изменения свойств нефти по залежи является фотоколориметрия. В основе метода лежит способность раствора поглощать световой поток. Степень поглощения светового потока (Ксп) зависит от содержания и концентрации окрашенных веществ, представленных смолами и асфальтенами и другими полярными соединениями. Вместе с изменением содержания полярных компонентов в нефти изменяются её вязкость, плотность и другие свойства. Поэтому по изменению величины коэффициента светопоглощения (Ксп) можно судить и об изменении других показателей нефти.

Зная начальное распределение свойств нефти по залежи и динамику изменения состава и свойств нефти, добываемых из скважин, можно, например, судить о направлениях движения нефти в пласте, устанавливать взаимосвязи нефтяных и нагнетательных скважин многопластовой залежи, оценивать продуктивность отдельных пропластков.

2. 5 Состав и физико-химические свойства природных газов

Природные газы - это вещества, которые при нормальных (н.у.) и стандартных (с.у.) условиях являются газообразными. В зависимости от условий газы могут находиться в свободном, адсорбированном или растворённом состояниях.

В пластовых условиях газы в зависимости от их состава, давления и температуры (термобарического режима в пласте) могут находиться в различных агрегатных состояниях - газообразном, жидком, в виде газожидкостных смесей.

Свободный газ обычно расположен в повышенной части пласта и находится в газовой шапке. Если газовая шапка в нефтяной залежи отсутствует, то весь газ залежи растворён в нефти.

Давление, при котором имеющийся в залежи газ начинает выделяться из нефти, называется давлением насыщения. Давление насыщения нефти газом в пластовых условиях определяется составами, количеством нефти и газа, пластовой температурой.

Растворённый газ, по мере снижения давления при добыче, выделяется из нефти. Он называться попутным газом. В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше газа может быть растворено в нефти. В 1 м3 нефти содержание растворённого газа может достигать 1000 м3.

2.5.1 Состав природных газов

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородов (УВ) метанового ряда СН44Н10: метана, этана, пропана, изобутана и н-бутана, а также неуглеводородных компонентов: H2S, N2, CO, CO2, H2, Ar, He, Kr, Xe и других.

При нормальных и стандартных условиях термодинамически в газообразном состоянии существуют только УВ состава С14. Углеводороды алканового ряда, начиная с пентана и выше, при этих условиях находятся в жидком состоянии, температуры кипения для изо-С5 равна 28оС, а для н-С5 > 36оС. Однако, в попутных газах иногда наблюдаются углеводороды С5 за счёт термобарических условий, фазовых переходов и других явлений.

Качественный состав газов нефтяного происхождения всегда одинаков (что нельзя сказать о газах вулканических извержений). Количественное распределение компонентов практически всегда различно.

Состав газовых смесей выражается в виде массовой или объемной концентрации компонентов в процентах и мольных долях.

, (2.15)

где Wi - масса i-го компонента; УWi - суммарная масса смеси.

, (2.16)

где Vi - объем i-го компонента в смеси; У Vi - суммарный объем газа.

, (2.17)

где ni - число молей i-го компонента в смеси; Упi - суммарное число молей газа в системе.

Зависимость между объемной и мольной концентрациями компонентов вытекает из закона Авогадро. Так как равные объемы любых газов при одинаковых температуре и давлении содержат одинаковое число молекул, то объем i-го компонента смеси будет пропорционален числу молей i-го компонента:

, (2.18)

где К -- коэффициент пропорциональности. Следовательно

, (2.19)

т. е. концентрация компонента в процентах по молям (% мол.) в смеси газов при атмосферном давлении практически совпадает с объемной концентрацией этого компонента в процентах (% об.).

При высоких давлениях жидкие углеводороды растворяются в газовой фазе (газовые растворы, газоконденсаты). Поэтому при высоких давлениях плотность газа может приближаться к плотности легких углеводородных жидкостей.

В зависимости от преобладания в нефтяных газах легких (метан, этан) или тяжелых (пропан и выше) углеводородов газы разделяются на сухие и жирные.

Сухим газом называют природный газ, который не содержит тяжелых углеводородов или содержит их в незначительных количествах.

Жирным газом называют газ, содержащий тяжелые углеводороды в таких количествах, когда из него целесообразно получать сжиженные газы или газовые бензины.

На практике принято считать жирным газом такой, в 1 м3 которого содержится более 60г газового бензина.

Газы, добываемые из чисто газовых месторождений, содержат более 95 % метана (табл. 2.2) и представляют собой, так называемые, сухие газы.

Таблица 2.2

Месторождение

СН4

С2Н6

С3Н8

С4Н10

N2

СО2

Относит.

плотность

Северо-Ставропольское

98,9

0,29

0,16

0,05

0,4

0,2

0,56

Уренгойское

98,84

0,1

0,03

0,03

1,7

0,3

0,56

Шатлыкское

95,58

1,99

0,35

0,15

0,78

1,15

0,58

Медвежье

98,78

0,1

0,02

-

1,0

0,1

0,56

Заполярное

98,6

0,17

0,02

0,013

1,1

0,18

0,56

Тяжёлым нефтям свойственны сухие попутные газы с преобладанием метана в их составе. Например, содержание метана в составе попутного газа Русского месторождения Западной Сибири (плотность нефти более 920 кг/м3) аналогично содержанию метана в составе газа газового Уренгойского месторождения и составляет около 98,8 об. %.

Содержание метана в газах газоконденсатных месторождений колеблется в интервале 75-95 % (табл. 2.3). Попутный газ газоконденсатных месторождений и лёгких нефтей достаточно жирный.

