Магнитомягкие материалы. Ферриты

Методы измерения статических свойств ферритовых изделий. Особенности использования магнитомягких материалов для постоянных и низкочастотных полей. Принципы действия запоминающих и переключающихся цепей с сердечниками с прямоугольной петлей гистерезиса.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 17.03.2014
Размер файла 818,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кроме того, материалы с ППГ должны обеспечивать малое время перемагничивания, возможно большую температурную стабильность магнитных характеристик, а следовательно, иметь высокую температуру Кюри и некоторые другие свойства.

Ферриты с ППГ в практике распространены шире, чем металлические тонкие ленты. Это объясняется тем, что технология изготовления сердечников наиболее проста и экономична. Свойства ферритовых сердечников приведены в табл.2.

Табл. 3 Свойства сердечников и материалов с ППГ

Материал или сердечник

H c , A/м

B r , Тл

К пу , (не менее)

S q , мкКл/м

Т к , ° С

Примечание

Ферриты различных марок

10-1200

0,15-0,25

0,9

25-55

110-630

Имеется свыше 25 различных марок

Микронные сердечники из пермаллоев (толщины ленты от 2 до 10 мкм)

8-50

0,6-1,5

0,85-0,9

25-100

300-630

Сплавы 50НП, 65Н, 79НМ, 34НКПМ

Ферритам свойственна спонтанная прямоугольность петли гистерезиса, т.е. специфическая форма петли реализуется при выборе определенного химического состава и условий спекания феррита, а не является результатом какой-либо специальной обработки материала, приводящей к образованию текстуры (например, механических воздействий или обработки в сильном магнитном поле).

Из ферритов с ППГ наиболее широкое применение находят магний-марганцевые и литиевые феррошпинели. Установлено, что прямокгольная петля гистерезиса характерна для материалов с достаточно сильной магнитной кристаллографической анизотропией и слабо выраженной магнитострикцией. В этом случае процессы перемагничивания происходят главным образом за счет необратимого смещения доменных границ. Сохранение большой остаточной намагниченности после снятия внешнего поля объясняется локализацией доменных границ на микронеоднородностях структуры. Такими неоднородностями могут быть области с разной степенью обращенности шпинели, вакансии и связанные с ними комплексы, междуузельные атомы и др. Например, в магний-марганцевых ферритах спонтанная прямоугольность петли гистерезиса обусловлена тетрагональными искажениями кристаллической решетки за счет ионов Mn 3+ , образующихся при определенных условиях синтеза.

При использовании ферритов следует учитывать изменение их свойств от температуры. Так, при возрастании температуры от -20 до +60 ° С у ферритов различных марок коэрцитивная сила уменьшается в 1,5-2 раза, остаточная индукция - на 15-30%, коэффициент прямоугольности - на 5-35%.

В зависимости от особенности устройств, в которых применяются ферриты с ППГ, требования, предъявляемые к ним, могут существенно различаться. Так, ферриты, предназначенные для коммутационных и логических элемнтов схем автоматического управления, должны иметь малую коэрцитивную силу (10-20 А/м). Наоборот, материалы, используемые в устройствах хранения дискретной информвции, должны иметь повышенное значение коэрцитивной силы (100-300 А/м).

В запоминающих устройствах ЭВМ применяют либо кольцевые ферритовые сердечники малого размера (имеются сердечники с наружным диаметром 0,3-0,4 мм), либо многоотверстные ферритовые платы в которых область вокруг каждого отверстия выполняет функции отдельного сердечника. При использовании сердечников достигается более высокое быстродействие, однако возникают технологические трудности при прошивке таких сердечников проводниками и сборке матриц.

Ферриты для устройств СВЧ. Диапазон СВЧ соответствует длинам волн от 1м до 1мм. В аппаратуре и приборах, где используются электромагнитные волны диапазона СВЧ, необходимо управлять этими колебаниями: переключать поток энергии с одного направления на другое, изменять фазу колебаний, поворачивать полоскость поляризации волны, частично или полностью поглощать мощность потока.

Электромагнитные волны могут распространяться в пространстве, заполненном диэлектриком, а от металлов они почти полностью отражаются. Поэтому металлические поверхности используют для напрвления волн, их концентрации или рассеяния. Электромагнитная энергия СВЧ чаще всего передается по волноводам, представляющим собой трубы. В качестве твердых материалов для управления потоком энергии в волноводах используют ферриты СВЧ и некоторые немагнитные активные диэлектрики. Магнитными характеристиками первых можно управлять с помощью внешнего магнитного поля, электрическими свойствами вторых - за счет внешнего электрического поля.

Практическое применение ферритов СВЧ основано на: а) магнитооптическом эффекте Фарадея; б) эффекте ферромагнитного резонанса; в) изменении внешним магнитным полем значения магнитной проницаемости феррита.

Магнитооптический эффект Фарадея заключается в повороте плоскости поляризации высокочастотных колебаний в намагниченном за счет внешнего поля феррите. При этом могут быть получены различные углы поворота плоскости поляризации, а следовательно, и коммутирование энергии в разные каналы.

Ферромагнитный резонанс наблюдается при совпадении частоты внешнего возбуждающего поля с собственной частотой прецессии спинов электронов. Собственная частота прецессии зависит от магнитного состояния образца, а потому ее можно изменять с помощью постоянного подмагничивающего (управляющего) поля Н_. При резонансе резко возрастает поглощение энергии электромагнитной волны, распространяющейся в волноводе в обратном направлении; для волны прямого направления поглощение оказывается значительно меньшим. В результате получается высокочастотный вентиль. Рассмотренный эффект наиболее сильно проявляется в том случае, когда напряженности переменного возбуждающего поля и постоянного подмагничивающего полей взаимно перпендикулярны.

Если частоту внешнего поля поддерживать постоянной, а изменять напряженность подмагничивающего поля Н_, то вентильные свойства феррита будут проявляться в довольно узком интервале напряженностей постоянного поля D Н_, называемом шириной линии ферромагнитного резонанса. Чем меньше значение D Н_, тем сильнее поглощение электромагнитной энергии, что благоприятно сказывается на характеристиках ряда СВЧ-устройств (антенные переключатели и циркуляторы, служащие для распределения энергии между отдельными волноводами; фазовращатели; фильтры; модуляторы; ограничители мощности и др.).

