Топливно-энергетические ресурсы

Нормативно-правовые аспекты энергосбережения. Традиционные способы получения тепловой и электрической энергии. Виды топлива, характеристика и запасы их в Беларуси. Экологические проблемы ядерной энергетики. Основы энергетического менеджмента и аудита.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 14.03.2013
Размер файла 3,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию. Всего за три дня Солнце посылает на Землю столько энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 с - 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той ее части, которую получает Земля, в 5000000000 раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Согласно легенде Архимед, находясь на берегу, уничтожил неприятельский римский флот под Сиракузами. Как? При помощи зажигательных зеркал. Известно, что подобные зеркала делались также в VI веке. А в середине XVIII столетия французский естествоиспытатель Ж. Бюффон производил опыты с большим вогнутым зеркалом, состоящим из множества маленьких плоских. Они были подвижными и фокусировали в одну точку отраженные солнечные лучи. Этот аппарат был способен в ясный летний день с расстояния 68 м довольно быстро воспламенить пропитанное смолой дерево. Позднее во Франции было изготовлено вогнутое зеркало диаметром 1,3 м, в фокусе которого можно было за 16 секунд расплавить чугунный стержень.

В Англии же отшлифовали большое двояковыпуклое стекло, с его помощью удавалось расплавлять чугун за три секунды и гранит - за минуту.

В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор - в сущности первое устройство, превращавшее солнечную энергию в механическую. Но принцип был тем же: большое вогнутое зеркало фокусировало солнечные лучи на паровом котле, который приводил в движение печатную машину, делавшую по 500 оттисков газеты в час. Через несколько лет в Калифорнии построили действующий по такому же принципу конический рефлектор в паре с паровой машиной мощностью 15 л. с.

И хотя с той поры то в одной, то в другой стране появляются экспериментальные рефлекторы-нагреватели, а в публикуемых статьях все громче напоминают о неиссякаемости нашего светила, рентабельнее они от этого не становятся и широкого распространения пока не получают: слишком дорогое удовольствие это даровое солнечное излучение.

Сегодня для преобразования солнечного излучения в электрическую энергию мы располагаем двумя возможностями: использовать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечных элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию используют после ее концентрации при помощи зеркал - для плавления веществ, дистилляции воды, нагрева, отопления и т. д.

Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.

Простейшее устройство такого рода-плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (па 200-500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.

Более сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной геометрической точки - фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу-это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000°С и выше.

Размещено на http://www.allbest.ru/

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Но, тем не менее, станции - преобразователи солнечной энергии строят и они работают.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека.

Крымская СЭС невелика - мощность всего 5 МВт. В определенном смысле она - проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10-20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные - до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой 500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при к.п.д. 10% потребовала бы эффективной поверхности около 500000 м2. Ясно, что такое огромное количество солнечных полупроводниковых элементов может. окупиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных электростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно слабой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.

Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле - в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спутнике Земли (запущенном на орбиту 15 мая 1958 г.).

Однако сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использования гелиоэнергии.

3.7 Водородная энергетика

Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, сернистого газа, углеводородов, золы, органических перекисей н т. п. Водород обладает очень высокой теплотворной способностью: при сжигании 1 г водорода получается 120 Дж тепловой энергии, а при сжигании 1 г бензина - только 47 Дж.

Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива - самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача того же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока..

Водород - синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное - на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.

Сейчас водород производят главным образом (около 80%) из нефти. Но это неэкономичный для энергетики процесс, потому что энергия, получаемая из такого водорода, обходится в 3,5 раза дороже, чем энергия от сжигания бензина. К тому же себестоимость такого водорода постоянно возрастает по мере повышения цен на нефть.

Небольшое количество водорода получают путем электролиза. Производство водорода методом электролиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атомной энергетики станет дешевле. Вблизи атомных электростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на транспортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.

Сегодня исследователи интенсивно работают над удешевлением технологических процессов крупнотоннажного производства водорода за счет более эффективного разложения воды, используя высокотемпературный электролиз водяного пара, применяя катализаторы, полунепроницаемые мембраны и т. п.

Большое внимание уделяют термолитическому методу, который (в перспективе) заключается в разложении воды на водород и кислород при температуре 2500 °С. Но такой температурный предел инженеры еще не освоили в больших технологических агрегатах, в том числе и работающих на атомной энергии (в высокотемпературных реакторах пока рассчитывают лишь на температуру около 1000°С). Поэтому исследователи стремятся разработать процессы, протекающие в несколько стадий, что позволило бы вырабатывать водород в температурных интервалах ниже 1000°С.

В 1969 г. в итальянском отделении «Евратома» была пущена в эксплуатацию установка для термолитического получения водорода, работающая с к.п.д. 55% при температуре 730°С. При этом использовали бромистый кальций, воду и ртуть. Вода в установке разлагается на водород и кислород, а остальные реагенты циркулируют в повторных циклах. Другие - сконструированные установки работали - при температурах 700-800°С. Как полагают, высокотемпературные реакторы позволят поднять к.п.д. таких процессов до 85%. Сегодня мы не в состоянии точно предсказать, сколько будет стоить водород. Но если учесть, что цены всех современных видов энергии проявляют тенденцию к росту, можно предположить, что в долгосрочной перспективе энергия в форме водорода будет обходиться дешевле, чем в форме природного газа, а возможно, и в форме электрического тока.