Таблица 2.3

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Отност. плотность

Вуктыльское

74,80

8,70

3,90

1,80

6,40

4,30

0,10

0,882

Оренбургское

84,00

5,00

1,60

0,70

1,80

3,5

0,5

0,680

Ямбургское

89,67

4,39

1,64

0,74

2,36

0,26

0,94

0,713

Уренгойское (БУ-8, БУ-14)

88,28

5,29

2,42

1,00

2,52

0,48

0,01

0,707

Газы, добываемые вместе с нефтью из нефтяных месторождений (попутные газы) представляют собой смесь метана, этана, пропан-бутановой фракции, газового бензина. При повышенном давлении углеводороды состава С3, С4 легко сжижаются. В пластовых условиях в газообразном состоянии находится практически один метан. При нормальных условиях углеводороды от метана СН4 до бутана С4Н10 находятся в газообразном состоянии. Остальные углеводороды при этих условиях -- жидкости. Пропан и бутан при повышении давления легко переходят в жидкое состояние. Упругость насыщенных паров углеводородов, т. е. то давление, при котором газ начинает конденсироваться и переходить в жидкое состояние, повышается с ростом температуры и она тем выше, чем ниже плотность углеводорода. Упругость пара -- нелинейная функция температуры. Графики на рис. 2.9 построены так, чтобы получить линейную зависимость между упругостью паров углеводородов и температурой: шкала упругости пара принята логарифмической, а температурная шкала (в °С) принята произвольной.

Размещено на http://www.allbest.ru/

Рис.2.8

Удобство таких графиков заключается в том, что они позволяют легко и быстро определять по известной упругости пара при некоторой температуре упругость его паров при других температурах. Для этого проводят прямую линию через, известную точку и общую точку пересечения прямых упругостей паров (находящуюся вне графика на продолжении правой верхней части диаграммы).

Из рис. 2.8 следует, что давление паров метана наибольшее; при нормальных условиях его нельзя превратить в жидкость (пунктирная линия 1 давления ненасыщенного пара метана), так как его критическая температура t = -82,95° С. Давление насыщенных паров других углеводородов намного ниже. Например, бутан при t = - 20° С имеет упругость паров, равную 0,22 Мн/м2 (2,2 кГ/см2).

К расчёту физико-химических свойств газа как многокомпонентной смеси можно применять принцип аддитивности.

Аддитивный подход к расчёту физико-химических и технологических параметров означает, что каждый компонент газа в смеси ведёт себя так, как если бы он в данной смеси был один.

Следовательно, для оценки макроскопических свойств нефтяного газа (при н.у. и с.у.) применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):

, (2.20)

где где Ni - мольная доля; gi - весовая доля; Vi - объёмная доля; Пi - физико-химическое свойство i-го компонента.

Для идеальных газов общее давление в системе (смеси газов) равно сумме парциальных давлений компонентов (закон Дальтона):

, (2.21)

где Р - общее давление смеси газов; рi - парциальное давление i-го компонента в смеси. Откуда

, (2.22)

. (2.23)

То есть, парциальное давление компонента в газовой смеси равно произведению его молярной доли на общее давление смеси газов.

Аддитивность парциальных объёмов (Vi) компонентов газовой смеси выражается законом Амага:

, (2.24)

где V - общий объём смеси газов; Vi - мольный объём i-го компонента газа в смеси.

По аналогии с уравнениями (2.22-2.23) мольный объём компонента в газе можно оценить:

. (2.25)

Как аддитивные величины рассчитывают все физико-химические свойства газа, например, плотность смеси газов:

, (2.26)

где сi - плотность i-го компонента; Ni - мольная доля i-го компонента.

2.5.2 Уравнения состояния природных газов

Наука о веществе основывается на современных знаниях об атомах - мельчайших частицах элементов и молекулах - мельчайших частицах химических соединений. Атомы имеют размер порядка 10~8см (одного ангстрема). Крупные молекулы, содержащие тысячи атомов, имеют размер около 10~6см. Характер движения молекул и атомов, их взаимодействие определяют, в каком агрегатном состоянии находится вещество - в твердом, жидком или газообразном.

Молекулы могут совершать поступательное, вращательное и колебательное движение. Если вещество находится в газообразном или жидком состоянии, то возможны все три вида этих движений. Если же вещество затвердевает, преобладающей формой движения молекул и атомов становятся колебания.

При изучении состояния вещества стремятся найти взаимосвязь между давлением, при котором находится вещество, его плотностью и температурой. Если обозначить давление p, плотность с, а обратную ей величину - удельный объем вещества V и температуру Т, то состояние вещества будет характеризоваться соотношением р, V и Т или, как принято в термодинамике, -соотношением. Наиболее просто это соотношение выглядит для состояния вещества, при котором молекулы совершают поступательное движение в период между столкновениями друг с другом, а межмолекулярные силы заметно не проявляются. Такое состояние вещества характерно для достаточно разреженных газов. Вещество, находящееся в этом состоянии, называют идеальным газом. Для идеальных газов согласно уравнению Клапейрона - Менделеева

, (2.27)

где - р давление, Па; - объем газа, м3, - масса газа, кг; - газовая постоянная, Дж/(кг * К); - абсолютная температура, К.

Газовая постоянная численно равна работе расширения 1 кг идеального газа в изобарическом процессе при увеличении температуры газа на 1 К.

При высоком сжатии газа его параметры уже не будут описываться уравнением состояния идеального газа. Ван-дер-Ваальсом были введены в уравнение состояния идеального газа (2.27) поправки: величина b, учитывающая объем самих молекул, и величина a/v2, учитывающая взаимодействие между молекулами. В результате было получено уравнение состояния «реального газа» (уравнение Ван-дер-Ваальса) в следующем виде:

. (2.28)

Сложность применения уравнения (2.28) для практических расчетов заключается в том, что в газонефтепромысловом деле встречаются, как правило, смеси газов, для которых уравнение Ван-дер-Ваальса применимо с трудом.