Помимо достижения узкой линии резонанса к ферритам СВЧ предъявляют ряд специфических требований. Основными из них являются:

1) высокая чувствительность материала к управляющему полю (возможность управления относительно слабым внешним полем);

2) высокое удельное объемное сопротивление (10 6 -10 8 Ом · м) и возможно меньший тангенс угла диэлектрических потерь (10 -3 - 10 -4 ), а также возможно меньшее значение магнитных потерь вне области резонанса, обеспечивающее малое затухание в феррите;

3) температурная стабильность свойств и возможно более высокое значение точки Кюри. В отдельных случаях к ферриту предъявляют и другие требования, которые могут быть даже противоречивыми. Большинство требований удовлетворяется при использовании магний-марганцевых ферритов с большим содержанием окиси магния.

Для некоторых целей применяют литий-цинковые и никель-цинковые ферриты и ферриты сложного состава (полиферриты).

Конфигурация и размеры ферритового изделия, с одной стороны, определяются принципом действия прибора, а с другой, зависят от свойств самого материала. В различных приборах СВЧ применяемые ферритовые вкладыши имеют форму прямоугольной пластины, равностороннего треугольника, кольца, диска или сферы. При определенной геометрии вкладыша обеспечивается наилучшее согласование его с волноводом, т.е. получается минимальное отражение электромагнитной волны от феррита. Для изготовления вкладышей используются как поликристаллические материалы, так и монокристаллы ферритов. Последние характеризуются более узкой шириной линии ферромагнитного резонанса.

Магнитострикционные ферриты. Магнитострикционными называют магнитные материалы, применение которых основано на явлении магнитострикции и магнитоупругом эффекте, т.е. изменении размеров тела в магнитном поле и изменении магнитных свойств материала под влиянием механических воздействий.

Среди магнитострикциооных материалов можно отметить как чистые металлы, так сплавы и различные ферриты. Ферриты являются магнитострикционными материалами для высоких частот.

В эксплуатационных условиях в большинстве случаев магнитное состояние сердечника магнитострикционного преобразователя определяется одновременным воздействием переменного и постоянного подмагнич,вающих полей. Если Выполняется соотношение B m << B_, то между амплитудами переменного магнитного поля и механических колебаний существует линейная зависимость. Таким образом, магнитострикционные колебания небольшой амплитуды в намагниченной (магнитно-поляризованной) среде по своему внешнему проявлению аналогичны пьезоэлектрическим. Поэтому их иногда называют пьезомагнитными.

Широкое применение в магнитострикционных устройствах находит ферритовая керамика. По сравнению с никелем и металлическими сплавами, магнитострикционные свойства которых также выражены довольно сильно, магнитострикционные ферриты имеют ряд преимуществ. Благодаря высокому удельному сопротивлению в них пренебрежимо малы потери на вихревые токи, поэтому отпадает необходимость расслаивать материал на отдельные пластины. В отличие от металлических сплавов ферриты не подвержены действию химически агрессивных сред. С помощью керамической технологии можно изготовить преобразователи практически любых форм и размеров.

По составу магнитострикционная керамика представляет собой либо чистый феррит никеля (NiFe 2 O 4 ), либо твердые растворы на его основе.

Из магнитострикционных материалов изготавливают сердечники электромеханических преобразователей (излучателей и приемников) для электроакустики и ультразвуковой техники, сердечники электромеханических и магнитострикционных фильтров и резонаторов, линий задержки. Их используют также в качестве чувствительных элементов магнитоупругих преобразователей, применяемых в устройствах автоматики и измерительной техники.

3. Область применения ферритов

Магнитомягкие ферриты с начальной магнитной проницаемостью 400 - 20000 в слабых полях во многих случаях эффективно заменяют листовые ферромагнитные материалы - пермаллой и электротехническую сталь. В средних и сильных магнитных полях замена листовых ферромагнетиков ферритами нецелесообразна, поскольку у ферритов меньше индукция насыщения.

В табл.4 дана характеристика некоторых распространенных марок ферритов, выпускаемых в промышленном масштабе.

Магнитомягкие ферриты широко применяются в качестве сердечников контурных катушек постоянной и переменной индуктивностей, фильтров в аппаратуре радио- и проводной связи, сердечников импульсных и широкополосных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают также стержневые магнитные антенны, индуктивные линии задержки и другие детали и узлы электронной аппаратуры.

Наиболее часто применяют ферритовые сердечники с замкнутой магнитной цепью. Такие магнитопроводы бывают либо монолитными, в виде единого тела (например, кольцевой сердечник), либо составными - из двух хорошо пришлифованных друг к другу частей, зазор между которыми по возможности мал. Составные магнитопроводы распространены шире монолитных, так как намотка проволоки на последние вызывает определенные трудности. В качестве примера на рис.4 показана конструкция составного сердечника закрытого (броневого) типа. Он состоит из двух одинаковых чашек и стержня-подстроечника, входящего в центральное отверстие. Перемещением подстроечника можно регулировать индуктивность катушки.

Табл. 4 Свойства некоторых ферритов

Марка

m н

(tg d / m н ) 10 6 при f, МГц

m max

H c ,

A/м

B r , Тл

f кр , МГц

f гр , МГц

Т к , ° С (не ниже)

r , Ом · м

Примечание

20000НМ

15000

25(0,01)

35000

0,24

0,11

0,01

0,1

110

0,001

6000НМ

4800-8000

40(0,02)

10000

8

0,11

0,02

0,5

130

0,1

Общее

1000НМ

800-1200

15(0,1)

1800

28

0,11

1,0

5

200

0.5

1000НН

800-1200

85(0,1)

3000

24

0,1

0,4

3

110

10

600НН

500-800

25(0,1)

1500

40

0,12

1,2

5

110

100

2000НМ1

1700-2500

15(0,1)

3500

25

0,12

0,5

1,5

200

5

Термостабильн.

700НМ1

550-850

8(3)

1800

25

0,05

5

8

200

4

для аппаратуры

100ВЧ

80-120

135(18)

280

300

0,15

35

80

400

10 5

с повыш. требо-

20ВЧ2

16-24

280(30)

45

1000

0,1

120

300

450

10 6

ваниями

300НН

280-350

170(4)

600

80

0,13

5

20

120

10 6

Для конт. перес.

9ВЧ

9-13

850(150)

30

1500

0,06

250

600

500

10 7

подмагничиван.

200ВЧ

180-220

90(10)

360

70

0,11

20

-

360

10 3

Для широкопо-

50ВЧ3

45-65

120(30)

200

100

0,14

85

-

480

10 4

лосных трансф.

Рис.5 Конструкция броневого ферритового сердечника.