Когда водород станет столь же доступным топливом, как сегодня природный газ, он сможет всюду его заменить. Водород можно будет сжигать в кухонных плитах, автомобилях, в водонагревателях и отопительных печах, снабженных горелками, которые почти или совсем не будут отличаться от современных горелок, применяемых для сжигания природного газа.

Как мы уже говорили, при сжигании водорода не остается никаких вредных продуктов сгорания. Поэтому отпадает нужда в системах отвода этих продуктов для отопительных устройств, работающих на водороде, Более того, образующийся при горении водяной пар можно считать полезным продуктом -- он увлажняет воздух (как известно, в современных квартирах с центральным отоплением воздух слишком сух). А отсутствие дымоходов не только способствует экономии строительных расходов, но и повышает к. п. д. отопления на 30%.

Водород может служить и химическим сырьем во многих отраслях промышленности, например при производстве удобрений и продуктов питания, в металлургии и нефтехимии. Его можно использовать и для выработки электроэнергии на местных тепловых электростанциях.

3.8 Топливно-энергетический комплекс Республики Беларусь

Основной целью энергетической политики Республики Беларусь на период до 2015г, является определение путей и формирование механизмов оптимального развития и функционирования отраслей топливно-энергетического комплекса, надежное и эффективное энергообеспечение всех отраслей экономики, создание условий для производства конкурентоспособной продукции, достижение стандартов уровня жизни населения аналогичного высокоразвитым европейским государствам.

Для реализации этой цели Государственная энергетическая программа Республики Беларусь предусматривает использование нетрадиционных и возобновляемых источников энергии в нарастающих масштабах. С учетом природных, географических, метеорологических условий республики предпочтение отдается малым гидроэлектростанциям, ветроэнергетическим установкам, биоэнергетическим установкам, установкам для сжигания отходов растениеводства и бытовых отходов, гелиоводоподогревателям. Потенциал топливно-энергетических ресурсов в Республике Беларусь представлен в таблице. Остановимся подробно на характеристике перспектив развития нетрадиционных и возобновляемых источников энергии.

Биологическая энергия. Под действием солнечного излучения в растениях образуются органические вещества, и аккумулируется химическая энергия. Этот процесс называется фотосинтезом. Животные существуют за счет прямого или косвенного получения энергии и вещества от растений. Этот процесс соответствует трофическому уровню фотосинтеза.

Таблица Потенциал местных топливно-энергетических ресурсов в Республике Беларусь (млн т у. т.)

Вид источника энергии

Общий потенциал

Технически возможный потенциал

потенциал

Нефть

525,00

94,0

Попутный газ

9,3

Торф

1760,0

124,0

Древесно-растительная масса

4,0/год

3,0/год

Отходы гидролизного

1,0

0,6

производства (лигнин)

Твердые бытовые отходы

0,52/год

0,2/год

Бурый уголь

1760,00

36,0

Горючие сланцы

2420,0

792,0

Гидроэнергия

1,8/год

1,2/год

Энергия ветра

0,03/год

0,02/год

Энергия Солнца

2,70-106/год

0,6/год

Энергия сжатого природного газа

0,1

0,085

Растительная масса (солома, костра)

1,52/год

0,5/год

В результате фотосинтеза происходит естественное преобразование солнечной энергии. Вещества, из которых состоят растения и животные, называют биомассой. Посредством химических или биохимических процессов биомасса может быть превращена в определенные виды топлива: газообразный метан, жидкий метанол, твердый древесный уголь. Продукты сгорания биотоплива путем естественных экологических или сельскохозяйственных процессов вновь превращаются в биотопливо. Энергия биомассы может использоваться в промышленности, домашнем хозяйстве. Так, в странах, поставляющих сахар, за счет отходов его производства покрывается до 40% потребностей в топливе. Биотопливо в виде дров, навоза и ботвы растений применяется в домашнем хозяйстве примерно 50% населения планеты для приготовления пищи, обогрева жилищ.

Существуют различные энергетические способы переработки биомассы:

-- термохимические (прямое сжигание, газификация, пиролиз);

-- биохимические (спиртовая ферментация, анаэробная или аэробная переработка, биофотолиз);

-- агрохимические (экстракция топлива).

Получаемые в результате переработки виды биотоплива и ее КПД приведены в таблице 9.5.2.

В последнее время появились проекты создания искусственных энергетических плантаций для выращивания биомассы и последующего преобразования биологической энергии. Для получения тепловой мощности, равной 100 МВт потребуется около 50 м2 площади энергетических плантаций. Более широкий смысл имеет понятие энергетических ферм, которое подразумевает производство биотоплива как основного или побочного продукта сельскохозяйственного производства, лесоводства, речного и морского хозяйства, промышленной и бытовой деятельности человека.

В климатических условиях Беларуси с 1 га энергетических плантаций собирается масса растений в количестве до 10 т сухого вещества, что эквивалентно примерно 5 т у. т. При дополнительных агроприемах продуктивность 1 га может быть повышена в 2--3 раза. Наиболее целесообразно использовать для получения сырья выработанные торфяные месторождения, площадь которых в республике составляет около 180 тыс.га. Это может стать стабильным экологически чистым и биосферно-совместимым источником энергетического сырья.

