Модернизация электрооборудования ГПП-9 ОАО "НЛМК"

Расчет электрических нагрузок и схемы электроснабжения подстанции. Выбор силовых трансформаторов, токоведущих частей, защит и противоаварийной автоматики. Оценка возможности применения новейших видов комплектных устройств релейной защиты и автоматики.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 10.01.2013
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Imax ? Iдоп, (3.3.4.1)

где Iдоп - допустимый ток на шины выбранного сечения.

Максимальный ток, протекающий через шины КРУ, примем равным току трансформатора на стороне 10 кВ с учетом допустимой перегрузки.

Imax = 2420 А.

Выбираем комплектное распределительное устройство серии "ELTEMA" производства компании ЗАО "Электронмаш" с номинальным током сборных шин 2500 А. Параметры данных ячеек приведены в таблице 3.8.

Таблица 3.8. Параметры КРУ "ELTEMA"

Наименование параметра

Значение параметра

Номинальное напряжение, кВ

6,0; 10,0

Наибольшее рабочее напряжение, кВ

7,2; 12,0

Номинальный ток сборных шин, А

630; 1000; 1250; 1600; 2500; 3150

Номинальный ток главных цепей, А

630; 1000; 1250; 1600; 2500; 3150

Номинальный ток отключения выключателей, встроенных в КРУ, кА

12,5; 20; 25; 31,5; 40

Ток электродинамической стойкости (амплитуда), кА

до 102

Ток термической стойкости, кА

20; 25; 31,5; 40

Время протекания тока термической стойкости, с:

3

Номинальное напряжение вспомогательных цепей, В

до 220

Габаритные размеры шкафов, мм:

ширина

750; 800; 1000

глубина

высота

1400; 1500

2100 - 2300

Масса, кг

от 480

Отличительные особенности КРУ данной серии:

- широкий диапазон номинальных параметров (номинальные токи от 630 до 3150А, токи короткого замыкания от 20 до 40кА);

- конструкция, обеспечивающая лёгкий доступ к оборудованию;

- изолированные отсеки (отсек выдвижного элемента, отсек присоединений, отсек сборных шин и вспомогательных цепей) как в пределах одного шкафа КРУ, так и относительно других шкафов;

- возможность изготовления шкафов двух- и одностороннего обслуживания;

- применение современных микропроцессорных устройств защиты и автоматики;

- корпус из высококачественной стали с антикоррозионным покрытием;

- конструкция заземляющего разъединителя делает невозможным самопроизвольное замыкание заземляющих ножей и позволяет визуально контролировать положение ножей;

- увеличенный отсек присоединений, обеспечивающий удобство подключения кабелей и проведения регламентных работ;

- системы дуговой защиты с применением концевых выключателей;

- продуманная система блокировок.

С целью обеспечения безопасности при возникновении электрической дуги шкафы КРУ с выдвижными элементами разделены металлическими перегородками на четыре отсека: отсек вспомогательных цепей, отсек выдвижного элемента, отсек сборных шин, отсек присоединений. Отсеки выдвижного элемента, присоединений и вспомогательных цепей с фасадной стороны шкафа КРУ имеют двери со специальными замками. В шкафах КРУ двухстороннего обслуживания с задней стороны шкафа имеются дополнительные двери или панели, обеспечивающие дополнительный доступ в отсек присоединений.

КРУ данной серии имеет алюминиевые двухполосные шины прямоугольного сечения с размерами полосы 120 х 10 мм.

Проверим шины по условиям нагрева при условии, что температура в КРУ - 10 кВ ГПП-9 не поднимается выше +20 °С.

где Vдл.д = 700С - длительно допустимая температура нагрева шины;

V0доп = 250C - температура окружающей среды, принимаемая при данной допустимой длительной температуре;

V0 - действительная температура окружающей среды.

Принимая V0 = 200С получим

Полученное значение удовлетворяет условию нагрева проводников в послеаварийных и ремонтных режимах.

4. Расчет токов короткого замыкания

4.1 Способы ограничения токов короткого замыкания

Наиболее распространенными и действенными способами ограничения токов короткого замыкания являются секционирование электрических сетей, установка токоограничивающих реакторов, широкое использование трансформаторов с расщепленной обмоткой низшего напряжения.

К специальным техническим средствам ограничения токов короткого замыкания в первую очередь относятся токоограничивающие реакторы. Основная область применения реакторов - электрические сети напряжением 6-10 кВ. Реактор представляет собой катушку индуктивности, не имеющую сердечника из магнитного материала, благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Секционирование электрических сетей позволяет уменьшить уровни токов короткого замыкания в реальных электрических сетях в 1,5-2 раза, но влечет за собой увеличение потерь электроэнергии в линиях электропередач и трансформаторах.

При мощности понижающего трансформатора 25 МВА и выше применяют расщепление обмотки низшего напряжения на две, что позволяет увеличить сопротивление трансформатора в 2 раза.

4.2 Составление расчетной схемы и определение точек короткого замыкания

Короткое замыкание - всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы, электрическое соединение разных точек электроустановки между собой или землей, при котором токи в ветвях электроустановки резко возрастают, превышая наибольший допустимый ток продолжительного режима.

В системе трехфазного переменного тока могут быть следующие виды коротких замыканий: трехфазные, двухфазные, однофазные и двухфазные на землю. Так как трехфазные к.з. приводят к появлению наибольших токов в поврежденной цепи, при проверке аппаратуры за расчетный ток к.з. принимают ток трехфазного к.з.

Для проверки оборудования подстанции (шин, реакторов, кабелей) на устойчивость к термическому и электродинамическому действию токов короткого замыкания необходимо правильно выбрать точки короткого замыкания и рассчитать токи к.з. в этих точках.

Под расчетной схемой установки понимают упрощенную однолинейную схему электроустановки с указанием всех элементов (трансформаторов, линий, реакторов) и их параметров, которые влияют на ток к.з. и поэтому должны быть учтены при выполнении расчетов.

В расчетную схему вводятся все источники питания, участвующие в питании места к.з. и все элементы системы электроснабжения (трансформаторы, линии, реакторы), расположенные между ними и местом к.з. Синхронные и асинхронные двигатели учитываются как источники питания [5, с.102].

Расчетная схема для расчетов токов к.з. в максимальном режиме приведена на рис. 4.1.

Рис. 4.1 Расчетная схема для определения токов к.з. на ГПП-9

4.3 Расчет токов короткого замыкания в максимальном и минимальном режимах

Схемы замещения выполняют в однолинейном изображении; при этом сопротивления отмечают порядковыми номерами и указывают их численные значения. Сопротивления всех элементов схемы замещения указываются в относительных единицах при выбранных базисных условиях.