Рис.6 Общий вид магнитной видеоголовки (указаны приблизительные размеры в мм)

Монокристаллы магнитомягких ферритов находят довольно широкое применение при изготовлении магнитных головок записи и воспроизведения звукового и видеодиапазонов в магнитофонах. По сравнениюс металлическими ферритовые головки обладают высоким удельным сопротивлением (что важно для уменьшения потерь) и большей твердостью. Из-за высокой скорости движения магнитной ленты при видеозаписи к материалу головки предъявляются повышенные требования в отношении износоустойчивости.

Конструкция головки для магнитной записи показана на рис.5. Сердечник головки состоит из двух половин, склеенных стеклом, между которыми создается рабочий зазор 0,5-0,7 мкм. Такие сердечники изготавливают из монокристаллов марганец-цинковых ферритов, выращиваемых газоплазменным методом Вернейля.

3.1 Ферритовые сердечники

Современные устройства связи используют много деталей с ферритовыми сердечниками. Ферриты удовлетворяют серьезным требованиям, предъявляемым к современным элементам устройств связи, а также находят себе другие применения. Это, например, ферритовые антенны, однонаправленные изоляторы волноводов, модуляторы микроволн и т.д. Возможность изготовления ферритов различного состава увеличивает возможности их применения, благодаря чему ферриты перешагнули границы области применения, для которой они были первоначально разработаны, и стали применяться в технике ЭВМ, в технике регулирования измерений, а также в атомной технике.

Табл.5 Применение ферритовых сердечников, обеспечивающих достижение добротности не менее 100.

Частота, Гц

10

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

Применение

Сердечники

1 - телеграф 2 - телефон 3 - телефонная несущая 4 - звукозапись. Радио, радиолокация: 5 - ДВ 6 - СВ 7 - КВ1 8 - КВ2 9 - УКВ 10 - СВЧ.

3.2 Запоминающие и переключающиеся цепи

Успехи в развитии магнитомягких материалов в 60-е годы содействовали быстрому развитию математических машин и позволили осуществить новые конструкции электронных телефонных станций. Элементы, в которых эти материалы используются совместно с полупроводниковыми диодами или транзисторами, почти вытеснили менее надежные, имеющие большие габариты и менее экономичные детали, какими являются электронные лампы и реле. При проектированиикрупных машин для обработки информации нельзя обойтись без этих элементов.

Для указанных устройств обычно применяются металлические и ферритовые магнитные материалы с прямоугольной петлей гистерезиса. В некоторых запоминающих цепях, кроме этих материалов, применяются и другие.

3.3 Принципы действия запоминающих и переключающихся цепей с сердечниками с прямоугольной петлей гистерезиса

Толчок развитию запоминающих устройств на основе магнитных материалов дали постоянно повышающиеся к ЭВМ. По принципу действия элементы запоминающих устройств делятся на две группы. Первые требуют постоянного обновления поступающей информации. Так работают запоминающие устройства, основанные на принципе линии задержки. Вторые длительно сохраняют записанную информацию. У магнитных запоминающих устройств этой группы носителем информации является остаточная индукция магнитного материала. Эти устройства также делятся на два типа. У первого магнитный материал перемещается относительно катушки, применяемой для записи или чтения. Информацию можно получить только в определенный момент, а именно тогда, когда запись проходит как раз под считывающей катушкой. У второго типа, т.е. статических устройств магнитной памяти и других подобных им усройств, запись и чтение производятся перемагничиванием неподвижного ферромагнитного материала. Информацию можно получить в любой момент времени. Запоминающие устройства осуществляют запись информации с помощью двух возможных состояний запоминающего элемента, чаще всего обозначаемых индексами 0 и 1.

Магнитные переключающиеся цепи всегда имеют электрический выход, т.е. обмотку из провода с определенным сопротивлением. Переключение осуществляется изменением индуктивности или же изменением взаимосвязи у трансформатора, а поэтому может применяться только при переменном или импульсном напряжении и непригодно для постоянного тока.

Чтобы обосновать требования к магнитным материалам этих цепей, опишем кратко работу матричного магнитного запоминающего устройства, матричного переключающего устройства и устройства магнитной памяти, основанного на принципе односердечникового магнитного усилителя, где чаще всего применяются ферритовые сердечники с прямоугольной петлей гистерезиса.

Запись информации в статические устролйства магнитной памяти заключается в перемагничивании тороидального сердечника из одного состояния в обратное. Два возможных состояния запоминающего элемента требуют представления информвции в бинарном (двоичном) виде, а поэтому необходимо значительное количество сердечников. Металлические сердечники дороги и имеют большие размеры, а поэтому развитие запоминающих устройств большой емкости стало возможно лишь после появления ферритов с ППГ. Рассмотрим принцип действия устройства на одном сердечнике (рис. 6). Через записывающую обмотку А проходит положительный токовый импульс, который намагничивает сердечник до насыщения. После исчезновения импульса сердечник будет находиться в состоянии индукции В r , что соответствует записи 1. Состоянию 0 соответствует намагничивание в обратном направлении. Если теперь через обмотку В пройдет другой импульс отрицательной полярности, то сердечник перемагничивается из состояния 1 в состояние 0 и в выходной обмотке С индуцируется импульс напряжения. Если сердечник намагничен в отрицательном направлении, т.е. находится в состоянии 0, то считывающий импульс в обмотке В не вызовет перемагничивания сердечника.

Выходное напряжение в обмотке С будет незначительным. Основанные на этом принципе устройства памяти имеют тот недостаток, что при считывании снимается первоначальная запись и информацию необходимо снова записывать. Существенными достоинствами такого устройства являются доступность информации в любой момент, очень малое время записи (порядка наносекунд) и сохранение информации без потребления энергии.

Практические магнитные матричные устройства памяти работают по принципу совпадения импульсов в двух обмотках. Такую схему иллюстрирует. Все обмотки имеют только один виток, а сердечники надеты в местах пересечения проводов А и В. Через провода А и В проходят импульсы тока такой величины, чтобы импульс тока в одном проводе не мог перемагнитить сердечник, а суммарный импульс тока в двух проводах перемагничивал его. При записи 1 через определенные провода А и В пройдут токи величиной I m /2, которые намагничивают только тот сердечник, в котором их действие складывается. Состояние остальных сердечников не изменяется.

При чтении информации, записанной в сердечнике, в провода А и В подается импульс тока -I m /2, т.е. такой же, как для записи 0. Во всех сердечниках возникает магнитное поле с напряженностью -H m /2, за исключением пересечения проводов А и В, где возникает суммарное поле с напряженностью H m . Если при этом сердечник имел положительную остаточную индукцию, то он перемагничивается и в выходной обмотке С индуцируется импульс.