Таблица Виды топлива, получаемые в результате переработки биомассы

Источник биомассы

Производимое

Технология

КПД

или топлива

биотопливо

переработки

переработки, %

Лесоразработки

теплота

сжигание

70

Отходы переработки древесины

теплота

сжигание

70

газ

пиролиз

85

Зерновые

солома

сжигание

70

Сахарный тростник, сок

этанол

сбраживание

80

Сахарный тростник отходы

жмых

сжигание

65

Навоз

метан

анаэробное (без

50

доступа воздуха)

разложение

Городские стоки

метан

анаэробное

50

разложение

Мусор

теплота

сжигание

50

Биомасса -- наиболее перспективный и значительный возобновляемый источник энергии в республике, который может обеспечивать до 15% ее потребностей в топливе. Весьма многообещающе для Беларуси использование в качестве биомассы отходов животноводческих ферм и комплексов. Получение из них биогаза может составить около 890 млн.м3 в год, что эквивалентно 160 тыс. ту. т. Энергосодержание 1 м3 биогаза (60--75% метана, 30-40% углекислого газа, 1,5% сероводорода) составляет 22,3 МДж, что эквивалентно 0,5 м3 очищенного природного газа, 0,5 кг дизельного топлива, 0,76 кг условного топлива, Сдерживающим фактором развития биогазовых установок в республике являются продолжительные зимы, большая металлоемкость установок, неполная обеззараженность органических удобрений. Важным условием реализации потенциала биомассы является создание соответствующей инфраструктуры -- от заготовки, сбора сырья до доставки конечной продукции потребителю. Биоэнергоустановку рассматривают, в первую очередь, как установку для производства органических удобрений и, попутно, - для получения биотоплива, позволяющего получить тепловую и электрическую энергию.

Гидроэнергетические ресурсы. Гидроэнергетика -- это область наиболее развитой на сегодня энергетики на возобновляемых ресурсах, использующая энергию падающей воды, волн (амплитуда волн в некоторых районах мирового океана достигает 10 м) и приливов. Цель гидроэнергетических установок -- преобразование потенциальной энергии воды в механическую энергию вращения гидротурбины.

Преобразование гидроэнергии в электрическую стало возможным в конце XIX века. Крупные гидроэлектростанции (ГЭС) начали строиться на рубеже XIX и XX веков. Наносимый окружающей среде их водохранилищами ущерб: уничтожение флоры, фауны, плодородных земель в результате затопления, климатические изменения, потенциальная угроза землетрясений и др., заиливание гидротурбин, их коррозия, большие капитальные затраты на сооружение -- вот наиболее сложные проблемы, связанные с сооружением и эксплуатацией ГЭС. Вырабатываемую ГЭС энергию легко регулировать, и она преимущественно используется для покрытия пиковой части графика нагрузки энергосистем с целью улучшения работы базисных электростанций (ТЭС, КЭС, АЭС).

Республика Беларусь -- преимущественно равнинная страна, тем не менее, ее гидроэнергетические ресурсы оцениваются в 850--1000 МВт. Однако практически реализуемый потенциал малых рек и водотоков составляет едва ли 10% этой величины, что эквивалентно экономии 0,1 млн. т у. т./год. Для достижения большего пришлось бы затопить значительные площади из-за равнинного характера рек.

К концу 60-х гг. в Беларуси эксплуатировалось около 180 малых ГЭС (МГЭС) общей мощностью 21 МВт. В настоящее время осталось лишь 6 действующих МГЭС. Основные направления развития гидроэнергетики республики: восстановление старых МГЭС путем капитального ремонта и частичной замены оборудования; сооружение новых МГЭС на водохранилищах неэнергетического (комплексного) назначения, на промышленных водосбросах; строительство бесплотинных ГЭС на реках со значительным расходом воды. Работы по восстановлению МГЭС уже начаты. В 1992--2000 годах в республике восстановлены следующие ГЭС:

-- Добромыслянская (Витебская обл.) -- 200 кВт;

-- Гонолес (Минская обл.) -- 250 кВт;

-- Войтощизненская (Гродненская обл.) --150 кВт;

-- Жемыславльская (Гродненская обл.) -- 160 кВт;

-- 1-я очередь Вилейской ГЭС (Минская обл.) -- 900 кВт;

-- Богинская (Витебская обл.) -- 300 кВт;

-- Ольховка (Гродненская обл.) -- 100 кВт;

-- Тетеринская (Могилевская обл.) -- 600 кВт. Проведенный анализ показывает, что в перспективе на притоках рек Западная Двина, Неман, Вилия, Днестр, Припять и Западный Буг может быть построено около 50 малых ГЭС суммарной мощностью 50 тыс. кВт и среднегодовой выработкой электроэнергии 160 млн. кВтч.

Однако наиболее значительный вклад гидроэнергетики в общий энергетический баланс республики может внести строительство каскада ГЭС на реках Западная Двина в районе Витебска, Полоцка, Верхнедвинска, Бешенковичей и Немане в районе г. Гродно и д. Немново. Эти гидроэлектростанции при относительно небольшом затоплении пойменной территории позволят получить до 800 млн. кВт-ч в год электроэнергии при установленной мощности около 240 МВт. Реальный ежегодный потенциал гидроэнергетики приведен в таблице 9.5.1

Ветроэнергетические ресурсы. Ветер представляет собой движение воздушных масс земной атмосферы, вызванное перепадом температур в атмосфере из-за неравномерного нагрева земной поверхности Солнцем.