Основные допущения при расчетах тока КЗ:

отсутствует насыщение магнитных систем генераторов, трансформаторов, двигателей;

практически не учитывается емкостная проводимость линий электропередачи;

не учитываются токи намагничивания трансформаторов;

не учитываются активные сопротивления трансформаторов из-за незначительной величины по сравнению с индуктивными сопротивлениями.

Определим параметры схемы замещения согласно [8, с. 11-20].

Базисная мощность

Sб = 100000 кВА.

Базисное напряжение

Uб = 10,5 кВ, 115 кВ.

Базисный ток

Относительное сопротивление системы

где Хcmax = 2,61 Ом - сопротивление системы в максимальном режиме (по данным лаборатории релейной защиты ОАО "НЛМК").

Относительное сопротивление кабельной линии 110 кВ

где

Rл = Rпог · lл/n = 0,164 · 1,8/2 = 0,148 Ом, (4.3.5)

Хл = щ · Lпог · lл/n = 314 · 0,00045 · 1,8/n = 0,127 Ом, (4.3.6)

Rпог - погонное активное сопротивление линии, Ом/км,

Lпог - погонная индуктивность линии, мГн/км,

lл - длина линии, км,

n - число кабелей.

Относительное сопротивление трансформатора ТРДЦН-63000

где xt %- относительное сопротивление трансформатора, %,

где uк - напряжение короткого замыкания, %,

Sн - номинальная мощность трансформатора, МВА.

Относительное сопротивление реактора

где Хн% - индуктивное сопротивление реактора в процентах,

Iн - номинальный ток реактора, кА,

Uн.р - номинальное напряжение реактора, кВ.

Х 4 = Х 5 = Х 6,

Относительные сопротивления кабельных линий 10 кВ

Для Х 8 l=2300м, Х 9 l=850м, Х 10 l=820м, Х 11 l=570м

Rпог - погонное активное сопротивление линии, Ом/км,

Хпог - погонное индуктивное сопротивление, Ом/км.

Относительные сопротивления синхронных двигателей.

где kп - пусковой коэффициент,

Sн - номинальная мощность двигателя, МВА,

Sб - базисная мощность, МВА.

Общая схема замещения для расчета токов короткого замыкания представлена на рис. 4.2.

Рис. 4.2. Общая схема замещения для расчетов токов к.з.

4.3.1 Расчет токов короткого замыкания в точке К-1

Схема замещения для расчета к.з. в точке К-1 приведена на рис. 4.3.

Рис. 4.3 Схема замещения для расчета тока к.з. в точке К-1

Х 12 = Х 1 + Х 2 = 0,02 + 0,002 = 0,022,

Х 13 = Х 5 + Х 9 = 0,508 + 0,059 = 0,567,

Х 14 = Х 6 + Х 10 = 0,508 + 0,057 = 0,565,

Х 15 = Х 7 + Х 11 = 0,327 + 0,04 = 0,367

Рис. 4.4 Схема замещения для расчета тока к.з. в точке К-1

Ток короткого замыкания в точке К-1.

Рассчитаем подпитку точки замыкания от двигателей.

Произведем замену группы синхронных электродвигателей эквивалентным источником питания.

Эквивалентное сопротивление

Подпитка группы синхронных двигателей

Суммарный ток короткого замыкания в точке К-1.

IкУ = Iк + У Iпд = 22,73 + 0,854= 23,6 кА, (4.3.1.10)

iуУ = iу + У iуд = 57,7 + 2,324= 60,02 кА, (4.3.1.11)

4.3.2 Расчет токов короткого замыкания в точке К-2

Проведем упрощение схемы замещения.

Х 16 = Х 1 + Х 2 + Х 3 = 0,02 + 0,002 + 0,298 = 0,32,

Х 13 = Х 5 + Х 9 = 0,508 + 0,059 = 0,567,

Х 14 = Х 6 + Х 10 = 0,508 + 0,057 = 0,565,

Х 15 = Х 7 + Х 11 = 0,327 + 0,04 = 0,367.

Схема замещения для расчета к.з. в точке К-2 приведена на рис. 4.5.

Рис. 4.5 Схема замещения для расчета тока к.з. в точке К-2

Ток короткого замыкания в точке К-2.

Рассчитаем подпитку точки замыкания двигателями.

Подпитка группы синхронных двигателей

Суммарный ток короткого замыкания в точке К-2.

IкУ = Iк + У Iпд = 17,2 + 3,7 + 3,68 + 3,74 = 28,32 кА, (4.3.2.10)

iуУ = iу + У iуд = 43,66 + 10,06 + 10,01 + 10,18 = 73,91 кА, (4.3.2.11).

4.3.3 Расчет токов короткого замыкания в точке К-3

Схема замещения для расчета к.з. в точке К-3 приведена на рис. 4.6.

Проведем упрощение схемы замещения.

Х 16 = Х 1 + Х 2 + Х 3 = 0,02 + 0,002 + 0,298 = 0,32,

Х 13 = Х 5 + Х 9 = 0,508 + 0,059 = 0,567,

Х 14 = Х 6 + Х 10 = 0,508 + 0,057 = 0,565,

Х 15 = Х 7 + Х 11 = 0,327 + 0,04 = 0,367.

Х 17 = Х 16 · Х 4 · УY = 0,32 · 0,508 · 11,34 = 1,85

Х 18 = Х 13 · Х 4 · УY = 0,567 · 0,508 · 11,34 = 3,27

Х 19 = Х 14 · Х 4 · УY = 0,565 · 0,508 · 11,34 = 3,26

Х 20 = Х 15 · Х 4 · УY = 0,367 ·0,508 · 11,34 = 2,11

Рис. 4.6 Схема замещения для расчета тока к.з. в точке К-3

Рис. 4.7 Схема замещения для расчета тока к.з. в точке К-3

Ток короткого замыкания в точке К-3.

Рассчитаем подпитку точки замыкания двигателями.

Подпитка группы синхронных двигателей

Суммарный ток короткого замыкания в точке К-3.

IкУ = Iк + У Iпд = 2,97 + 4,588 = 7,558 кА, (4.3.3.9)

iуУ = iу + У iуд = 7,54 + 12,48= 20,02 кА, (4.3.3.10).

4.3.4 Расчет токов короткого замыкания в точке К-4

Схема замещения для расчета к.з. в точке К-4 приведена на рис. 4.8.