Сердечники запоминающих элементов не имеют идеально прямоугольной петли гистерезиса, а поэтому небольшой выходной импульс возникает и в сердечниках с состоянием 0. При большом числе сердечников в запоминающем устройстве важно, чтобы эти нежелательные импульсы оставались достаточно малыми и их можно было отличить от полезного сигнала. На записанную информацию повторное намагничивание половинными импульсами обратной полярности не должно оказывать влияния.

Трудно устранить нежелательные импульсы при чтении информации. Считывающая обмотка проходит через сердечники в попеременном направлении, чтобы нежелательные сигналы всех обмоток по возможности компенсировали друг друга. Это предполагает полную идентичность сердечников. При изготовлении отдельные сердечники получаются различными, а поэтому их необходимо сортировать. Для построения матрицы запоминающего устройства применяются только сердечники, имеющие различия лишь в очень узких допусках. Хорошие результаты получаются при дифференцировании импульсов по длительности. У большинства типов сердечников вредный импульс значительно короче импульса, вызванного перемагничиванием. Поэтому выходное напряжение считывается лишь после окончания вредного импульса, благодаря чему их различие достигает отношения около 200:1. Этот метод называется методом задержки считывания. Свойства запоминающего устройства улучшают и другие многочисленные меры, как, например, считывающие импульсы различной длительности, заканчивающиеся в один и тот же момент. Нежелательный сигнал одного ряда исчезает раньше, чем приходит импульс в другой ряд, и только половина сердечников оказывает влияние на выходной сигнал. Самый простой способ дифференциации - дифференциация по максимальному значению. Различие при этом достигает соотношения до 30:1.

Чтобы сердечники могли управляться малыми токами при одновитковой обмотке, необходимы сердечники с возможно меньшими размерами и коэрцитивной силой. Для записи информации сердечник намагничивается полем, превышающим коэрцитивную силу приблизительно в 2 раза. Скорость, с которой информация может быть занесена в матрицу и считана с нее, зависит от времени от начала токового импульса, намагничивающего сердечник, до снижения выходного напряжения до совершенно незначительной величины, т.к. перемагничивание крутыми токовыми импульсами происходит не мгновенно и длительность его для различных материалов различна.

Указаный тип запоминающих устройств работает с так называемым координатным выбором. Выбор сердечника производится подачей тока в провода обеих координат. Считывающая обмотка проходит через все сердечники и импульсы в ней складываются. При адресном выборе каждый столбец сердечника имеет самостоятельный выход, и при чтении в выбранный ряд (адрес) вводится полный ток для перемагничивания. После считвания информация тотчас обновляется. Одна и та же обмотка служит и для чтения и для записи. Через каждый сердечник проходят только два провода. Адресный выбор информации позволяет применять и менее качественные сердечники, в чем состоит его преимущество, т.к. для перемагничивания сердечников можно ввести больший токовый импульс, чем возникающий при совпадении двух импульсов величиной I m /2. Наоборот, сердечники, не лежащие на выбранном адресе, не намагничиваютя вообще и не создают помех. Применение одной обмотки для лвух целей требует переключения, а следовательно, большего количества переключающих элементов цепи. Этого можно избежать сдваиванием проводов столбцов. Отдельные конструкции запоминающих устройств отличаются друг от друга в деталях, а поэтому оптимальные рабочие параметры должны определяться в зависимости от сердечников и схемы, применяемой в рассматриваемом случае.

Систему сердечников в матричной схеме можно использовать также для переключения.

Ее выгоды особенно отчетливы при большом числе переключающихся цепей. Такая переключающаяся схема заменяет большое число электронных ламп и требует меньше места и энергии. Сердечники, образующие матрицу, имеют обмотки Х и Y с несколькими витками. Кроме того, на каждом из них есть выходная обмотка. В исходном состоянии через обмотки одной линии проходит ток, в 2 раза больший тока, необходимого для насыщения. В поперечной обмотке тока нет. Если выбранный сердечник должен дать на выходе импульс, то ток в проводе Y прерывается, а в провод Х подается достаточно сильный токовый импульс. В результате происходит перемагничивание сердечника, находящегося на пересечении проводов Х и Y. Другие схемы переключающихся устройств используют постоянное подмагничивание всех сердечников другой обмотки; выходной импульс вызывается совпадением токов в проводах Х и Y. Выходы переключающейся схемы подходят к отдельным обмоткам матричного запоминающего устройства. Как и у запоминающих устройств, здесь необходимо ограничить влияние вредных сигналов. Требование к прямоугольности сигналов у переключающихся цепей менее жесткие.

Тороидальные сердечники из материалов с ППГ широко применяются в магнитных логических цепях, которые заменяют электромеханические реле. Эти бесконтактные цепи значительно надежнее, не требуют ухода, могут работать гораздо быстрее, после заливки компаундом стойки к коррозионной атмосфере и сотрясениям, а срок службы их почти не ограничен. Единственным недостатком являтся цена, которая выше, чем цена реле. Магнитные логические цепи оправдали себя в устройствах, в которых основным требованием является надежность работы. Они применяются в промышленности для управления приводами, транспортерами, для сигнализации, в цифровой технике и в машинах для обработки информации.

Основным элементом таких схем является магнитный усилитель по схеме Рамея. Усиление невелико, оно только дает возможность управлять одним выходным сигналом несколькими управляющими цепями.

Основная схема однополупериодного магнитного усилителя Рамея. Сердечник с ППГ имеет две обмотки: рабочую и управляющую. Работу усилителя лучше всего рассмотреть отдельно в два полупериода. В персвом полупериоде (рабочем) ток проводит выпрямитель D 2 , благодаря чему сердечник насыщается.

В последующем управляющем полупериоде выпрямитель в цепи нагрузки не проводит тока, а во входной цепи проходит ток, определяемый разностью напряжений, который перемагничивает сердечник из состояния насыщения в обратном направлении. В следующем рабочем полупериоде сердечник намагничивается опять, и, как только он насытится, в остаток полупериода через нагрузку проходит полный ток. Если на входе нет напряжения, то сердечник всегда перемагничивается из одного состояния насыщения в обратное и через нагрузку проходит лишь незначительный намагничивающий ток. При полном входном напряжении, которое может быть переменным или постоянным, а также иметь форму отдельного импульса, сердечник все время остается насыщенным и через нагрузку в течение всего рабочего полупериода проходит полный ток. Усилитель Рамея сохраняет величину импульса напряжения, т.е. сердечник играет роль памяти. Выход запаздывает за входом всегда на один полупериод питающего напряжения. Каскадным включением нескольких таких усилителей получается переключающаяся линия задержки. При кольцевом соединении двух таких усилителей получается переключающаяся цепь. Усилитель с двумя и более параллельными входами служит в качестве суммирующего элемента. К материалу сердечников логических цепей предъявляются высокие требования. Это прежде всего большая относительная остаточная индукция, чтобы случайные импульсы помех не могли исказить записанную информацию. Кроме того, необходима как можно меньшая коэрцитивная сила, чтобы усиление было максимальным. Т.к. цепь нагружена с отбором мощности, индукция должна быть как можно большей.