Устройства, преобразующие энергию ветра в полезные виды энергии (механическую, электрическую или тепловую), называются ветроэнергетическими установками (ВЭУ), или ветроустановками.

Энергия ветра на земном шаре оценивается в 175-- 219 тыс. КВт ч в год. Это примерно в 2,7 раза больше суммарного расхода энергии на планете. Постоянные воздушные течения к экватору со стороны северного и южного полушарий образуют систему пассатов. Существуют периодические движения воздуха с моря на сушу и обратно в течение суток (бризы) и года (муссоны). Полезно может быть использовано лишь 5% указанной величины энергии ветра. Используется же значительно меньше.

Обратим внимание на современные способы применения энергии ветра в механических целях:

-- гоночные яхты, паромы, большие суда для перевозки грузов с автоматизированным управлением парусами;

-- ветряные мельницы;

-- водяные насосы мощностью до 10 кВт, приводимые в движение ветроколесом и используемые в сельском хозяйстве.

Территория Республики Беларусь находится в умеренной ветровой зоне. Стабильная скорость ветра составляет 4-5 м/с и соответствует нижнему пределу устойчивой работы отечественных ВЭУ. Это позволяет использовать лишь 1,5--2,5% ветровой энергии. К зонам, благоприятным для развития ветроэнергетики, со среднегодовой скоростью ветра выше 5--5,5 м/с, относится 20% территории страны. Наиболее эффективно можно применять ВЭУ на возвышенностях большей части севера и северо-запада Беларуси и в центральной части Минской области, включая прилегающие к ней районы с запада. По некоторым оценкам, возможная установленная мощность ВЭУ к 2010 г. в республике может составить 1500 кВт. Поэтому ветроэнергетику можно рассматривать в качестве вспомогательного энергоресурса, решающего местные проблемы, например, отдельных фермерских хозяйств.

Основным направлением использования ВЭУ в нашей республике на ближайший период будет применение их для привода насосных установок и как источников энергии для электродвигателей. Перспективны ВЭУ в сочетании с МГЭС для перекачки воды. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Готовится к серийному выпуску ветроустановка мощностью 5--8 кВт, устойчиво работающая при скорости ветра 3,5 м/с. Разрабатывается и готовится к испытаниям более мощная ВЭУ с горизонтальным ветроколесом.

По сегодняшним прогнозам вклад ветровой энергетики в общий энергобаланс республики в ближайшей перспективе предполагается незначительным

Солнечная энергия.

Лучистая энергия Солнца, поступающая на Землю -- практически неисчерпаемый источники Огромная энергия образуется на Солнце за счет синтеза легких элементов -- водорода и гелия.

Известно два направления использования солнечной энергии. Наиболее реальным, находящим относительно широкое распространение в таких странах, как Австралия, Израиль, США, Япония, является преобразование солнечной энергии в тепловую энергию и использование в нагревательных системах. Второе направление -- системы непрямого и прямого преобразования в электрическую энергию.

Солнечные нагревательные системы могут выполнять ,ряд функций:

-- подогрев воздуха, воды для отопления и горячего водоснабжения зданий;

-- сушку пшеницы, риса, кофе, других сельскохозяйственных культур, лесоматериалов для предупреждения их /поражения насекомыми и плесневыми грибками;

-- поставку теплоты для работы абсорбционных холодильников;

-- опреснение воды в солнечных дистилляторах;

-- приготовление пищи;

-- привод насосов.

Для территории Беларуси свойственны относительно малая интенсивность солнечной радиации и существенное изменение ее в течение суток и года. В этой связи необходимо отчуждение значительных участков земли для сбора солнечного излучения, весьма большие материальные и трудовые затраты. По оценкам, для обеспечения потребностей Беларуси в электроэнергии при современном техническом уровне требуемая площадь фотоэлектрического преобразования составляет 200--600 км2, т. е. 0,1--0,3% площади республики. Появились предложения об использовании территории Чернобыльской зоны для строительства площадок солнечных и ветровых электростанций.

Для нашей республики реально использование солнечной энергии для сушки кормов, семян, фруктов, овощей, подъема и подогрева воды на технологические и бытовые нужды. В результате возможная экономия ТЭР оценивается всего в 5 тыс. т у. т./год. В республике начат выпуск гелиоводонагревателей и уже накоплен некоторый опыт их эксплуатации.

В целом вопрос широкомасштабного использования солнечных теплоиспользующих систем различного назначения требует тщательной проработки и соответствующих инвестиций. Так, для круглогодичного применения солнечной энергии для нужд теплоснабжения необходимы сезонные аккумуляторы тепла большой емкости, а фотоэлектрические системы требуют значительного уменьшения их стоимости.

В таблице 9.5.1 приведена цифра по годовому использованию солнечной энергии при нынешних экономических и технических возможностях.

Геотермальные ресурсы. В ядре Земли максимальная температура достигает 4000 °С. Земля непрерывно отдает теплоту, которая восполняется за счет распада радиоактивных элементов.

Выход теплоты через твердые породы суши и океанского дна происходит за счет теплопроводности и реже -- с потоками расплавленной магмы при извержении вулканов, с потоками воды горячих ключей и гейзеров.

Термальные воды широко применяются для отопления и горячего водоснабжения в ряде стран: Исландии, Австралии, Новой Зеландии, Италии. Столица Исландии Рейкьявик почти полностью обогревается теплотой подземных вод.