Рис. 4.8 Схема замещения для расчета тока к.з. в точке К-4

Проведем упрощение схемы замещения.

Х 16 = Х 1 + Х 2 + Х 3 = 0,02 + 0,002 + 0,298 = 0,32,

Х 13 = Х 5 + Х 9 = 0,508 + 0,059 = 0,567,

Х 14 = Х 6 + Х 10 = 0,508 + 0,057 = 0,565,

Х 15 = Х 7 + Х 11 = 0,327 + 0,04 = 0,367.

Х 21 = Х 4 + Х 8 = 0,508 + 0,24 = 0,748.

Рис. 4.9 Схема замещения для расчета тока к.з. в точке К-4

Х 22 = Х 16 · Х 21 · УY = 0,32 · 0,748 · 10,71 = 2,57

Х 23 = Х 13 · Х 21 · УY = 0,567 · 0,748 · 10,71 = 4,54

Х 24 = Х 14 · Х 21 · УY = 0,565 · 0,748 · 10,71 = 4,52

Х 25 = Х 15 · Х 21 · УY = 0,367 · 0,748 · 10,71 = 2,94

Рис. 4.10 Схема замещения для расчета тока к.з. в точке К-4

Ток короткого замыкания в точке К-4.

Рассчитаем подпитку точки замыкания двигателями.

Подпитка группы синхронных двигателей

Суммарный ток короткого замыкания в точке К-3.

IкУ = Iк + У Iпд = 2,14 + 3,602 = 5,742 кА, (4.3.4.9)

iуУ = iу + У iуд = 5,43 + 9,8= 15,23 кА, (4.3.4.10).

Аналогично рассчитаны токи короткого замыкания в минимальном режиме. Результаты расчета сведены в таблицу 4.1.

Таблица 4.1. Расчет токов трехфазного короткого замыкания

Режим

Точка короткого замыкания

К-1

К-2

К-3

К-4

Iк, кА

iу, кА

Iк, кА

iу, кА

Iк, кА

iу, кА

Iк, кА

iу, кА

Максимальный

23,6

60,02

28,32

73,91

7,558

20,02

5,74

15,23

Минимальный

8,78

22,3

15,5

39,3

6,36

16,14

4,98

12,64

5. Проверка токоведущих частей, изоляторов и реакторов

5.1 Проверка КЛ 110 кВ

Проверка КЛ заключается в проверке по условию нагрева от длительного выделения тепла рабочим током и проверке термической стойкости при прохождении токов КЗ. Проверка проводится на примере КЛ-110 кВ, питающей трансформатор Т 1.

По условию длительного нагрева проводники должны удовлетворять форсированному режиму, который возникает в цепях трансформаторов при использовании их перегрузочной способности. [1, с. 280]

Условия по длительному нагреву для кабелей

Iраб.форс ? Iдл.доп, (5.1.1)

где Iраб.форс - ток в цепи в форсированном режиме;

Iдл.доп - длительно допускаемый ток проводника.

Для данного типа кабеля длительно допускаемый ток при прокладке на воздухе составляет 395 А. За ток в форсированном режиме примем ток трансформатора с учетом допустимой перегрузки 40%.

316 · 1,4 ? 2 · 395,

442,4 ? 790.

Таким образом, выбранный кабель удовлетворяет требованиям по нагреву в форсированном режиме.

Проверим кабель на термическую стойкость.

Для кабеля с алюминиевыми жилами с полиэтиленовой изоляцией в марки АПвВнг по [2, табл. 1.4.16] принимаем допустимую температуру нагрева при коротком замыкании идоп = 1200С.

Проверка кабеля на термическую стойкость при коротком замыкании производится по условию:

qmin ? q, (5.1.2)

где qmin - минимальное сечение по термической стойкости.

Произведем расчет минимального сечения

, (5.1.3)

где Вк - тепловой импульс тока короткого замыкания,

С - специальный коэффициент, для данного типа кабеля С = 65 А·с 1/2/мм 2 [1, табл. 39-11].

Ориентировочно время действия основной релейной защиты принимается равным 0,2 с и полное время отключения выключателя - 0,05 с.

Определим тепловой импульс тока короткого замыкания:

где tоткл - время отключения короткого замыкания,

tоткл = tрз + tотк.выкл. ? 0,25 с,

Та - постоянная времени затухания апериодической составляющей тока короткого замыкания, Та = 0,05 с [8, П.5.3].

, (5.1.5)

что меньше выбранного сечения 2185 мм 2, следовательно по термической стойкости кабель проходит.

5.2 Проверка токопровода

Проверка шин на термическую стойкость при коротком замыкании производится по условию:

qmin ? q, (5.2.1)

где qmin - минимальное сечение по термической стойкости.

Произведем расчет минимального сечения

где Вк - тепловой импульс тока короткого замыкания,

С - специальный коэффициент, для алюминиевых шин С = 90 А·с 1/2/мм 2 [1, табл. 39-11].

Определим тепловой импульс тока короткого замыкания:

где tоткл - время отключения короткого замыкания, tоткл = tрз + tотк.выкл. ? 2,55 с,

Та - постоянная времени затухания апериодической составляющей тока короткого замыкания, Та = 0,05 с [8, П.5.3].

, (5.2.4)

что меньше выбранного сечения 3945 мм2, следовательно по термической стойкости шины проходят.

Проверим токопровод на динамическую стойкость. Шины, выполненные из алюминиевого швеллера, обладают большим моментом инерции, поэтому расчет производится без учета колебательного процесса в механической конструкции. Швеллеры шин жестко соединены между собой. Шины считаются механически прочными, если выполнено условие

урасч = уф + уп ? удоп, (5.2.5)

где уф - напряжение в материале шин от взаимодействия фаз;

уп - напряжение в материале шин от взаимодействия полос одной фазы.

Определим механическое напряжение в материале шин от взаимодействия фаз:

где iу - ударный ток, А,

l - длина пролета между опорными изоляторами, м,

а - расстояние между фазами, м,

Wф - момент сопротивления пакета шин, см 3 [9, табл. 3.4]

Сила взаимодействия между швеллерами:

где h - высота швеллера, м.

Определим напряжение в материале шин от взаимодействия полос в фазе:

Определим суммарное расчетное напряжение в материале шин:

урасч = уф + уп = 2,16 + 4,46 = 6,62 Мпа, (5.2.9)

удоп = 70 МПа [1, табл. 39-9]

Условие урасч ? удоп выполняется, следовательно, шины механически прочны.