Хорошее согласование с экспериментальными данными для газов, плотность которых не превышает двух третей от плотности газа при критических условиях, получают по уравнению Битти-Бриджмена

, (2.29)

где а, Ь, с, Ао и Во -- постоянные для данных компонентов природного газа, которые вычисляются на основании экспериментальных данных.

Коэффициент сверхсжимаемости. При большом числе компонентов расчеты по приведенным формулам становятся трудоемкими. Поэтому для расчета состояния реальных газов обычно пользуются обобщенным газовым законом в виде уравнения Клапейрона, в которое вводится поправка (коэффициент сверхсжимаемости), учитывающая отклонение реальных газов от законов сжатия и расширения идеальных газов.

, (2.30)

где z - коэффициент сверхсжимаемости; - масса газа в кг; р - давление в Па; V -объем газа в м3; R - газовая постоянная в Дж/(кг*град); Т -- абсолютная температура в К.

Характер изменения коэффициента сверхсжимаемости z, который показывает отношение объема реального газа к объему идеального при одних и тех же условиях, с изменением температуры и давления можно установить, учитывая отличия реальных газов от идеальных. В последних молекулы занимают незначительный объем (по сравнению с объемом газа) и не испытывают сил притяжения друг к другу. Молекулы же реальных газов обладают определенными размерами, массой и взаимодействуют друг с другом. Поэтому реальный газ приближается к идеальным при низких давлениях, когда число молекул в единице объема невелико. Следовательно, при низких давлениях величина коэффициента сжимаемости должна быть близка к единице. С повышением давления молекулы газа сближаются и силы притяжения между молекулами начинают помогать внешним силам, сжимающим газ. Вследствие этого реальные газы должны сжиматься сильнее, чем при тех же условиях сжимаются идеальные газы. Следовательно, с ростом давления коэффициент сжимаемости z должен вначале уменьшаться. Когда углеводородный газ сжат до такой степени, что он приближается по свойствам к жидкостям, межмолекулярные расстояния уменьшаются настолько, что начинают проявляться взаимоотталкивающие силы между молекулами, препятствующие дальнейшему уменьшению объема газа. В этих условиях углеводородный газ должен сжиматься меньше, чем при малых давлениях, т. е. значения z вновь возрастают при увеличении давления.

С приближением давления и температуры к их критическим значениям свойства газовой и жидких фаз становятся одинаковыми, поверхность раздела между ними исчезает и плотности их уравниваются.

Критическая температура (Ткр) - максимальная температура, при которой газ и жидкость могут ещё сосуществовать в равновесии (табл. 2.4).

Критическое давление - давление паров вещества при критической температуре (табл. 2.3), а объём вещества при данных Ткр и pкр, отнесённый к 1 молю или к единице массы вещества, называется критическим удельным объёмом.

Упругость насыщенных паров углеводородов, это давление, при котором газ начинает конденсироваться и переходить в жидкое состояние, повышается с ростом температуры и она тем выше, чем ниже плотность углеводорода.

Таблица 2.4 Критические давления и температуры компонентов нефтяных газов

№ п./п.

Компонент

Относит. моляр. масса

РКРi, МПа

ТКРi, К

1

Метан, СН4

16,04

4,63

190,55

2

Этан, С2Н6

30,07

4,87

305,45

3

Пропан, С3Н8

44,09

4,26

369,82

4

изо-Бутан, i-С4Н10

58,12

3,65

408,13

5

н-Бутан, n-С4Н10

58,12

3,797

425,16

6

изо-Пентан, i-С5Н12

72,15

3,381

460,4

7

н-Пентан, n-С5Н12

72,15

3,369

469,6

8

н-Гексан, С6Н14

86,17

3,031

507,4

9

н-Гептан, С7Н16

100,20

2,736

640,61

10

Азот, N2

28,02

3,399

126,25

11

Двуокись углерода, СО2

44,01

7,387

304,15

12

Сероводород, Н2S

34,08

9,01

373,55

Приведенные параметры газов. Коэффициент сжимаемости газов z, обычно определяют по экспериментальным графикам. Чтобы избежать построения графиков для каждого газа или их смесей, на основе экспериментальных данных составлен график изменения коэффициента z в зависимости от приведенной температуры и приведенного давления для метана (рис.2.2), который на основании закона соответственных состояний с достаточной точностью может быть использован для определения z, всех газов, состоящих на 95--96% из метана. Коэффициенты сжимаемости на этом графике поставлены в зависимость от приведенного давления p пр и приведенной температуры Tпр, которые определяются по формулам

Размещено на http://www.allbest.ru/

, (2.31)

Размещено на http://www.allbest.ru/

где р и Т -- давление и температура газа; рКрi и Tкрi -- критические давление и абсолютная температура i-го компонента; = и - среднекритические (псевдокритические) абсолютная температура и давление; уi -- мольная концентрация i-го компонента в газе.

Таким образом, рпр и Tпр выражают давление и абсолютную температуру в долях от соответствующих критических величин.

Различные газы, имеющие одинаковые приведенные температуру и давление, находятся в «соответственных состояниях».

По принципу соответственных состояний термодинамические свойства веществ (в том числе и коэффициенты сжимаемости различных газов), имеющих равные приведенные температуры и давления, приблизительно одинаковы, так как при этом различные газы находятся как бы в одинаковом относительном приближении к жидкому состоянию. Поэтому графики коэффициента сверхсжимаемости z, в приведенных координатах для углеводородов одного гомологического ряда совпадают с точностью, достаточной для практики. На этом основании график (рис. 2.9) может быть использован для вычисления удельного объема и других параметров любого газа (в том числе и газовых смесей), если известны его критические параметры (табл.2.4).