В Новой Зеландии, Италии, США работают геотермальные электростанции (ГеоТЭС). Теплота из недр Земли на этих станциях поступает с паром, извлекаемым через пробуренные скважины или естественные трещины и расщелины. Со временем давление и температура в скважине падают, поверхность вокруг нее на площади в 6 км2 оседает, производительность убывает. Чтобы предотвратить этот процесс, под землю под высоким давлением должна закачиваться вода, что связано с риском возникновения землетрясений.

Температурные условия недр территории Беларуси изучены недостаточно. По предварительным данным, наиболее благоприятные условия для образования термальных вод имеются в Припятской впадине. Температура воды на устье скважин составляет 35--500° С. Относительно низкая температура вод, большая глубина залегания (2000--3000 м), их высокая минерализация (330--450 г/дм3), низкий дебит скважин (100--150 м3/сутки) не позволяют в настоящее время рассматривать термальные воды в качестве заслуживающего внимания источника энергии.

Твердые бытовые отходы. В жилых и общественных зданиях (школах, вузах, детсадах, магазинах, столовых и т. д.) образуются твердые бытовые отходы (ТБО). Содержание органического вещества в них составляет 40--75%., углеводов -- 35-40%, зольность - 40-70%. Количество горючих компонентов в ТБО равно 50--88%. Их теплотворная способность -- 800--2009 ккал/кг. Бытовые отходы содержат так-: же трудно разлагаемые химические элементы, в их числе .; хлорорганические и токсичные. В большой степени они (ТБО) *обогащены кадмием, оловом, свинцом и медью.

В мировой практике получение энергии из ТБО осуществляется сжиганием или газификацией. В Японии, Дании, Швейцарии сжигается около 70% твердых бытовых отходов, остальная часть складируется на полигонах или компостируется. В США сжигается около 14% ТБО, в Германии -- 30%, Италии -- 25%. В Республике Беларусь общий энергетический потенциал ТБО оценивается в 20--23 млн. т у. т., из них только 8--10% перерабатывается и используется в производстве. Ежегодно накапливается 2,4 млн. тонн ТБО с потенциальной энергией 470 тыс. т у. т. Учитывая бедность республики энергетическими ресурсами, необходимо вовлечь ТБО в ее энергопотенциал путем применения прогрессивных технологий, заимствованных из опыта других стран, либо развернуть исследования и создать собственные технологии переработки ТБО.

Заключение

Представленные материалы убеждают, что нетрадиционные и возобновляемые источники энергии обладают огромным потенциалом, достаточным для того, чтобы навсегда закрыть вопрос о недостатке энергии. Так почему же мы видим сегодня, что этот потенциал используется очень и очень слабо? Основная причина - экономическая. Ведь и сегодня стоимость углеводородных топлив еще настолько невелика, что вкладывать значительные средства в освоение нетрадиционных источников просто невыгодно, учитывая и ту особенность многих из них, которая связана с неравномерностью и непредсказуемостью поступления энергии от таких источников.

Но сегодня человечество приближается к той черте, когда отдавать предпочтение традиционным энергоресурсам уже нельзя, они на исходе (в историческом плане), и НВИЭ становятся полноценным соперником традиционных источников. Поэтому всегда следует проводить скрупулезный экономический анализ, прежде чем решить тот или иной вопрос об использовании источников энергии. Пора перестать смотреть на НВИЭ как на нечто экзотическое и малополезное, а перестраиваться психологически на то, что будущее-то за ними. Считается, что для становления новой энергетики потребуется около пятидесяти лет. Это тот уже совсем небольшой запас времени, которым мы располагаем. Сегодня еще трудно представить себе энергетику будущего в четком виде. Новая энергетика по своей структуре обязательно будет многоплановой. Это будет отрасль, включающая в себя и тепловую, и гидравлическую, и ядерную, и солнечную, и ветроэнергетику и еще многие другие направления получения энергии. Такой путь развития энергетики представляется естественным и более надежным, гарантирующим успешное решение энергетической проблемы, хотя науке многое предстоит еще выяснить у природы, а технике многое сделать впервые.яться, что собранный здесь учебный материал поможет молодым специалистам в области энергоснабжения промышленных предприятий правильно видеть и понимать общие проблемы энергетики, представлять возможности, плюсы и минусы нетрадиционных источников энергии, технически грамотно применять те немногие пока методы и устройства, которые постепенно входят в повседневную практику использования этих источников

4. Вторичные энергоресурсы

4.1 Классификация вторичных энергоресурсов

При употреблении энергии и материалов в технологических процессах, на вспомогательные нужды или в сфере услуг потенциал энергоносителей используется не полностью. Та часть энергии, которая прямо или косвенно не используется как полезная для выпуска готовой продукции или услуг, называется энергетическими отходами. Общие энергетические отходы равны разности между энергией, поступающей в технологический аппарат, и полезно используемой энергией.

Общие энергетические отходы разделяют на три вида:

* неизбежные потери в технологическом агрегате или установке;

* энергетические отходы внутреннего использования, которые возвращаются обратно в технологический агрегат (установку) за счет регенерации или рециркуляции и в результате этого сокращают количество подведенной первичной энергии при неизменной величине поступления энергии в технологический агрегат;

* энергетические отходы внешнего использования, представляющие собой вторичные энергетические ресурсы (ВЭР),

-энергетический потенциал отходов продукции, побочных и промежуточных отходов, образующихся в технологических установках (системах), который не используется в самой установке, но может быть частично или полностью использован для энергоснабжения других установок.