5.3 Проверка КЛ 10 кВ

Проверим выбранную ранее КЛ-10 кВ ГПП-9 яч.102.

По условию длительного нагрева проводники должны удовлетворять утяжелённому режиму.

Условия по длительному нагреву для кабелей

Iфорс ? Iдл.доп, (5.3.1)

где Iфорс - ток в цепи в утяжелённом режиме режиме, А,

Длительно допустимый ток для кабеля типа АПвВнг с полиэтиленовой изоляцией класса напряжения 10 кВ и алюминиевой жилой сечением 150 мм 2 составляет 322 А. За ток в форсированном режиме примем максимальный ток нагрузки 630 А.

Iфорс = 630 А ? Iдл.доп = 3322 = 966 А;

Выбранный кабель напряжением 10 кВ удовлетворяет условию нагрева от длительного выделения тепла рабочим током.

Проверим кабель на термическую стойкость.

Проверка кабеля на термическую стойкость при коротком замыкании производится по условию:

qmin ? q, (5.3.2)

где qmin - минимальное сечение по термической стойкости.

Произведем расчет минимального сечения

где Вк - тепловой импульс тока короткого замыкания,

С - специальный коэффициент, для данного типа кабеля С = 65 А·с 1/2/мм 2 [1, табл. 39-11].

Ориентировочно время действия основной релейной защиты принимается равным 1,5 с и полное время отключения выключателя - 0,05 с.

Определим тепловой импульс тока короткого замыкания:

где tоткл - время отключения короткого замыкания, tоткл = tрз + tотк.выкл. ?1,55 с,

Та - постоянная времени затухания апериодической составляющей тока короткого замыкания, Та = 0,05 с [8, П.5.3].

,

что меньше выбранного сечения 3150 мм 2, следовательно по термической стойкости кабель проходит.

5.4 Проверка шин КРУ

Для ГПП-9 было выбрано комплектное распределительное устройство серии ELTEMA производства компании ЗАО "Электронмаш". КРУ данной серии имеет алюминиевые двухполосные шины прямоугольного сечения с размерами полосы 120 х 10 мм. Проходные изоляторы между шкафами КРУ расположены на расстоянии 800 мм друг от друга.

Проверка шин на термическую стойкость при коротком замыкании производится по условию:

qmin ? q, (5.4.1)

где qmin - минимальное сечение по термической стойкости.

Произведем расчет минимального сечения

где Вк - тепловой импульс тока короткого замыкания,

С - специальный коэффициент, для алюминиевых шин С = 90 А·с 1/2/мм2 [1, табл. 39-11].

Определим тепловой импульс тока короткого замыкания:

где tоткл - время отключения короткого замыкания, tоткл = tрз + tотк.выкл. ? 2,55 с,

Та - постоянная времени затухания апериодической составляющей тока короткого замыкания, Та = 0,05 с [8, П.5.3].

,

что меньше выбранного сечения 2400 мм 2, следовательно шины удовлетворяют условию термической стойкости.

Проверка шин на электродинамическую стойкость производится по условию

уmax = уф + уп ? удоп, (5.4.4)

где уmax, удоп - соответственно максимальное расчетное и допустимое напряжение в материале шин, МПа.

Усилие между полосами не должно приводить к их соприкосновению, поэтому между ними устанавливают прокладки. Длина пролета между прокладками должна быть меньше или равна

, (5.4.5)

где ап = 2b = 2 см - расстояние между осями полос;

iуд = iуд. = 73,91 кА - ударный ток в точке К-2;

Е = 71010 Па - модуль упругости материала шин [10];

Jп = 1 см 4 - момент инерции полосы [15];

kф = 0,27 - коэффициент формы, определяемый по [10].

Величина lп выбирается также по условию

, (5.4.6)

где mп = 3,2 кг/м - масса полосы на единицу длины.

Принимаем расстояние между прокладками lп = 25 см.

Сила взаимодействия в пакете из двух полос

Напряжение в материале шин от взаимодействия полос

, (5.4.8)

где Wп = 2 см 3 - момент сопротивления одной полосы [10].

Напряжение в материале шин от взаимодействия фаз

где l=0,8 м - длина пролета между опорными изоляторами;

а = 0,3 м - расстояние между фазами;

Wф - момент сопротивления пакета шин, см 3.

, (5.4.11)

По [10] допустимое напряжение удоп = 82 МПа.

уmax = уп + уф = 9,6 + 50,46= 60,1 МПа.

Условие уmax ? удоп выполняется, следовательно, шины механически прочны.

Проведем проверку на механический резонанс.

Проверка шин на механический резонанс осуществляется следующим образом. Жесткие шины, укрепленные на изоляторах, представляют собой колебательную систему, находящуюся под действием электродинамических сил. В такой системе возникают колебания, зависящие от массы и жесткости конструкции. Электродинамические силы при КЗ имеют составляющие, которые изменяются с частотой 50 и 100 Гц. Если собственные частоты колебания системы шин и изоляторов совпадают с этими значениями, то из-за резонанса нагрузки возрастут. Если собственные частоты f0 < 30 Гц или f0 > 200 Гц, то механического резонанса не возникает.

Частоту собственных колебаний следует определять:

где J - момент инерции поперечного сечения шины, см4, l=0,8 м - длина пролета между изоляторами, s - поперечное сечение шины, см2.

Полученное значение частоты собственных колебаний f0>200 Гц, поэтому механический резонанс исключен.

5.5 Выбор и проверка изоляторов

В распределительных устройствах жесткие шины крепятся на опорных, проходных и подвесных изоляторах. Проходные изоляторы выбираются по условиям

где Uном.с - номинальное напряжение сети, кВ;

Fрасч - сила, действующая на изолятор, Н;

Fдоп - допустимая нагрузка на изолятор, Н;

Fразр - разрушающая нагрузка на изгиб, Н.

Расчетная сила определяется по формуле

Выберем изолятор ИУ-10/3150-12,5 УХЛ 1 на номинальный ток 3150 А, с номинальным напряжением 10 кВ, минимальной разрушающей силой на изгиб F = 12500 Н. Допустимая нагрузка

Расчетная нагрузка меньше допустимой, следовательно, изолятор подходит.

5.6 Проверка реакторов

Реактор следует проверить на термическую и электродинамическую устойчивость при прохождении через него тока к.з. Электродинамическая устойчивость реактора гарантируется при соблюдении следующего условия:

iн.дин ? iу.расч,(5.6.1)

где iу.расч - ударный ток при трехфазном к.з. за реактором;

iн.дин - ток электродинамической устойчивости реактора, т.е. максимальный ток (амплитудное значение), при прохождении которого через реактор не наблюдается какой-либо остаточной деформации его обмоток.