Размещено на http://www.allbest.ru/

Рис. 2.9. Коэффициенты сверхсжимаемости углеводородных газов, в зависимости от приведённых параметров

Графики (рис. 2.9) действительны для газа, не содержащего значительных количеств неуглеводородных компонентов. Большую часть неуглеводородных компонентов обычно составляет азот. Поэтому коэффициент сверхсжимаемости газа можно рассчитать по правилу аддитивности из формулы

, (2.32)

где - мольная доля азота; -- коэффициент сверхсжимаемости азота (рис. 2.10); -- коэффициент сжимаемости углеводородной части газа.

Рис. 2.10. Зависимости коэффициентов сверхсжимаемости азота от давления и температуры

С помощью коэффициента сверхсжимаемости z легко определить объемы газа V в различных условиях. В соответствии с уравнением (2.30) объем газа в любых условиях (температура Т и давление р) будет равен

. (2.33)

Объёмный коэффициент газа используется при пересчете объема, занимаемого газом при нормальных условиях на пластовые условия, и наоборот, например, при подсчёте запасов.

2.5.3 Плотность газов

За относительную плотность газа принимается число, показывающее, во сколько раз масса данного газа, заключенная в определенном объеме при данном давлении и температуре, больше или меньше массы сухого воздуха, заключенного в том же объеме при нормальных условиях:

, (2.34)

где сr и св -- плотности газа и воздуха в кг/м3. Чем жирнее газ, т. е. чем больше он содержит тяжелых компонентов, тем больше его плотность.

Плотность газа может быть также найдена по его относительной молекулярной массе. Для смеси газов их средняя (кажущаяся) молекулярная масса рассчитывается по известному Мольному компонентному составу газа по формуле

, (2.35)

где М -- средняя относительная молекулярная масса газа; M1, М2 , ..., Мп -- относительные молекулярные массы соответствую-щих компонентов; y1, y2, ..., уп -- мольные доли компонентов. Один киломоль (кмолъ) любого газа при нормальных условиях занимает объем, равный 22,4 м3. Следовательно, относительная плотность газов (по воздуху) может быть определена по их средним молеку-лярным массам из соотношения

, (2.36)

Кроме того, по известной плотности газа при нормальных условиях средняя молекулярная масса газа может быть найдена по формуле

М = 22,4с0. (2.37)

В табл. 2.5 приведены величины относительной плотности (относительно воздуха) некоторых газов.

Таблица 2.5. Относительная плотность некоторых газов (относительно воздуха)

Газ

Относительная плотность

Воздух

1

Гелий

0,138

Азот

0,97

Углекислый газ

0,518

Сероводород

1,191

Метан

0,55

Этан

1,038

Пропан

1,52

Бутан

2,0065

Плотности многих углеводородных газов и сероводорода больше плотности воздуха (табл. 2.5). Поэтому они могут накапливаться в помещениях насосных, в колодцах и т. д., где возможны пропуски газа в арматуре оборудования. Это необходимо учитывать при проектировании промыслового хозяйства, при проведении работ на промысле и принимать меры к устранению вредного влияния газов на здоровье персонала.

2.5.4 Вязкость газов

Вязкость -- одно из свойств газов, определяющих закономерности движения их в газоносных пластах. Вязкость газа в зависимости от изменения параметров, характеризующих его состояние, изменяется сложным образом. При низких давлениях и температурах свойства реальных газов приближаются к идеальным. Закономерности изменения вязкости газов при различных давлениях и температурах можно объяснить, исходя из некоторых положений кинетической теории газов. Динамическая вязкость газа связана с его плотностью рг, средней длиной свободного пути л, и средней скоростью молекул н соотношением

. (2.38)

Формула (2.38) определяет зависимость динамической вязкости газа от давления и температуры. При повышении давления плотность газа возрастает, но при этом уменьшается средняя длина свободного пробега молекул, а скорость их не изменяется. Поэтому с увеличением давления динамическая вязкость газа вначале практически остается постоянной. Из формулы (2. 38) также следует, что с увеличением температуры вязкость газа должна возрастать, так как скорость молекул н увеличивается, если даже с и л остаются постоянными. Отмеченный характер изменения вязкости газов объясняется проявлением внутреннего трения. Количество движения из слоя в слой передается вследствие перелета молекул газа в движущиеся друг относительно друга слои. При этом возникают силы, тормозящие движение одного слоя и увеличивающие скорость движения другого. С повышением температуры увеличиваются скорость и количество движения, передаваемое в единицу времени, и, следовательно, больше будет вязкость. Поэтому вязкость газов почти не зависит от давлений, если они близки к атмосферному, и увеличивается с ростом температуры. В пределах одного гомологического ряда вязкость газов уменьшается с возрастанием молекулярной массы. Однако при повышении давления эти закономерности нарушаются -- с увеличением температуры понижается вязкость газа, т. е. при высоких давлениях вязкость газов изменяется с повышением температуры аналогично изменению вязкости жидкости. Газы с более высокой молекулярной массой, как правило, имеют и большую вязкость. В сжатом газе перелет молекул в движущиеся друг относительно друга слои затруднен и передача количества движения из слоя в слой происходит в основном, как у жидкостей, за счет временного объединения молекул на границе слоев.

При содержании в углеводородном газе более 5 % азота следует учитывать его влияние на вязкость газа и оценивать средневзвешенную вязкость смеси по правилу аддитивности

, (2.39)

где м -- динамическая вязкость смесей углеводородных газов и азота; ма и му -- динамические вязкости азота и углеводородной части смеси газов; уа -- мольная доля азота в составе газа.