Технологический агрегат или установка, являющаяся источником отходов энергии, которую можно использовать как полезную, называется агрегатом - источником или установкой -- источником ВЭР.

Выработка энергоносителей (водяного пара, горячей или охлажденной воды, электроэнергии, механической работы) за счет снижения энергетического потенциала носителя ВЭР осуществляется в утилизационной установке.

Энергетический потенциал отходов и продукции классифицируется по запасу энергии в виде химически связанной теплоты (горючие ВЭР), физической теплоты (тепловые ВЭР), потенциальной энергии избыточного давления (ВЭР избыточного давления). Потенциал горючих ВЭР характеризуется низшей теплотой сгорания Qn , тепловых - перепадом энтальпий h, избыточного давления -- работой изоэнтропного расширения L. Во всех случаях единицей измерения энергетического потенциала является кДж/кг, или кДж/м3.

ВЭР могут применяться по следующим направлениям:

* топливному - с использованием не пригодных к дальнейшей переработке горючих отходов в качестве топлива;

* тепловому (холодильному) - с использованием теплоты отходящих газов печей и котлов, теплоты основной, промежуточной и побочной продукции, отработанной теплоты горячих воды, пара и воздуха и ВЭР избыточного давления;

* силовому - с использованием механической и электрической энергии, вырабатываемой за счет ВЭР;

* комбинированному - для производства теплоты (холода), электрической или механической энергии.

4.2 Основные показатели использования вторичных энергоресурсов

При разработке предложений и проектов по утилизации энергетических отходов необходимо знать выход ВЭР. Различают удельный и общий выход ВЭР.

Удельный выход ВЭР рассчитывают или в единицу времени (1ч) работы агрегата - источника ВЭР, или в показателях на единицу продукции.

Удельный выход горючих ВЭР определяется по формуле

qГ=mQn

где m - удельное количество энергоносителя в виде твердых, жидких или газообразных продуктов, кг(м3)/ед. продукции или кг(м3)/ч.

Удельный выход тепловых ВЭР определяется по соотношению

qT=mh=m(cp1t1-cp2t2)

где t1 - температура энергоносителя на выходе из агрегата -источника ВЭР, °С; ср1 - теплоемкость энергоносителя при температуре t1 (кДж/кг или кДж/м3); t2 - температура энергоносителя, поступающего на следующую стадию технологического процесса после утилизационной установки, или температура окружающей среды, ср2 -теплоемкость энергоносителя при температуре t2.

Удельный выход ВЭР избыточного давления рассчитывается по формуле

qИ=mL

где L - работа изоэнтропийного расширения энергоносителя, кДж/кг.

Общий выход ВЭР за рассматриваемый период времени (сутки, месяц, квартал, год) определяют исходя из удельного или часового

QB=qyбП

или

QП=qЧТ

где qуд - удельный выход ВЭР, кДж/ед. продукции; П - выпуск основной продукции или расход сырья, топлива, к которым отнесен qУД за рассматриваемый период, ед. продукции; q4 -- часовой выход ВЭР, кДж/ч; Т время работы агрегата -- источника ВЭР за рассматриваемый период, ч.

Только часть энергии из общего выхода ВЭР может быть использована как полезная. Поэтому для оценки реального потенциала, пригодного к использованию, рассчитывают возможную выработку энергии за счет ВЭР. Возможная выработка теплоты в утилизационной установке за счет ВЭР для нагрева энергоносителей пара или горячей воды за рассматриваемый период времени

QT=mП(h1-h2)B(1-X)

где hi - энтальпия энергоносителя на выходе из технологического агрегата -- источника ВЭР, кДж/кг(м ); h2 - энтальпия энергоносителя при температуре t2 на выходе из утилизационной установки, кДж/кг(м3); B - коэффициент, учитывающий несоответствие режима и числа часов работы утилизационной установки и агрегата - источника ВЭР (B изменяется в пределах от 0,7 до 1,0); X - коэффициент потерь энергии в окружающую среду утилизационной установкой и на тракте между агрегатом -источником ВЭР и утилизационной установкой (X принимает значения от 0,02 до 0,05).

Возможную выработку теплоты в утилизационной установке можно также определить по формуле

QТ=QBFy

где Fy - КПД утилизационной установки.

Теплота, выработанная в утилизационной установке, может использоваться не полностью, что характеризуется коэффициентом использования выработанной теплоты

S=QИ/QT

где QИ -- использованная теплота ( может изменяться от 0,5 до 0,9).

Возможная выработка электроэнергии в утилизационной турбине за счет избыточного давления определяется выражением

W=ПmLFOTFMFГ

где FОТ - относительный внутренний КПД турбины; FМ - механический КПД турбины; Fг - КПД электрогенератора.

При использовании горючих ВЭР достигается экономия замещаемого топлива

B=0,0342QИFВЭР.F3, т.у.т.

где QИ -- использованные горючие ВЭР за рассматриваемый период, ГДж;

0,0342 - численное значение коэффициента для перевода 1 ГДж в тонну условного топлива;

Fвэр и F3 - КПД утилизационной установки, работающей на горючих ВЭР, и установки, работающей на замещаемом топливе (F3 принимает значения от 0,8 до 0,92).

При использовании тепловых ВЭР экономия топлива равна

B=0,0342b3QИ

где b3=0,0342/Fз ~ удельный расход условного топлива, т/кДж, на выработку теплоты в замещаемой котельной установке.