Напряжение на выходе будет только в том случае, если будет напряжение на всех трех входах А, В и С. Эта цепь заменяет последовательное соединение трех реле. Совместно с подобной цепью для логического суммирования и вычитания она позволяет составить произвольную сложную релейную схему. Основные схемы в качестве самостоятельных единиц встраиваются в виде коробки с многополюсным разъемом. Они вставляются в шкаф так же, как и электронные лампы и образуют, таким образом релейную схему.

Логические цепи могут быть составлены также из обычных магнитных усилителей с обратной связью. Такая схема при данной частоте питающего напряжения более медленная. Для цепей управления приводами в промышленности в большинстве случаев применяется частота 50 или 400 Гц, а в счетных машинах - до 1 МГц. Для увеличения скорости применяются логические цепи с ферритовыми сердечниками, основанные на принципе совпадения.

3.4 Требования к сердечникам с ППГ. критерии прямоугольности

Требования к свойствам магнитных сердечников с ППГ, вытекающие из рассмотрения описанных устройств с их применением, можно сформулировать следующим образом:

1. Высокая индукция насыщения B s , которая должна достигаться при малой напряженности магнитного поля. Это требование особенно важно для мощных устройств.

2. Малая коэрцитивная сила H c , а следовательно, малая энергия, необходимая для перемагничивания сердечника.

3. Относительная остаточная индукция, выражаемая формулой b = B r /B m должна быть как можно ближе к единице. Эта величина непостоянна и достигает максимума при определенном значении напряженности магнитного поля, которое также должно быть как можно меньше.

4. Коэффициент прямоугольности R s = B (-0,5 Hm) /B m должен быть как можно ближе к единице. Он определяется измерением индукции при напряженности H m и -0,5H m (рис). Коэффициент R s также зависит от H m и выражает прямоугольность точнее, чем относительная остаточная индукция, т.к. зависит от формы петли гистерезиса во II координатной четверти. Этот коэффициент применяется при использовании сердечников запоминающих устройств с записью по принципу совпадения. Типичная зависимость коэффициента прямоугольности R s от напряженности поля H m.

5. Малое время перемагничивания - это время, в течение которого наведенное напряжение уменьшается до 10% максимального значения.

6. Как можно большее удельное электрическое сопротивление. У металлических сердечников, кроме того, необходима достаточно малая толщина пластин. Величина удельного сопротивления и толщина пластин определяют потери на вихревые токи, а следовательно6 и максимальную рабочую частоту. Кроме того, они влияют на время перемагничивания.

Важность отдельных критериев сильно зависит от применения сердечников и различна для различных случаев. Необходимо отметить, что параметры пп 1-5 зависят как от формы токовых импульсов, так и от формы сердечника.

4. Получение ферритов

Ферриты получают в виде керамики и монокристаллов. Благодаря невысокой стоимости и относительной простоте технологического цикла керамические материалы занимают ведущее место среди высокочастотных

магнетиков.

При изготовлении ферритовой керамики в качестве исходного сырья наиболее часто используют окислы соответствующих металлов. Общая технологическая схема производства ферритов во многом аналогична схеме производства радиокерамики. Однако при получении материалов с заданными магнитными свойствами предъявляются более жесткие требования к исходному сырью в отношении его химической чистоты, степени дисперсности и химической активности. В отличие от электрорадиокерамики ферритовая керамика совершенно не содержит стекловидной фазы; все процессы массопереноса при синтезе соединения и спекания изделий происходят лишь за счет диффузии в твердой фазе.

Исходные окислы подвергают тщательному измельчению и перемешиванию в шаровых или вибрационных мельницах тонкого помола, а затем после брикетирования или гранулирования массы осуществляют предварительный обжиг с целью ферритизации продукта, т.е. образования феррита из окислов. Ферритизованный продукт вновь измельчают и полученный таким образом ферритовый порошок идет на формовку изделий. Предварительно его пластифицируют, причем в качестве пластификатора обычно используют водный раствор поливинилового спирта.

Формование изделий наиболее часто осуществляют методом прессования в стальных пресс-формах. Высокой производительностью формовки отличается также метод горячего литья под давлением. В этом случае в качестве пластифицирующего и связующего веществ применяют парафин.

Отформованные изделия подвергают спеканию при температуре 1100-1400 ° С в контролируемой газовой среде. Контроль газовой среды особенно необходим на стадии охлаждения, чтобы предотвратить выделение побочных фаз. Наибольшей чувствительностью к изменению давления кислорода характеризуются ферриты марганца и твердые растворы на их основе. В процессе спекания завершаются химические реакции в твердой фазе, устраняется пористость, фиксируется форма изделий. За счет процесса рекристаллизации материал приобретает определенную зеренную структуру, которая существенно влияет на магнитные свойства керамики.

Ферриты являются твердыми и хрупкими материалами, не позволяющими производить обработку резанием и допускающим только шлифовку и полировку. Для этих видов механической обработки широко используют порошки карбида кремния и абразивные инструменты из синтетических алмазов.

Рассмотрим подробнее три наиболее распространенные технологические схемы производства ферритов.

4.1 Основные технологические схемы изготовления ферритов

Ферритовые изделия должны строго соответствовать требуемым магнитным и электрическим свойствам, геометрической форме и размерам. При этом должны быть использованы наиболее простые технологические схемы при минимальных затратах сырья, оборудования и энергии. Выход годных изделий должен быть максимальным для выбранной технологической схемы.

В основе технологии изготовления ферритов лежат технологические приемы, свойственные производству керамических изделий и изделий порошковой металлургии. Поэтому большая часть отдельных операций технологической схемы изготовления ферритов заимствована из технологической схемы изготовления керамических изделий и изделий порошковой металлургии.

Можно выделить три наиболее распространенные технологические схемы изготовления изготовления ферритов, основанных на:

1) механическом смешивании исходных веществ в виде окислов и солей металлов в количествах, соответствующих химическому составу получаемого феррита;

2) термическом разложении соответствующих солей металлов;

3) совместном осаждении соответствующих солей металлов или их гидратов окислов.