Реактор РБ-10-1000-0,56 имеет ток электродинамической устойчивости равный 24 кА, что больше рассчитанного ударного тока при к.з. за реактором равного 20,02 кА.

Следовательно, реактор удовлетворяет данному условию. Остаточное напряжение на шинах при к.з. за реактором определяется выражением:

, что соответствует требованиям [5]. Термическая устойчивость реакторов, как правило, очень высока. проверка на термическую устойчивость может оказаться необходимой только для реакторов с малым относительным сопротивлением при большой длительности короткого замыкания. [5, с. 136]

6. Выбор и проверка коммутационных аппаратов

6.1 Выбор и проверка выключателей

Выключатели выбирают по номинальному напряжению Uн, длительному номинальному току Iн, отключающей способности, динамической и термической устойчивости.

Uном Uсети ном, (6.1.1)

Iном Iнорм.расч, (6.1.2)

Iном.отк Iпрод. КЗ, (6.1.3)

Комплектное распределительное устройство серии ELTEMA предусматривает установку в них вакуумных выключателей серий VD4 фирмы "АББ" и ВВ/TEL фирмы "Таврида Электрик". Выключатели данных серий рассчитаны на номинальные токи от 630 до 4000 А. В качестве вводных и секционных выключателей приняты выключатели VD4 1231-40 с номинальным током 3150 А, что обеспечивает продолжительную работу выключателя с учетом допустимой перегрузки трансформатора. На отходящих линиях установлены выключатели ВВ/TEL на номинальные токи 630, 1000 и 1600 А в зависимости от расчетных нагрузок линий и возможных перегрузок (для ячеек № 4, 9, 12, 15, 16, 37, 49, 51, 74, 76, 79, 92, 93, 96, 104, 108, 109 - BB/TEL-10-20/630; для ячеек № 5, 27, 39, 46, 50, 56, 58, 67, 80, 81, 84, 91, 102 - BB/TEL-10-20/1000; для ячеек № 20, 28, 33, 38, 63 - BB/TEL-10-20/1600. Технические характеристики выключателей [11], [12] сведены в таблицу 6.1.

Таблица 6.1 Технические характеристики выключателей

Параметр

VD4 1231-40

BB/TEL-10-20/630 У 2

Номинальное напряжение, кВ

10

10

Наибольшее рабочее напряжение, кВ

12

12

Номинальный ток, А

3150

630

Номинальный ток отключения, кА

40 (3с)

20 (3с)

Ток динамической стойкости, кА

100

51

Испытательное кратковременное напряжение (одноминутное) промышленной частоты, кВ

42

42

Ресурс по коммутационной стойкости,

а) при номинальном токе, циклов "ВО"

б) при номинальном токе отключения, операций "О"

30000

50000

150

Собственное время отключения, мс, не более

45

15

Полное время отключения, мс, не более

60

25

Верхнее/нижнее значение температуры окружающего воздуха, °С

+40/-25

+55/-40

Масса модуля коммутационного, кг, не более

260

37

Срок службы до списания, лет

25

25

Ток установившегося короткого замыкания на шинах, рассчитанный ранее, составляет Iпрод. КЗ = 28,32 кА, ударный ток равен iу = 73,91 кА.

Как видно из таблицы 6.1, условия, необходимые для выбора выключателя VD4 1231-40 выполняются:

Uном = 10 кВ ? Uсети ном = 10 кВ;

Iном = 3150 А ? Iном.расч = 2500 А;

Iном.отк = 40 кА ? Iпрод. КЗ = 28,32 кА.

Произведем проверку вводного выключателя на термическую и динамическую стойкость.

На термическую стойкость выключатели проверяются по условию [5, c.127]:

где Iтер = 40 кА - ток термической стойкости выключателя;

tтер = 3 с - время проверки на термическую стойкость выключателя;

Iпод. КЗ = 28,32 кА - расчетный установившийся ток к.з.;

Та.эк = 0,05 с - эквивалентная постоянная времени затухания апериодической составляющей тока к.з.;

tоткл - время действия тока короткого замыкания, с.

Время действия тока короткого определяется выражением:

(6.1.5)

где tр.з = 1,4 с - время действия релейной защиты;

tо = 0,1 с - время действия выключателя.

Проверим условие:

Выключатель удовлетворяет условию термической стойкости.

На электродинамическую стойкость выключатели проверяются по условию [5, c. 127]:

iдин ? iуд, (6.1.7)

где iдин - ток электродинамической стойкости выключателя;

iуд - расчетный ударный ток при к.з.

Ток электродинамической стойкости для выключателя VD 1231-40 составляет iдин = 100 кА. Расчетный ударный ток при КЗ на шинах секции I-2 10 кВ ГПП-9 составляет iуд = 73,91 кА, что меньше, чем ток электродинамической стойкости,

iдин = 100 кА ? iуд = 73,91 кА следовательно, условие выполнено.

При проверке отключающей способности выключателя по полному току КЗ должно соблюдаться следующее условие:

(6.1.8)

где iа.ном - номинальное допускаемое значение апериодической составляющей в отключаемом токе для времени ф, кА;

внорм - нормированное значение апериодической составляющей в токе отключения;

Iном.откл - номинальный ток отключения выключателя, кА;

iаф - значение апериодической составляющей тока КЗ в момент t = ф, кА.

Расчетное время ф, для которого требуется определить ток КЗ, соответствует времени размыкания цепи КЗ дугогасительными контактами выключателя и равно

Тогда по [13] внорм = 0,28. Найдем расчетное значение апериодической составляющей тока КЗ в цепи в момент ф по формуле

Подставим полученные значения в условие проверки:

Из последней формулы видно, что условие проверки выключателя на коммутационную способность выполнено.

Ток установившегося короткого замыкания за реактором, рассчитанный ранее, составляет Iпрод. КЗ = 7,558 кА, ударный ток равен iу = 20,02 кА.

Как видно из таблицы 6.1, условия, необходимые для выбора выключателя BB/TEL-10-20/630 У 2 выполняются:

Uном = 10 кВ ? Uсети ном = 10 кВ;

Iном = 630 А ? Iном.расч = 272 А;

Iном.отк = 20 кА ? Iпрод. КЗ =7,558 кА.

Произведем проверку выключателя на отходящей линии на термическую и динамическую стойкость.