При выработке на утилизационной установке электроэнергии или механической работы экономия топлива В определяется выражением

B=b3QИ

На основе результатов расчета экономии топлива за счет использования ВЭР определяется степень утилизации вторичных энергоресурсов на предприятии.

4.3 Определение объемов выхода и использования вторичных энергоресурсов

Горючие ВЭР. К горючим ВЭР относятся образующиеся в процессе производства основной продукции газообразные, твердые или жидкие отходы, которые обладают химической энергией и могут быть использованы в качестве топлива. Источником горючих ВЭР являются лесная и деревообрабатывающая промышленность, химическая промышленность, сельское и коммунальное хозяйство.

К горючим ВЭР относятся:

* древесные отходы;

* отходы гидролизного производства;

* отходы целлюлозно-бумажной промышленности;

* отходы от производства аммиака, капролактама;

* сельскохозяйственные отходы (солома и ботва растений);

* городской мусор.

В настоящее время большое внимание уделяется утилизации твердых древесных отходов, лигнина, отходов сельскохозяйственного производства и т.п. В лесной и деревообрабатывающей промышленности приблизительно половина заготавливаемой древесины идет в отходы. Одной из первостепенных задач является их утилизация путем сжигания с целью получения теплоты.

Древесные отходы делятся на несколько типов:

* лесосечные отходы (неодревесневшие молодые побеги, хвоя, листья);

* стволовая древесина, кора и древесная гниль.

Древесина по своему составу включает такие же компоненты, что и твердое топливо, за исключением серы. Особенностью древесных отходов некоторых производств является повышенная влажность. Отходы лесозаготовительных предприятий имеют влажность 45--55%. При этом влажность коры достигает 80 %. Отходы деревообрабатывающего и мебельного производства имеют влажность 10-20 %. Древесина имеет большой выход летучих веществ, что благоприятствует, несмотря на повышенную влажность, устойчивому процессу горения.

Мелкие древесные отходы различаются также по гранулометрическому составу:

* древесная пыль с частицами менее 0,5 мм;

* опилки - менее 5-6 мм, щепа после рубильных машин - менее 30 мм;

* крупная щепа с размерами частиц более 30 мм.

Гранулометрический состав определяют просеиванием через сито.

Способы сжигания древесных отходов зависят от гранулометрического состава и влажности. Древесную пыль без включения абразивных частиц сжигают факельно-вихревым способом, при наличии абразивных частиц - в циклонных топках. Более крупные отходы эффективно сжигать в слоевых топках с «кипящим» или плотным слоем.Первичная переработка местных древесных отходов может включать изготовление брикетов, что позволяет сжигать их в топках с плотным слоем. Процесс сжигания древесных отходов (рис. 4.1) включает предварительную сортировку и сушку. Сжигание проводится в топке с «кипящим» слоем с частичной рециркуляцией дымовых газов. Это обеспечивает полное сгорание топлива, выносимого с отходящими газами. Сжигание производится с целью получения теплоты и передачи ее энергоносителю - пару или горячей воде, которые могут непосредственно направляться потребителю. Теплота может также преобразовываться в электричество с помощью паровой или газовой турбины.

Рисунок 4.1 Схема использования древесных отходов для получения энергии.

В настоящее время в Германии, Финляндии, Швеции и других странах на основе отходов лесной и деревообрабатывающей промышленности, включающих остатки лесосечных отходов, стружки и отходов фрезерно-отрезных станков, изготавливаются гранулы (пиллеты). Древесные гранулы по сравнению с исходным сырьем, которое используется самостоятельно в виде топлива, имеют более низкую влажность, высокую плотность (р принимает значения от 1100 до 1300 кг/м3) и теплоту сгорания (19 МДж/кг). Их длина равна 20-50, а диаметр - 4-10 мм. Древесные гранулы в отличие от обычной древесины становятся конкурентоспособными наряду с другими видами твердого, жидкого и газообразного топлива. Их выгодно перевозить на большие расстояния, они занимают меньше места при хранении. Технология изготовления гранул включает крупное дробление, сушку, мелкое дробление, прессование, охлаждение, сортировку, расфасовку. При изготовлении гранул никакие добавки не используются, так как в качестве связующих выступают естественные смолы, лигнин. Для сушки в качестве источника энергии используются некондиционные отходы после сортировки гранул. Для производства гранул требуется 3 % энергии от их потенциала. Данный вид топлива может сжигаться в котлах с механизированной или ручной подачей.

Таким образом, горючие ВЭР позволяют замещать первичное топливо, которое Беларусь закупает за рубежом, и тем самым увеличивают производство энергии за счет собственных энергоресурсов.

Тепловые ВЭР. К тепловым ВЭР относится физическая теплота отходящих газов котельных установок и промышленных печей, основной или промежуточной продукции, других отходов основного производства, а также теплота рабочих тел, пара и горячей воды, отработавших в технологических и энергетических агрегатах. Для утилизации тепловых ВЭР используют теплообменники, котлы-утилизаторы или тепловые агенты. Рекуперация теплоты отработанных технологических потоков в теплообменниках может проходить через разделяющую их поверхность или при непосредственном контакте. Тепловые ВЭР могут поступать в виде концентрированных потоков теплоты или в виде теплоты, рассеиваемой в окружающую среду. В промышленности концентрированные потоки составляют 41 %, а рассеиваемая теплота -- 59 %. Концентрированные потоки включают теплоту уходящих дымовых газов печей и котлов, сточных вод технологических установок и жилищно-коммунального сектора. Тепловые ВЭР делятся на высокотемпературные (с температурой носителя выше 500 °С), среднетемпературные (при температурах от 150 до 500 °С) и низкотемпературные (при температурах ниже 150 °С). При использовании установок, систем, аппаратов небольшой мощности потоки теплоты, отводимые от них, составляют небольшую величину и рассредоточены в пространстве, что затрудняет их утилизацию из-за низкой рентабельности.