Технологическая схема получения ферритов на основе механического смешивания окислов и солей. Исходными веществами для изготовления ферритов по этой технологической схеме являются окислы металлов, взятые в соотношении, отвечающем химической формуле получаемого феррита. Иногда часть окислов может быть заменена углекислыми солями одноименного с окислом металла. Такая замена не оказывает влияния на характер отдельных операций и общая схема процесса остается неизменной. Иногда эту технологическую схему называют окисной или керамической.

Кратко охарактеризуем каждую из операций технологической схемы. Анализ исходных окислов и солей производится для определения их физико-химических характеристик: качественного и количественного содержания примесей, величины и формы частиц порошкообразных окислов и солей, активности компонентов.

Для получения заданного феррита исходная смесь должна содержать определенные количества составляющих ее окислов и солей. Для этого производят расчет весовых значений окислов и солей и их взвешивание.

Для получения однородной по химическому составу и размеру частиц смеси взвешенные в необходимых пропорциях исходные окислы и соли перемешивают и размалывают механическим путем. Помол и перемешивание смеси производят в виде сухих порошков (сухой помол), либо в какой-нибудь жидкости (мокрый помол).

При мокром помоле после окончания операции полученную смесь подвергают сушке до полного удаления влаги.

После перемешивания и помола смесь (иногда ее называют шихтой) брикетируют и гранулируют. Цель этих операций - придать шихте более компактную форму ( в виде цилиндрических брикетов, сферических гранул, таблеток) и обеспечить более полное, качественное протекание реакций, которые происходят на последующей стадии технологического процесса - стадии предварительного обжига.

Брикеты, гранулы или просто порошок, прошедшие операцию предварительного обжига, поступают на вторичный помол и перемешивание. Цель этой операции в общем та же, что и первого перемешивания и помола. Однако в этом случае процесс помола должен преобладать над процессом перемешивания, т.к. плотность и размер шихты после предварительного обжига значительно больше, чем в случае исходных окислов и солей.

Сушка шихты после вторичного помола и перемешивания (если эта технологическая операция производилась в какой-либо жидкости) аналогична сушке смеси после смешивания и помола исходных порошков.

Операция формования служит для придания полуфабрикату изделия необходимой формы. Для улучшения формования приготовляют пресспорошок (для шликерного литья - шликеры) - смесь порошка ферритовой шихты и связующих веществ, способствующих получению пластических свойств. Для этого в порошок вводят различные связки, способствующие сцеплению отдельных частиц и позволяющие формовать изделия достаточно прочные для проведения последующих операций.

Отформованные изделия проходят высокотемпературное спекание . Цель этой операции - получение ферритовых элементов с определенными магнитными и электрическими параметрами.

Спеченые изделия (ферриты) подвергают контролю, в т.ч. по внешнему виду (на отсутствие трещин, раковин, и т.д.); по геометрическим размерам (на соответствие чертежу); определению магнитных, электрических и физико-механических характеристик (на соответствие техническим условиям). По результатам контроля изделия разделяют на годные и бракованные.

Технологическая схема, основанная на термическом разложении солей. Эта технологическая схема имеет много общих операций с предыдущей. Отметим лишь те операции, которые ее отличают.

Термическое разложение солей связано с тем, что в качестве исходных веществ применяют растворимые сернокислые, азотнокислые, солянокислые соли металлов, соответствующих составу ферритов. Каждую соль грубо измельчают до размера частиц 1-2 мм и перемешивают. Затем соли помещают в соответствующий сосуд вместе с водой (в соответствии 1л воды на каждые 5 кг соли), нагревают смесь до кипения и после полного испарения воды подвергают окончательному обезвоживанию с целью удаления кристаллизационной воды путем дальнейшего нагрева смеси солей до 300 ° С. Процесс обезвоживания достаточно продолжителен (до 24 ч в зависимости от природы используемых солей). Следующей операцией является термическое разложение солей - прокаливание смеси при 900-1000 ° С в керамических сосудах (тиглях) до полного удаления газов - продуктов разложения. Длительность этой операции - 3-5 ч.

Следует отметить, что в случае термического разложения солей можно совместить операции прокаливания солей и предварительного обжига, в этом случае отпадает необходимость в брикетировании и гранулировании.

Технологическая схема, основанная на совместном осаждении углекислых солей. Эта схема так же, как и предыдущая, имеет много общего с керамической схемой изготовления ферритов. Рассмотрим отличительные операции этой схемы. Соли смешивают и растворяют в дистиллированной воде. Растворы солей и осадителя после фильтрации постепенно сливают при непрерывном перемешивании, иногда нагревая смесь для ускорения процесса осаждения. Полученный осадок несколько раз промывают в воде или слабом растворе осадителя для удаления растворимых примесей. Чистоту отмывки контролируют на содержание определенных ионов (например, при растворении сернокислых солей осуществляется контроль на полноту отмывки от ионов SO 4 ).

Преимущества и недостатки различных технологических схем. К преимуществам изготовления ферритов механическим смешиванием окислов и солей (керамический способ) можно отнести: возможность точного соблюдения заданного химического состава; отсуствие отходов и связанной с этим переработки меньших количеств сырья; отсутствие вредных выделений; простоту технологической схемы.

Недостатки керамического способа - необходимость тщательного измельчения и смешивания исходных солей и окислов для получения однородной химической смеси.

Преимущества остальных рассмотренных схем изготовления ферритов являются: получение очень однородных по химическому составу смесей, практически не нуждающиеся в дальнейшем перемешивании; получение высокой химической активности шихты. К недостаткам этих схем относятся: трудности, связанные с точным соблюдением химического состава ферритов из-за возможности потерь отдельных компонентов при растворении и осаждении ввиду различной растворимости исходных солей; необходимость переработки больших количеств исходных веществ; выделение отходов, загрязняющих воздух или сточные воды.

4.2 Исходное сырье и материалы, применяемые для изготовления ферритов

Ферриты получают при высокотемпературной обработке смеси окислов, вступающих между собой в реакцию в твердой фазе. Происходящая при этом взаимная диффузия ионов металлов приводит к образованию соединений типа МеFe 2 O 4 или боле сложных типов в зависимости от природы феррита. Для взаимной диффузии ионов необходим контакт между отдельными частицами окислов (именно окислов, т.к. при разложении солей образуются также окислы, которые участвуют непосредственно в образовании феррита). Все факторы, приводящие к увеличению скорости взаимной диффузии ионов при нагревании смеси порошков, способствуют ускорению образования ферритов. К числу таких факторов относятся, например, величина частиц реагирующих веществ, взаимный контакт, и т.п.