На термическую стойкость выключатели проверяются по условию [5, c.127]:

(6.1.11)

где Iтер = 20 кА - ток термической стойкости выключателя;

tтер = 3 с - время проверки на термическую стойкость выключателя;

Iпод. КЗ = 7,558 кА - расчетный установившийся ток к.з.;

Та.эк = 0,05 с - эквивалентная постоянная времени затухания апериодической составляющей тока к.з.;

tоткл - время действия тока короткого замыкания, с.

Время действия тока короткого определяется выражением:

(6.1.12)

где tр.з = 1,4 с - время действия релейной защиты;

tо = 0,03 с - время действия выключателя.

Проверим условие

Выключатель удовлетворяет условию термической стойкости.

На электродинамическую стойкость выключатели проверяются по условию [5, c. 127]:

iдин ? iуд, (6.1.14)

где iдин - ток электродинамической стойкости выключателя;

iуд - расчетный ударный ток при к.з.

Ток электродинамической стойкости для выключателя ВВ/ТЕL-10-20/630 У 2 составляет iдин = 51 кА. Расчетный ударный ток при к.з. за реактором в кабельном отсеке ячейки № 4 ГПП-9 составляет iуд = 20,02 кА, что меньше, чем ток электродинамической стойкости,

iдин = 51 кА ? iуд = 20,02 кА следовательно, условие выполнено.

При проверке отключающей способности выключателя по полному току КЗ должно соблюдаться следующее условие:

(6.1.15)

где iа.ном - номинальное допускаемое значение апериодической составляющей в отключаемом токе для времени ф, кА;

внорм - нормированное значение апериодической составляющей в токе отключения;

Iном.откл - номинальный ток отключения выключателя, кА;

iаф - значение апериодической составляющей тока КЗ в момент t = ф, кА.

Расчетное время ф, для которого требуется определить ток КЗ, соответствует времени размыкания цепи КЗ дугогасительными контактами выключателя и равно

Тогда по [13] внорм = 0,4. Найдем расчетное значение апериодической составляющей тока КЗ в цепи в момент ф по формуле

Подставим полученные значения в условие проверки:

Из последней формулы видно, что условие проверки выключателя на коммутационную способность выполнено.

6.2 Выбор и проверка разъединителей

Разъединители применяются для отключения и включения цепей без тока и для создания видимого разрыва цепи в воздухе. Между силовым выключателем и разъединителем устанавливается механическая и электромагнитная блокировка, не допускающая отключение разъединителя при включенном выключателе, когда в цепи протекает ток нагрузки. Разъединители выбирают по напряжению Uном, номинальному длительному току Iном, конструктивному исполнению и месту установки. Поскольку разъединители это аппараты, не предназначенные для отключения токов КЗ, то они не проверяются на отключающую способность.

В ЗРУ-110 кВ выполним установку разъединителей РГП-110/1250 производства ЗАО "Группа компаний "Электрощит". Разъединитель имеет технические характеристики, приведенные в таблице 6.2.

Таблица 6.2 Технические характеристики разъединителя РГП-110/1250

Номинальное напряжение, кВ

110

Наибольшее рабочее напряжение, кВ

126

Номинальный ток, А

1250

Ток термической стойкости, кА

31,5

Ток электродинамической стойкости, кА

80

Габ. размеры (дл х шир х выс), мм

270х 610х 1500

В КРУ-10 кВ выполним установку разъединителей РВК-10/2000 производства ЗАО "Группа компаний "Электрощит". Разъединитель имеет технические характеристики, приведенные в таблице 6.3.

Таблица 6.3 Технические характеристики разъединителя типа РВК-10/2000

Параметр

Значение

Номинальное напряжение, кВ

10

Номинальный ток, А

2000

Ток электродинамической стойкости, кА

31,5

Ток термической стойкости, 3 с

80

Ток установившегося короткого замыкания на стороне 110 кВ ГПП-9, рассчитанный ранее, составляет Iпрод. КЗ = 23,6 кА, ударный ток равен iу = 60,02 кА.

Как видно из таблицы 6.2, условия, необходимые для выбора разъединителя выполняются

Uном = 110 кВ ? Uном.с = 110 кВ;

Iном = 1250 А ? Iр = 316 А;

Iном.отк = 31,5 кА ? Iп 0 = 23,6 кА.

Произведем проверку разъединителя на термическую и динамическую стойкость.

На термическую стойкость разъединители проверяются по условию [5, c.127]:

(6.2.1)

где Iтер = 31,5 кА - ток термической стойкости разъединителя;

tтер = 3 с - время действия тока термической стойкости разъединителя;

Iпод. КЗ = 23,6 кА - расчетный установившийся ток к.з.;

Та.эк = 0,05 с - эквивалентная постоянная времени затухания апериодической составляющей тока к.з.;

tоткл - время действия тока короткого замыкания, с.

Время действия тока короткого определяется выражением:

(6.2.2)

где tр.з = 2 с - время действия неосновной релейной защиты;

tо = 0,08 с - время действия выключателя.

Проверим условие

.

Разъединитель удовлетворяет условию термической стойкости.

На электродинамическую стойкость разъединители проверяются по условию [5, c. 127]:

iдин ? iуд, (6.2.4)

где iдин - ток электродинамической стойкости разъединителя;

iуд - расчетный ударный ток при к.з.

Ток электродинамической стойкости для разъединителя РГП-110/1250 составляет iдин = 80 кА. Расчетный ударный ток к.з. на стороне 110 кВ ГПП-9 составляет iуд = 60,02 кА, что меньше, чем ток электродинамической стойкости, iдин = 80 кА ? iуд =60,02 кА, следовательно, условие выполнено.

Ток установившегося короткого замыкания на стороне 10 кВ ГПП-9, рассчитанный ранее, составляет Iпрод. КЗ = 28,32 кА, ударный ток равен iу = 73,91 кА.

Как видно из таблицы 6.3, условия, необходимые для выбора разъединителя выполняются

Uном = 10 кВ ? Uном.с = 10 кВ;

Iном = 2000 А ? Iр = 832 А;

Iном.отк = 31,5 кА ? Iп 0 = 28,32 кА.

Произведем проверку разъединителя на термическую и динамическую стойкость.

На термическую стойкость разъединители проверяются по условию [5, c.127]:

(6.2.5)

где Iтер = 31,5 кА - ток термической стойкости разъединителя;

tтер = 4 с - время действия тока термической стойкости разъединителя;

Iпод. КЗ = 28,32 кА - расчетный установившийся ток к.з.;

Та.эк = 0,05 с - эквивалентная постоянная времени затухания апериодической составляющей тока к.з.;

tоткл - время действия тока короткого замыкания, с.