2.5.5 Растворимость газов в нефти

Распределение компонентов нефтяного газа в жидкой и газовой фазах определяется закономерностями растворения газа в нефти. По закону Генри растворимость газа в жидкости пропорциональна давлению:

, (2.40)

где Vr -- объем растворенного газа, приведенный к атмосферному давлению, в м3; Vж -- объем жидкости, в которой растворяется газ, в м3; а -- коэффициент растворимости в 1/Па; р -- абсолютное давление газа в Па.

Из (2.40) следует, что коэффициент растворимости показывает, сколько газа растворяется в единице объема жидкости при увеличении давления на 1 единицу:

. (2.41)

Коэффициент растворимости измеряется в Па-1 = 1/Па. Разные компоненты нефтяного газа обладают различной растворимостью, причем с увеличением молекулярной массы газа коэффициент растворимости его возрастает. Особенно плохо растворяется азот (рис. 2.12. Из рис. 2.12 следует, что растворимость газов в нефти, помимо давления, температуры и природы газа, зависит также от свойств нефти. Установлено, что разница в абсолютных величинах растворимости газов в исследованных нефтях и характер изотерм растворимости связаны с различным фракционным и углеводородным составом нефтей. Растворимость газов увеличивается с повышением содержания в нефти парафиновых углеводородов (туймазинская и ромашкинская нефти содержат во фракциях, выкипающих до 300°С, около 52% парафиновых углеводородов; в сураханской и небитдагской нефтях их содержится 42--43%). Установлено также, что при высоком содержании ароматических углеводородов в нефти ухудшается растворимость в ней газов.

Рис. 2.1. Изотермы растворимости газов в нефти при температуре 50 оС: 1 - ромашкинская (Р); 2 - сураханская (С); 3 - небитдагская (Н); 4 - туймазинская (Т), по данным Т.П. Сафроновой и Т.П. Жузе

Форма изотерм растворимости для различных газов также не одинакова. Для плохо растворимых газов (азот, метан) они характеризуются пологим подъемом, почти равномерным во всем интервале давления (т. е. малорастворимые газы лучше подчиняются закону Генри, чем хорошо растворимые). Изотермы хорошо растворимых газов (С02, С2Н6, С3Н8) характеризуются резким подъемом до определенных давлений, а затем они выполаживаются. Последнее объясняется обратными процессами растворения компонентов нефти в сжатом газе при высоких давлениях. Этот эффект в ряду углеводородных газов усиливается с ростом молекулярной массы газа. Для азота он незначителен, а при растворении метана в нефти обратное испарение наблюдается лишь при очень высоких давлениях.

Из рис. 2.11 следует также, что на растворимость газов в нефти природа их влияет больше, чем состав нефти.

Коэффициент растворимости попутных нефтяных газов изменяется в широких пределах и достигая 4-5*10-5 Па-1 /4-5 м3/( м3 Ч am).

Углеводородные газы хуже растворяются в нефти при повышении температуры. Так, например, в нефти месторождения Ромашкино при 15 МПа (150 ат) и t = 40° в 1 м3 нефти растворяется 59 м3 газа, а при t = 60° растворяется 53 м3.

Установлено, что количество растворяющегося или выделяющегося из нефти газа при одних и тех же условиях зависит еще от характера процесса -- идет ли он контактно или дифференциально. Контактными (или одноступенчатыми) принято называть такие процессы, при которых весь выделяющийся газ находится в контакте с нефтью. При дифференциальном дегазировании выделяющийся из раствора газ непрерывно отводится из системы. При этом, очевидно, и состав нефтегазовой смеси в процессе разгазирования непрерывно меняется. Строгое соблюдение условий дифференциального дегазирования в лабораторных условиях затруднено, и обычно оно заменяется ступенчатым (или многократным) разгазированием. При этом количество выделяющегося из нефти газа измеряется порциями по мере снижения давления в смеси и отвода выделившегося газа.

При дифференциальном дегазировании количество остающегося в растворенном состоянии газа при одинаковых давлениях больше, чем при контактном. Это связано с преимущественным переходом в паровую фазу метана в начале процесса дегазации. С удалением его из системы увеличивается содержание тяжелых углеводородов в составе оставшихся в системе газов. Вследствие этого повышается растворимость их в нефти. В промысловых условиях протекают и контактные и дифференциальные процессы дегазирования. Например, в начальные периоды снижения давления ниже точки насыщения, когда газ в пласте еще неподвижен относительно нефти, процесс более походит на контактное дегазирование. В последующие периоды, когда насыщенность пор газом увеличивается, он по мере выделения из нефти быстрее движется к забоям скважин и процесс дегазирования напоминает дифференциальный.

Представление о количестве газа, выделяющегося из нефти при снижении давления, дают кривые разгазирования (рис. 2.12). Большая часть кривых разгазирования нефтей обычно похожа на кривую 1.

Рис.2.12 Кривые разгазирования новодмитриевской нефти (по данным ВНИИ) 1 - плотность 809 кг/м3 при t=20?C; 2 - плотность 809 кг/м3 при t=104?C; 3 - плотность 824 кг/м3 при t=105?C;

Коэффициентом разгазирования принято называть количество газа, выделяющегося из единицы объема нефти при снижении давления на единицу. Обычно по мере снижения давления коэффициент разгазирования увеличивается, но закономерность эта не всегда соблюдается. Иногда коэффициент разгазирования при высоких давлениях оказывается больше, чем при низких. В области очень высоких температур и давлений коэффициент разгазирования возрастает в связи с явлениями обратного испарения (об этом см. ниже).

2.5.6 Упругость насыщенных паров

Упругость (давление насыщенного пара) углеводородов характеризует то давление, при котором газ начинает конденсироваться и переходить в жидкое состояние. У индивидуальных углеводородов в чистом виде упругость паров (Qi) есть функция только температуры: Qi =ѓ(Т).