Выпускаемые промышленностью окислы и соли, используемые для производства ферритов, различаются по их квалификации, например "Ч" - чистые, "ЧДА" - чистые для анализа, "ХЧ" - химически чистые и др. Эти окислы отличаются по степени частоты, т.е. количественному содержанию примесей. Например, никель углекислый (NiCO3), квалификации "ЧДА", выпускаемый промышленностью по ГОСТ 4466-48 содержит следующие примеси (в %): вещества, нерастворимые в соляной кислоте - 0,01; хлориды - 0,005; сульфиты - 0,01; железо - 0,001; кобальт - 0,05; цинк - 0,05; щелочные и щелочноземельные металлы (в виде сульфатов) - 0,4. В той же соли, но квалификации "Ч" содержание примесей больше. Кроме того, может измениться и качественный состав примесей.

Исходные вещества различаются также по размеру и форме частиц, удельной поверхности, активности. При этом сырье отличается по качественному содержанию примесей и содержанию влаги (влажности) как в различных партиях, так и в различных упаковках одной партии. Поэтому при производстве ферритов исходные материалы усредняют: перемешивают разные партии сырья и разные упаковки одной партии. Содержание основного вещества определяют на усредненных партиях сырья.

Реакция в твердой фазе (при нагреве порошков) протекает неодинаково в окислах, очищенных от примесей, и содержащих примеси. Установлено, что наличие некоторых примесей, как правило, способствует процессам, протекающим при реакции в твеердой фазе. Однако очень важно для каждого вида феррита определить допустимый качественный и количественный состав примесей, который позволит полусать одинаковые по характеристикам ферриты на различных партиях исходного сырья. От этого в большой степени зависят повторяемость и воспроизводимость технологического процесса получения ферритов.

Критерии оценки качества исходного сырья для производства ферритов должны быть установлены и по другим физико-химическим параметрам. До сих пор, однако, такие критерии для исходных веществ не выработаны. Поэтому возникает необходимость в подборе исходного сырья экспериментальным путем: изготовлением пробных партий ферритов из различных партий сырья и соответствующей корректировки технологических процессов.

Окись железа является основной составляющей частью всех ферритов. Ее физико-химические характеристики оказывают определяющее влияние на характеристики ферритовых элементов. Окись железа имеет три модификации: a - Fe 2 O 3 - парамагнитная, g и d - Fe 2 O 3 - обе ферромагнитные. Из них d - Fe 2 O 3 сохраняется лишь при низкой температуре и при нагреве до 110 ° С переходит в a - Fe 2 O 3 . Температурный интервал g - Fe 2 O 3 различен для разного состояния g - Fe 2 O 3 и свойств примесей. Обычно промышленная окись железа содержит смесь a - Fe 2 O 3 и g - Fe 2 O 3 , при этом наиболее активной составляющей является g - Fe 2 O 3 . Чем выше ее содержание, тем активнее ферритовая шихта. Поэтому при производстве ферритов важно знать соотношение этих модификаций Fe 2 O 3 в исходной окиси железа.

Процентное содержание их можно регулировать с помощью магнитного разделения g и a модификаций, учитывая, что g - Fe 2 O 3 - магнитна, а a - Fe 2 O 3 - немагнитна.

Активность исходной порошкообразной окиси железа зависит от формы и размера ее частиц. Наибольшей активностью обладает окись железа с "игольчатой" формой частиц, наименьшей - с "кубической". Чем мельче размер частиц порошка окиси железа, тем, как правило, выше активность. Т.к. удельная поверхность порошка обратно пропорциональна размеру его частиц, то активность окиси железа растет с увеличением удельной поверхности.

Физико-химические характеристики окиси железа (и других окислов) существенно зависят от способа получения ее из различных солей и других химических соединений.

Так, активность окиси железа, полученной из различных солей (сульфата, карбоната, оксалата, соли Мора), наибольшая у оксалата и наименьшая у сульфата.

Температура разложения солей, из которых получают исходные материалы для производства ферритов, также оказывают значительное влияние на физико-химические характеристики порошков. Так, например, разложение карбоната железа квалификации "ЧДА" при различных температурах (200, 400, 600, 800 и 100 ° С) в течение 4 часов снижает значение удельной поверхности (увеличивает средний размер частиц), получаемой Fe 2 O 3 . Окись железа с оптимальными свойствами, пригодными для производства ферритов получается при прокалке в интервале 400-650 ° С.

Окислы других металлов, используемые для получения ферритов, тоже имеют разлиные физико-химические характеристики, а также количественное и качественное содержание примесей. Характер влияния этих различий на свойства ферритов аналогичен влиянию окиси железа. Однако степень этого влияния меньше и зависит от относительного содержания окисла в феррите.

Таким образом, для получения ферритов с повторяющимися свойствами необходимо при выборе сырья осуществлять контроль по количественному содержанию основного вещества, качественному и количественному содержанию примесей и физико-химическим характеристикам порошков.

Многие вопросы конкретной стандартизации тех или иных параметров исходных веществ для производства ферритов еще не ясны и находятся в стадии экспериментального и теоретического изучения.

5. Методы испытания ферритов

5.1 Механические испытания ферритов

Целью механических испытаний ферритов является изучение деформаций образцов материалов при механических воздействиях и определение величины механических напряжений, вызывающих разрушение образцов . Механические свойства материалов - способность материалов сопротивляться деформированию и разрушению в сочетании со способностью упруго и пластически деформироваться под действием внешних механических сил.

Измерение механических характеристик различных материалов, в т.ч. и ферритов, имеет большое практическое значение, т.к. при конструировании, сборке и эксплуатации различных аппаратов, приборов, волноводов и других устройств, детали, изготовленные из феррита, могут подвергаться механическим усилиям, хотя иногда и кратковременным, но значительным по величине.

Создание напряженного состояния во время испытаний должно по возможности соответствовать тем условиям, в которых находятся детали или образцы при эксплуатации. Поэтому испытания материалов подразделяются сообразно видам нагружения, которым подвергаются образцы в процессе использования.

Основные виды испытаний ферритов следующие: 1) статические испытания на растяжение, сжатие, изгиб, кручение; 2) динамические испытания нп ударную прочность (вязкость); 3) испытания на твердость; 4) определение упругих постоянных динамическим способом.

Необходимо отметить, что при испытаниях образцов из ферритов наблюдается большой разброс результатов. Этот разброс в первую очередь объясняется различными технологическими факторами (различным давлением при прессовании, различием температуры обжига, наличием микротрещин, неоднородной зернистостью и т.п.)