Время действия тока короткого определяется выражением:

(6.2.6)

где tр.з = 1,4 с - время действия не основной релейной защиты;

tо = 0,1 с - время действия выключателя.

Проверим условие

.

Разъединитель удовлетворяет условию термической стойкости.

На электродинамическую стойкость разъединители проверяются по условию [5, c. 127]:

iдин ? iуд, (6.2.8)

где iдин - ток электродинамической стойкости разъединителя;

iуд - расчетный ударный ток при к.з.

Ток электродинамической стойкости для разъединителя РВК-10/2000 составляет iдин = 80 кА. Расчетный ударный ток к.з. на стороне 10 кВ ГПП-9 составляет iуд = 73,91 кА, что меньше, чем ток электродинамической стойкости, iдин = 80 кА ? iуд =73,91 кА, следовательно, условие выполнено.

7. Выбор и проверка измерительных трансформаторов

7.1 Трансформаторы тока

Трансформаторы тока выбираются по номинальному току, номинальному напряжению, нагрузке вторичной цепи, обеспечивающей погрешность в пределах паспортного класса точности. Трансформаторы тока проверяются на внутреннюю и внешнюю электродинамическую устойчивость и термическую устойчивость к токам к.з. [5, с.140]

Выбор трансформаторов тока по номинальному напряжению сводится к сравнению номинальных напряжений трансформатора тока и установки, для которой он предназначен. В этом случае достаточно, чтобы соблюдалось условие, когда

Uн.а ? Uн.у. (7.1.1)

Трансформаторы тока характеризуются номинальным первичным током I1н и номинальным вторичным током I2н. Отношение номинального первичного к номинальному вторичному току представляет собой коэффициент трансформации:

, (7.1.2)

В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Для присоединения счетчиков электроэнергии предназначены трансформаторы тока класса 0,5, для присоединения щитовых измерительных приборов и реле защиты - классов 1 и 3.

Нагрузка трансформатора тока - это полное сопротивление внешней цепи Z2, выраженное в Омах. Сопротивления r2 и x2 представляют собой сопротивление приборов, проводов и контактов. Нагрузку трансформатора можно также характеризовать кажущейся мощностью:

, (7.1.3)

Под номинальной нагрузкой трансформатора тока Z2 понимают нагрузку, при которой погрешности не выходят за пределы, установленные для трансформаторов данного класса точности. Значение Z2 дается в каталогах.

Расчет нагрузки Z2.

Индуктивное сопротивление токовых цепей невелико, поэтому Z2 ? r2.

Вторичная нагрузка состоит из сопротивления приборов, соединительных проводов и переходного сопротивления контактов:

, (7.1.4)

Во вторичной цепи трансформаторов тока включены токовые обмотки микропроцессорного терминала REF 541, который выполняет функции защиты, измерения тока и напряжения, активной и реактивной мощности. Токовые входы данного терминала имеют следующие входные сопротивления: 100 мОм - измерительной обмотки, 20 мОм - обмотки микропроцессорного реле [12].

Сопротивление контактов принимается 0,1 Ом.

Тогда допустимое сопротивление проводов:

(7.1.5)

Длина провода в один конец 3м. Расчетная длина провода при соединении в неполную звезду:

(7.1.6)

Сечение проводов:

(7.1.7)

Принимаем провод сечением 1,5 мм 2.

(7.1.8)

Выбираем трансформаторы тока типа TPU 4х.хх на номинальное напряжение 10 кВ производства фирмы "АББ" [12] и трансформатор тока типа ТВТ-110-I на номинальное напряжение 110 кВ производства фирмы "СЗТТ". Характеристики трансформаторов тока, принимаемых для ГПП-9, сведены в таблицу 7.1.

Таблица 7.1 Технические характеристики трансформаторов тока

Тип

Номинальный ток, А

Количество вторичных обмоток

Класс точности

Мощность вторичных обмоток, В·А

Динамическая устойчивость (кратность)

Термическая стойкость (кратность)

TPU 48.13

3200

2

0,2

0,5

30

30

175

80 (1c)

TPU 45.13

2000

2

0,2

0,5

20

20

125

63 (1c)

TPU 43.11

1250

2

0,2

0,5

15

15

100

50 (1c)

ТВТ-110-I

1000

2

0,2

0,5

20

50

50

50 (3c)

Произведем проверку трансформатора тока, установленного во вводной ячейке на термическую и динамическую стойкость [5, табл. 5-16].

Условие термической стойкости выполняется, если

(7.1.10)

где Kt = 80 - кратность термической устойчивости [5, табл.12];

Iпрод. КЗ = 28320 А - установившийся ток короткого замыкания;

tпр = 1,5 с - время протекания тока КЗ.

Условие термической стойкости выполнено.

Условие динамической стойкости выполняется, если

(7.1.12)

где Кд = 175 - кратность динамической устойчивости [5, табл. 6];

iуд = 73910 А - ударный ток короткого замыкания.

Условие динамической стойкости выполняется.

7.2 Трансформаторы напряжения

Трансформаторы напряжения характеризуются номинальными значениями первичного напряжения, вторичного напряжения, коэффициентом трансформации:

, (7.2.1)

В зависимости от погрешности различают следующие классы точности трансформаторов напряжения: 0,2; 0,5; 1, 3.

Под номинальной нагрузкой вторичной цепи трансформатора напряжения S2ном понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.

Трансформаторы напряжения выбирают по условиям:

, (7.2.2)

, (7.2.3)

При определении вторичной нагрузки сопротивление соединительных проводов не учитывают, так как оно мало, однако сопротивление проводов создает дополнительную потерю напряжения. Согласно [2] потеря напряжения в проводах от трансформаторов к счетчикам не должна превышать 0,5%, а в проводах к щитовым измерительным приборам - 3%.

Микропроцессорный терминал серии REF 541 потребляет по входу напряжения 0,5 ВА. Максимальное число устанавливаемых терминалов защиты на секцию равно 12. Следовательно, мощность трансформатора напряжения должна быть не ниже 60 ВА. Примем трансформатор напряжения типа НАМИ-10 производства завода "Электрофарфор" [14].