Величина упругости насыщенных паров углеводородов повышается с ростом температуры. Это повышение тем выше, чем ниже плотность углеводорода. Аналогично с ростом молекулярной массы углеводорода величина упругости насыщенный паров углеводородов уменьшается при равных температурах (рис. 2.13).

Анализ зависимостей, представленных ниже (рис. 2.13) свидетельствует, что давление паров метана наибольшее. При нормальных условиях метан нельзя превратить в жидкость (пунктирная линия), так как его критическая температура (Ткр) = -82,4 оС (190,75 К).

Зависимости изменения объёма жидкого и парообразного пропана от давления при конкретной температуре (рис. 2.14 а) имеют гиперболическую форму. При сжатии пропана от точки М до точки А он находится в состоянии перегретого (ненасыщенного) пара. Ненасыщенными (перегретыми) парами называются пары, которые при данной температуре и давлении образуют только однофазную паровую систему.

Рис. 2.13. Кривые упругости насыщенных паров чистых углеводородов: 1 - метан; 2 - этан; 3 - пропан; 4 - изобутан; 5 - бутан; 6 - изопентан; 7 - пентан; 8 - изогексан; 9 - гексан; 10 - изогептан; 11 - гептан; 12 - октан; 13 - нонан; 14 - декан

Рис. 2.14. Зависимости объёма жидкости от давления и температуры (а) и кривая упругости насыщенных паров (б) при температурах К: 1 - 283; 2 - 293; 3 - 303; 4 - 313; 5 - 323

Ненасыщенные пары могут существовать при данном давлении, если их температура выше температуры насыщенных паров, или при данной температуре, если их давление меньше давления насыщенных паров.

В точке А пар становится насыщенным, а при дальнейшем изменении объёма (участок АВ) он постепенно переходит в жидкость при неизменном давлении. В точке В заканчивается переход пара в жидкость. При дальнейшем сжатии пара будет резко повышаться давление при почти неизменном объёме. Горизонтальный участок АВ соответствует неизменности давления в процессе конденсации паровой фазы в жидкую фазу. Величина этого давления называется упругостью насыщенных паров природного газа при температуре опыта и обозначается Q. Чем ближе значение температуры, при которой измеряется упругость насыщенного пара газового компонента к значению критической температуры, тем короче горизонтальный участок. На основе полученных данных строят кривые упругости насыщенных паров, представляющие зависимости давления от температуры испарения данной жидкости (рис. 2. 14 б).

Насыщенным называется пар (газ), находящийся в равновесии с жидкостью. Для однокомпонентной системы условия равновесного сосуществования фаз определяются температурой и давлением. Между этими параметрами при равновесии существует взаимно однозначное соответствие: чем выше температура системы, тем выше давление, при котором находится данная равновесная система (рис. 2.15).

Рис. 2.15. Общий вид зависимости давления насыщенных паров от температуры: АК - кривая давления насыщенных паров; I - область жидкой фазы; II - область перегретых (ненасыщенных) паров

Каждая точка кривой АК (рис. 2.15), например точка С, связывает давление насыщенных паров с температурой кипения жидкости.

Состояние вещества, при котором исчезает различие между его жидкой и газообразной фазами, называется критическим.

Критическая температура (Ткр) - максимальная температура, при которой газ и жидкость могут ещё сосуществовать в равновесии.

Выше температуры, равной критической, газ ни каким повышением давления нельзя перевести в жидкость.

Давление насыщенных паров, соответствующее критической температуре, называется критическим давлением (Ркр).

У смеси углеводородов величина упругости паров является функцией температуры и общего давления смеси: . Величина ее зависит от упругости паров отдельных компонентов при данной температуре и от их мольных концентраций . Общее давление смеси влияет на упругость паров каждого компонента и это влияние учитывается через константу равновесия (Крi, равновесия), которая представляет собой отношение упругости паров индивидуального углеводорода (Qi) к давлению смеси (Рсм):

. (2.42)

3. Фазовые состояния углеводородных систем

В процессе эксплуатации месторождений в пластах непрерывно изменяются давление, количественное соотношение газа и нефти, а иногда и температура. Это сопровождается непрерывными изменениями состава газовой и жидкой фаз и переходом различных углеводородов из одной фазы в другую.

Особо интенсивные процессы таких превращений происходят при движении нефти по стволу скважины от забоя к устью. Вследствие быстрого падения давления из нефти выделяется значительное количество газа и около устья поток превращается иногда в тонкодисперсную взвесь микрокапель нефти в газовой среде.

Точно так же и дальнейшее движение нефти и газа к потребителю сопровождается непрерывными фазовыми превращениями. Например, газ, содержащий значительное количество бензиновых фракций в парообразном состоянии, проходит специальную обработку, при которой из него извлекается газовый бензин; из нефти, уже не содержащей газ, стараются извлечь и уловить наиболее летучие жидкие фракции для уменьшения потерь нефтепродуктов от испарения при хранении их в резервуарах и т. д.

Закономерности фазовых переходов и фазовое состояние газонефтяных смесей при различных условиях необходимо знать для решения многих задач. Например, с учетом закономерности фазовых изменений углеводородов составляется проект разработки газоконденсатных месторождений. Теорией фазовых изменений пользуются для расчета количества и состава газа, выделяющегося из нефти при различных давлениях и температурах, количества и состава бензиновых фракций, содержащихся в газе, и т. д.

3.1 Схема фазовых превращений однокомпонентных систем

Известно, что углеводородные газы изменяют объем подобно всем индивидуальным веществам в зависимости от температуры и давления примерно в соответствии с графиками, приведенными на рис. 3.1. Как видно, каждая из кривых соответствует фазовым изменениям однокомпонентного газа при постоянной температуре и имеет три участка. Справа от пунктирной линии отрезок соответствует газовой фазе, горизонтальный участок -- двухфазной газожидкостной области и левый участок -- жидкой фазе. Отрезок пунктирной кривой вправо от максимума в точке С называется кривой точек конденсации (или точек росы), а влево от максимума -- кривой точек парообразования (кипения). В точке С пунктирной линии кривые парообразования и конденсации сливаются. Эта точка называется критической.