Табл.6 Сводная таблица механических характеристик некоторых марок ферритов

Система феррита

Марка феррита

t, ° C

Прочность, кг/см 2

Модуль Юнга, Е ґ 10 -6 кг/см 2

Ударная прочность, а ґ 10 -2

Удельный вес, г/см 3

Пори-стость, %

ТК ЛР, ґ 10 6

раст.

сж.

изгиб

круч.

пов.

об.

-100

265

1800

550

190

10ВЧ1

-50

210

2200

475

170

1,17-1,45

2,9

29,0

4,2-4,5

-

-

+20

150

2600

380

155

Высоко-

+100

115

3300

330

150

частотные

-100

120

250

235

205

никель-

20ВЧ

-50

95

1000

190

170

0,45-0,55

2,95

22,3

3-3,2

34,5-

5,8-6,5

цинковые

+20

70

1050

150

140

42,0

и др.

+100

65

1150

110

115

-100

150

1300

300

220

50ВЧ2

-50

125

1400

265

190

0,5-0,6

2,1

21,0

3,2-3,5

25-35

5,0-5,5

+20

95

1550

210

155

+100

70

1650

200

135

-100

225

1400

395

346

1000НМ3

-50

180

1600

345

260

0,9-1,1

2,37

23,2

3,8-4,2

12-20

9-9,8

+20

120

1680

300

200

Марганец-

+100

100

2500

265

180

цинковые

-100

290

1450

535

290

2000НМ1

-50

230

1500

490

215

0,8-0,95

2,54

23,7

3,8-4,1

9-15

9-11

+20

160

1600

450

170

+100

130

2000

410

150

-100

-

3750

1350

495

1БИ

-50

290

2750

1000

450

1,1-1,5

2,3

23,0

4,4-4,7

-

-

+20

260

2300

660

440

+100

240

2250

585

505

-100

-

3250

1150

710

Бариевые

2БА

-50

310

2350

1000

690

1,65-1,9

2,6

26

4,7-1,9

-

-

+20

250

1950

750

490

+100

240

2000

600

575

-100

-

-

875

-

3БА

-50

420

2900

840

670

1,8-2,0

3,0

30,4

4,8-5,0

-

-

+20

310

2200

770

490

+100

265

2000

720

610

Никель-

55НН

+20

150

1100

315

-

1,7-1,72

1,8

10,5

4,9-5,3

-

5,7-6,5

цинковые

200НН2

+20

160

1530

270

-

1,0-1,3

1,8

10,8

4,8-5,1

-

7,8-8,1

45НН

+20

76

1340

165

-

1,2-1,35

1,65

9,4

4,4-4,9

-

5,7-6,4

5.2 Способы измерения и контроля магнитных свойств ферритовых материалов и изделий из них

Все возрастающее разнообразие применяемых в автоматике, телемеханике и вычислительной технике ферритовых элементов вызывают необходимость усовершенствования старых и изыскания новых методов измерений их магнитных и механических свойств. Некоторые методы являются общими для большинства ферромагнитных материалов; к ним относятся большая часть испытаний на постоянном токе. По мере же появления новых областей использования магнитных элементов увеличивается разновидность самих элементов и методов их испытаний, разрабатываются специфические измерительные устройства. Причем методы испытаний приближены к условиям работы элемента в конкретном устройстве, а параметры отражают специфику поведения ферритовых материалов в каких-либо особых условиях.

5.2.1 Методы измерения статических свойств ферритовых изделий

Статические характеристики ферритовых элементов определяются в постоянных и близких к постоянным полях. При испытании ферритового образца на постоянном токе происходит очень медленный переход сердечника из одного магнитного состояния в другое, и перемагничивание протекает по статической петле гистерезиса. Параметры статической петли гистерезиса определяются баллистическим, магнитометрическим методами, методом осциллографирования петли гистерезиса и импульсного считывания.


Подобные документы

  • Особенности использования магнитомягких материалов для постоянных и низкочастотных полей. Определение свойств ферритов и магнитодиелектриков. Применение магнитострикционных материалов для изготовления сердечников электромеханических преобразователей.

    реферат [25,2 K], добавлен 30.08.2010

  • Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.

    курсовая работа [366,4 K], добавлен 05.01.2017

  • Понятие индуктивности. Методы расчета индуктивности воздушных контуров, катушек с замкнутыми сердечниками, катушек с немагнитными сердечниками и катушек с сердечниками, имеющими воздушный зазор. Потери в катушках индуктивности. формула добротности.

    контрольная работа [72,9 K], добавлен 21.02.2009

  • Обзор теории взаимодействия вещества с электромагнитными волнами; методы измерения диэлектрических свойств материалов, способов синтеза и углеродных наноструктур. Отработка известных методик измерения диэлектрических свойств для углеродных нанопорошков.

    курсовая работа [5,4 M], добавлен 29.02.2012

  • Магнитометр как прибор для измерения характеристик магнитного поля и магнитных свойств веществ (магнитных материалов), его разновидности и функциональные особенности. Феррозонд: понятие и типы, структура и элементы, принцип действия, назначение.

    реферат [329,0 K], добавлен 11.02.2014

  • Материалы активной зоны. Тяжелая авария в реакторе. Установка для моделирования тяжелой аварии. Методика гидростатического взвешивания для измерения плотности твёрдых материалов. Средства измерения температуры. Рентгеновский фазовый структурный анализ.

    дипломная работа [4,7 M], добавлен 17.05.2015

  • Проявления магнитного поля, параметры, его характеризующие. Особенности ферромагнитных (магнитомягких и магнитотвердых) материалов. Законы Кирхгофа и Ома для магнитных цепей постоянного тока, принцип их расчета, их аналогия с электрическими цепями.

    контрольная работа [122,4 K], добавлен 10.10.2010

  • Сборка простейших электрических цепей. Методы анализа цепей со смешанным соединением резисторов (потребителей). Экспериментальная проверка справедливости эквивалентных преобразований схем цепей. Особенности измерения сопротивления. Второй закон Кирхгофа.

    лабораторная работа [199,6 K], добавлен 27.07.2013

  • Мостовой и косвенный методы для измерения сопротивления постоянного тока. Резонансный, мостовой и косвенный методы для измерения параметров катушки индуктивности. Решение задачи по измерению параметров конденсатора с использованием однородного моста.

    контрольная работа [156,9 K], добавлен 04.10.2013

  • Зависимость твёрдости от нагрузки, прикладываемой к индентору, и его формы. Методы измерения твёрдости: статические, динамические (ударные). Методы Бринелля, Роквелла, Виккерса, Шора, Польди, Бухгольца. Электропроводность металлов, свойства проводников.

    контрольная работа [48,0 K], добавлен 21.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.