Рассмотрим некоторые способы и устройства для утилизации тепловых ВЭР. Применение энергетических отходов для внутреннего использования рассматривалось ранее при изучении работы парового котла, где за счет рекуперации теплоты отходящих газов проводится подогрев питательной воды в экономайзере и окислителя воздуха в воздухоподогревателе. Имеются и другие возможности внутреннего использования энергетических отходов. Теплота уходящих дымовых газов используется как для внутреннего, так и для внешнего потребления. При внутреннем потреблении энергоотходов в печах и котлах осуществляется подогрев воздуха, подаваемого на горение. В котлах дополнительно может подогреваться питательная вода. При внешнем использовании нагревают теплоноситель или сырье. Нагрев рабочей среды проводится в регенеративных, рекуперативных или смесительных (контактных) аппаратах. Регенеративные аппараты по принципу действия являются периодическими. Через неподвижные насадки потоки дымовых газов и нагреваемой среды проходят попеременно путем переключения направления их течения (рис. 4.2). Реализуемый уровень температур в регенераторах с керамическими насадками составляет 1700°С. Недостатком этих аппаратов является снижение за цикл температуры нагреваемой среды на 10-15 %. Они пригодны для маловязких и чистых сред.

Рисунок 4.2 Схема регенератора с неподвижной насадкой (1)

Рекуперативные подогреватели выполняются из металла, поэтому уровень рабочих температур снижается до 700-800 °С по сравнению с регенераторами. Преимущество их заключается в постоянстве параметров рабочих сред, что обеспечивает стабильность технологического процесса. Рассмотрим простейший рекуператор (рис. 4.3, а). Передача теплоты от дымовых газов к нагреваемой среде осуществляется через разделяющую поверхность, которая может иметь различное конструктивное исполнение. В нашем случае это кольцевой канал, который связан с раздающим и сборным коллекторами.

При утилизации низкотемпературных дымовых газов целесообразно использовать контактный теплообменник с активной оросительной насадкой для повышения интенсивности теплообмена (рис. 4.3, б). С помощью данного устройства можно получать горячую воду 50-70 °С, что позволяет проводить сжигание топлива с учетом высшей теплоты сгорания и тем самым добиваться дополни тельного энергосберегающего эффекта.

Рисунок 4.3 Радиационный рекуператор кольцевой (а) и контактный теплообменник с активной насадкой (б): 1 - раздающий коллектор, 2 - корпус, 3 - поверхность нагрева, 4 - тепловая изоляция, 5 - коллектор, 6 система орошения, 7 - активная насадка, 8 - сепарационное устройство, 9 - насос системы орошения


Подобные документы

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Характеристика видов и классификации топливно-энергетических ресурсов или совокупности всех природных и преобразованных видов топлива и энергии. Вторичные топливно-энергетические ресурсы - горючие, тепловые и энергоресурсы избыточного давления (напора).

    контрольная работа [45,8 K], добавлен 31.01.2015

  • Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат [430,1 K], добавлен 28.10.2013

  • Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат [4,5 M], добавлен 29.03.2011

  • Понятие первичной энергии, способы ее получения. Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная). Традиционные, нетрадиционные виды энергетики, их характеристика. Создание топливных элементов.

    реферат [688,6 K], добавлен 04.02.2015

  • Энергия солнца, ветра, вод, термоядерного синтеза как новые источники энергии. Преобразование солнечной энергии в электрическую посредством использования фотоэлементов. Использование ветродвигателей различной мощности. Спирт, получаемый из биоресурсов.

    реферат [20,0 K], добавлен 16.09.2010

  • Вторичные энергетические ресурсы. Проблемы энергосбережения в России. Проведение расчетов потребления коммунальных ресурсов в многоквартирном доме. Климатические параметры отопительного периода. Потребление энергии в системе горячего водоснабжения.

    курсовая работа [581,8 K], добавлен 25.12.2015

  • Распределение энергии в ее различных видах и формах. Понятие топливно-энергетического комплекса. Нефтяная, угольная и газовая промышленность. Основные способы экономии нефтепродуктов. Роль нефти и газа в современном топливно-энергетическом балансе.

    презентация [2,4 M], добавлен 05.06.2012

  • Рассмотрение горючего сланца как топливно-энергетического и химического сырья, являющегося нетрадиционным источником топлива, его состав, типы. Разработка месторождений в Беларуси. Технология получения сланцевой нефти методом термохимической переработки.

    доклад [11,1 K], добавлен 08.02.2011

  • Основы системы энергоменеджмента. Принципы планирования и экологические аспекты энергосбережения. Составляющие процесса управления энергоиспользованием. Основные обязанности энергетического менеджера. Составление карты потребления энергии на предприятии.

    курсовая работа [1,6 M], добавлен 05.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.