Рис. 3.1. Диаграмма фазового состояния чистого этана

С приближением давления и температуры к их критическим значениям свойства газовой и жидких фаз становятся одинаковыми, поверхность раздела между ними исчезает, и плотности их уравниваются. Следовательно, с приближением к критической точке по кривой начала кипения плотность жидкой фазы будет непрерывно убывать. Если же к ней приближаться по линии точек конденсации, то плотность пара будет непрерывно возрастать.

Для изотермических фазовых превращений однокомпонентных газов характерно постоянство давления в двухфазной области, т. е. после начала конденсации газа дальнейшее превращение его в жидкость с уменьшением объема системы происходит при постоянном давлении до тех пор, пока весь газ не превратится в конденсат.

Точно так же со снижением давления после начала парообразования дальнейшее кипение (испарение) жидкой фазы происходит при постоянном давлении. Обе фазы (жидкость и пар) при данной температуре присутствуют в системе только в том случае, если давление равно упругости насыщенного пара этой жидкости.

Фазовые превращения углеводородов можно представить также в координатах «давление - температура Т» (рис. 3.2). Для однокомпонентной системы кривая давления насыщенного пара на графике «давление - температура» является одновременно кривой точек начала кипения и линией точек росы. При всех других давлениях и температурах, значения которых не располагаются на этой кривой, вещество находится в однофазном состоянии - в жидком, если при данной температуре давление выше кривой давления насыщенного пара. Если при той же температуре давление ниже давления насыщенного пара, вещество находится в паровой или газовой фазе в ненасыщенном состоянии.

Рис. 3.2. Кривая упругости насыщенных паров этана

Фазовая диаграмма индивидуальных углеводородов в координатах «давление - температура» ограничивается критической точкой С. Для однокомпонентных систем эта точка определяется наивысшими значениями давления и температуры, при которых еще могут существовать две фазы одновременно. Величины критических давлений и температур основных компонентов природного газа приведены в табл. 2.4.

Из рис. 3.2 видно, что путем соответствующих изменений давления и температуры углеводороды можно перевести из парообразного состояния в жидкое, минуя двухфазную область. Действительно, газ, характеризующийся параметрами в точке А, можно путем изобарического нагрева довести до температуры в точке В, а затем, повысив давление в системе при постоянной температуре, перевести вещество в область (точка D), расположенную выше критической точки С, и далее в область точки Е. Свойства системы при этом изменяются непрерывно и разделения углеводорода на фазы не произойдет. При дальнейшем охлаждении системы (от точки D до точки Е), а затем и при снижении давления до значения в точке f вещество приобретает свойства жидкости, минуя область двухфазного состояния вещества.

Значительно сложнее закономерности фазовых переходов двух- и многокомпонентных систем.

3.2 Схема фазовых превращений двух- и многокомпонентных систем

С появлением в системе двух и более компонентов в закономерностях фазовых изменений возникают свои особенности. В качестве примера на рис. 3.3 приведена зависимость «объем - давление» для смеси пентана и гептана с массовой концентрацией последнего 52,4%.

Аналогично диаграмме на рис. 3.1, зона вправо от пунктирной линии (кривой точек конденсации) также является областью чистого газа, в которой изотермы двух- и многокомпонентных систем аналогичны изотермам чистых компонентов.

Рис. 3.3. Диаграмма фазового состояния смеси пентана и гептана

Влево от кривой точек парообразования изотермы жидкой фазы круто возрастают с уменьшением объема и они также аналогичны изотермам области жидкости чистых компонентов. В двухфазной же области двух- и многокомпонентных систем имеются значительные изменения. Было показано (рис. 3.1), что в области двухфазного состояния чистых углеводородов изотермы характеризуются горизонтальными линиями, т. е. давление не изменялось до полной конденсации газа. Для двух- и многокомпонентных систем, как это следует из рис. 3.3, давление в процессе сжатия в двухфазной области не остается постоянным и для конденсации газа необходимо повышать его для полного превращения газовой фазы в жидкость. Поэтому давление точки парообразования (кипения) для двух- и многокомпонентной смеси выше точек конденсации.

В соответствии с этим не одинаков и состав жидкой и газовой фаз в точках парообразования и конденсации. Вскоре после начала конденсации газа состав последнего еще близок к составу всей системы.

Точно так же вблизи точки парообразования состав жидкой фазы близок к составу исходной смеси. В двухфазной же области состав жидкой и газовой фаз отличен от состава исходной смеси и он непрерывно изменяется в соответствии с давлением и объемом системы.

Бинарные и многокомпонентные системы также имеют свои особенности и в области, лежащей вблизи критических давлений и температур. Критическая точка чистых веществ (или однокомпонентных систем) характеризуется самыми высокими давлениями и температурой, выше которых невозможно одновременно существование двух фаз - жидкой и газообразной. В бинарных и многокомпонентных системах критическая точка характеризуется лишь одинаково интенсивными свойствами газовых и жидких фаз. При этом в зоне пересечения кривых точек конденсации и парообразования образуется область, в которой могут существовать две фазы даже при температурах и давлениях, превышающих критические значения.

С появлением в системе второго компонента большие различия появляются также в диаграммах «давление -- температура». Кривые точек начала кипения и точек росы не совпадают и образуют фазовую диаграмму, на вид которой, кроме температуры и давления влияет исходный состав смеси. Крайние левая и правая кривые на диаграмме (рис. 3.4) соответствуют давлениям насыщенного пара для чистых компонентов -- этана и н-гептана с критическими точками С и С7.

Размещено на http://www.allbest.ru/

Рис. 3.4. Диаграмма фазового состояния смеси этана и н-гептана

Между ними расположены фазовые диаграммы смесей этана с н-гептаном с массовой концентрацией этана 90,22; 50,25 и 9,8% с соответствующими критическими точками С1, С2 и C3. Пунктирная линия представляет собой огибающую критических точек системы этан -- н-гептан. Линии А1С1, А2С2 и А3С3 представляют собой линии точек начала кипения рассматриваемых смесей (выше и слева от них смесь находится в жидком состоянии), В1С1, В2С2 и В3С3 -- линии точек росы соответствующих смесей. Ниже и справа от этих линий смесь находится в газообразном состоянии. Между линиями точек начала кипения и точек росы располагается двухфазная область. Из рис. 3.4 видно, что с увеличением содержания н-гептана в системе критическая точка, располагающаяся слева от максимальных значений давления и температуры, при которых две фазы могут существовать в равновесии, сдвигается вправо от нее. Кривые же точек росы и начала кипения при этом приближаются к кривой давления насыщенного пара, преобладающего в смеси компонента -- н-гептана. Аналогично изменяются также критические температуры и давления при изменении состава смеси.

Величина критической температуры различных смесей находится между критическими температурами компонентов. По имеющимся экспериментальным данным для ее вычисления можно использовать свойство аддитивности (расчетные значения критических температур при этом получаются более близкими к действительным при выражении состава в процентах по массе, а не в молярных).

Критическое же давление смеси обычно выше, чем критическое давление чистых компонентов, кроме тех случаев, когда в смеси один из компонентов содержится в значительном количестве (т. е. правило аддитивности для вычисления ркр смеси нельзя применять). Отклонение фактической величины ркр от вычисленного критического давления по правилу аддитивности возрастает с увеличением разницы между молекулярными массами чистых компонентов. Наибольшее критическое давление обычно наблюдается у смеси с близким массовым содержанием обоих компонентов.

Как видно из рис. 3.4, размеры двухфазной области также зависят от состава смеси -- они возрастают по мере того, как в составе смеси распределение между компонентами становится более равномерным.

Естественные углеводородные смеси отличаются большим разнообразием состава. Поэтому фазовые диаграммы нефтегазовых смесей, сохраняя принципиальные черты фазовых переходов двухкомпоненных систем, обладают еще своими в основном количественными особенностями, зависящими от состава нефти и газа.

3.3 Поведение бинарных и многокомпонентных систем в критической области

Типовые изотермы многокомпонентных углеводородных смесей вблизи критической области показаны на рис. 3..5. Как уже упоминалось, основной признак критической точки -- одинаковые свойства газовой и жидкой фаз, т. е. она находится в точке соединения кривых начала конденсации и парообразования (в точке С). Из этого рисунка следует, что в критической точке давление и температура не наибольшие, при которых еще возможно одновременное существование обеих фаз. Действительно, если давление несколько меньше р' , но больше, чем критическое Рс, в системе появляется газовая фаза, находящаяся в равновесии с жидкой. Это относится ко всей области ADCA. Точно так же в области CNBC существуют одновременно две фазы несмотря на то, что при этом температура в системе выше критической Тс- Наибольшее давление (р' на рис. 3.5), при котором жидкость и пар могут существовать в равновесии, принято называть криконденбар . Наивысшая температура (T` на рис. 3.5), при которой жидкость и пар существуют в равновесии, называется крикондентерм.

Размещено на http://www.allbest.ru/

Рис.3.5 Типовые изотермы многокомпонентных углеводородных смесей вблизи критической области 1 - кривая точек парообразования; 2 - кривая точек конденсации


Подобные документы

  • Происхождение понятия "физика". Развитие науки в России. Основные физические термины. Точность и погрешность измерений. Наблюдения и опыты как источники физических знаний. Значение физики для развития техники. Физические величины и их измерение.

    реферат [16,4 K], добавлен 20.06.2009

  • Основные закономерности развития физики. Аристотелевская механика. Физические идеи средневековья. Галилей: принципы "земной динамики". Ньютоновская революция. Становление основных отраслей классической физики. Создание общей теории относительности.

    реферат [22,0 K], добавлен 26.10.2007

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Принципы неклассической физики. Современные представления о материи, пространстве и времени. Основные идеи и принципы квантовой физики. Современные представления об элементарных частицах. Структура микромира. Фундаментальные физические взаимодействия.

    реферат [52,2 K], добавлен 30.10.2007

  • Что изучает физика? Зарождение физических представлений. Физические концепции эпохи античности. Специфика первых систем теоретического физического знания. Физические концепции средневековья. Физические концепции эпохи. Возрождения физические концепций.

    реферат [144,7 K], добавлен 08.04.2003

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.

    реферат [18,6 K], добавлен 27.05.2003

  • Химический состав и формирование химического состава газов в газовых и нефтяных залежах. Классификация газов: по условиям нахождения в природе, по генезису газов, по химическому составу, по их ценности. Методы определения состава природных газов.

    курсовая работа [1,3 M], добавлен 30.10.2011

  • Изучение особенностей структуры жидкости. Классификация пластовых вод по условиям залегания. Исследование макроскопических гидрофизических эффектов при малых энергетических воздействиях на водные среды. Разработка месторождения по добыче нефти и газа.

    контрольная работа [234,5 K], добавлен 03.04.2015

  • Состав и марки технических сжиженных углеводородных газов, применяемых в газоснабжении. Свойства, достоинства и недостатки сжиженных газов, их хранение и использование. Одоризация смеси газов и жидкостей. Диаграммы состояния СУГ. Пересчёт состава смесей.

    реферат [201,1 K], добавлен 11.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.