НАМИ-10-95 - антиферрорезонансный трехфазный трансформатор напряжения для контроля изоляции и коммерческого учета электрической энергии в сетях 10 кВ с изолированной или компенсированной нейтралью. Выпускается с 1995г. Устойчив как к феррорезонансу, так и к длительным однофазным замыканиям сети на землю через перемежающуюся дугу. Выгодно отличается от всех производимых в России трехфазных трансформаторов напряжения 10 кВ тем, что имеет симметричную схему соединения обмоток и не требует включения дополнительных резисторов или специальных реле для определения наличия феррорезонанса и переключения схемы соединения обмоток. Это исключает затраты на дополнительное оборудование. Технические характеристики трансформатора напряжения типа НАМИ-10-95 сведены в таблицу 7.2.

Таблица 7.2. Технические характеристики трансформатора типа НАМИ-10-95

Параметр

Величина

Номинальное напряжение первичной обмотки, кВ

10

Номинальное напряжение основной вторичной обмотки, В

100

Номинальное напряжение дополнительной вторичной обмотки, В

100

Наибольшее рабочее напряжение первичной обмотки, кВ

12

Номинальная трехфазная мощность основной вторичной обмотки при измерении междуфазных напряжений в классе точности

0,5, ВА

1,0, ВА

3,0, ВА

200

300

600

Предельная мощность первичной обмотки, ВА

1000

Предельная мощность основной вторичной обмотки, ВА

900

Предельная мощность дополнительной вторичной обмотки, ВА

100

Схема и группа соединения обмоток

Ун/Ун/П-0

Температура окружающего воздуха, °С

-60 - +40

Установленный срок службы, не менее, лет

30

Гарантийный срок службы, лет

3

Габаритные размеры, мм

482х 349х 575

Суммарная полная потребляемая мощность всех приборов, подключенных к вторичной цепи, составляет Sпр = 60 ВА. Условие проверки трансформатора напряжения на погрешность

Sпр =60 ВА < Sтн = 200 ВА, (7.2.4)

где Sтн - номинальная мощность при симметричной нагрузке основной вторичной обмотки в классе точности 0,5, ВА.

Выбранный трансформатор напряжения полностью удовлетворяет условиям работы.

Технические характеристики трансформатора напряжения на 110 кВ типа НАМИ-110 сведены в таблицу 7.3.

Таблица 7.3 Технические характеристики трансформатора НАМИ-110

Параметр

Величина

Номинальное напряжение первичной обмотки, кВ

110/3

Наибольшее рабочее напряжение первичной обмотки, кВ

126/3

Номинальное напряжение основной вторичной обмотки, В

100/3

Номинальное напряжение дополнительной вторичной обмотки, В

100

Номинальное напряжение основной вторичной обмотки №2, В

100/3

Номинальная трехфазная мощность основной вторичной обмотки при измерении междуфазных напряжений в классе точности

0,5, ВА

1,0, ВА

3,0, ВА

400

600

1200

Предельная мощность первичной обмотки, ВА

2000

Предельная мощность основной вторичной обмотки, ВА

1200

Схема и группа соединения обмоток

1/1/1/1-0-0-0

Температура окружающего воздуха, °С

-60 - +40

Установленный срок службы, не менее, лет

30

Гарантийный срок службы, лет

3

Габаритные размеры, мм

640х 515х 1800

8. Собственные нужды подстанции

8.1 Расчет нагрузок, выбор трансформаторов и схемы питания собственных нужд

Потребителями собственных нужд подстанции являются:

- электроосвещение зданий, ОРУ;

- вентиляторы охлаждения силовых трансформаторов;

- устройства подогрева приводов выключателей, разъединителей;

- устройства отопления и вентиляции закрытых помещений;

- зарядные и подзарядные агрегаты.

Для подстанций с высшим напряжением 110 кВ с числом выключателей на стороне высшего напряжения три и более применяется система постоянного оперативного тока [9, с. 387], преимуществом которой является независимое и устойчивое напряжение.

Мощность потребителей собственных нужд подстанций невелика, поэтому они питаются от сети 380/220 В с заземленной нейтралью. Для их питания предусматривается установка двух трансформаторов собственных нужд (ТСН), мощность которых выбирается в соответствии с нагрузкой с учетом допускаемой перегрузки при отказах и ремонте одного из трансформаторов. При проектировании нагрузку собственных нужд допустимо ориентировочно принять по табл. 1.1, 1.2, 1.3 [15].

Таблица 8.1 Потребители собственных нужд подстанции

Вид потребителя

Мощность на единицу, кВт

Суммарная мощность, кВт

Подогрев приводов разъединителей на стороне 110 кВ (на три полюса)

0,6

1,8

Подогрев шкафов КРУ-10 кВ

1,0

45

Подогрев приводов разъединителей

0,6

4,8

Подзарядно-зарядный агрегат ВАЗП

35

70

Освещение и вентиляция главного щита управления

80

80

Освещение и вентиляция помещения выездной бригады

5,5

5,5

Освещение и вентиляция КРУ-10 кВ

7

7

Освещение ОРУ-110 кВ при Nяч ? 3

2,0

2,0

Система охлаждения трансформатора

29,6

88,8

Приняв для двигательной нагрузки cosц = 0,85, а для остальных потребителей cosц = 1, можно определить QУСТ и суммарную расчетную нагрузку потребителей собственных нужд:

(8.1.1)

где kС - коэффициент спроса, учитывающий коэффициенты одновременности и загрузки. Для уточненного расчета следует применять значения kС из табл. 1.4. [15].

Таблица 8.2 Коэффициенты спроса приемников собственных нужд

Наименование приемника

Коэффициент спроса

Установленная активная мощность, кВт

Установленная реактивная мощность, квар

Освещение ОРУ

0,5

1

0

Освещение помещений

0,7

65

0

Охлаждение трансформаторов

0,8

88,8

66,6

Зарядно-подзарядные устройства

0,12

8,5

0

Электроподогрев выключателей

1,0

51,6

0

Суммарная расчетная нагрузка потребителей собственных нужд ГПП-9 составляет Sрасч = 204,6 кВА.

Номинальная мощность трансформаторов собственных нужд выбирается по условию

Sт ? Sрасч. (8.1.2)

Выбираем сухие трансформаторы RESIBLOC с обмотками, герметизированными эпоксидной смолой, мощностью 250 кВА производства фирмы "АББ". Технические параметры сведены в таблицу 8.3.

Таблица 8.3 Параметры трансформатора RESIBLOC 10/0,4 кВ

Наименование параметра

Значение параметра

Номинальная мощность, кВА

250

Группа соединения обмоток

Д/Yн-11

Напряжение короткого замыкания, %

6

Потери холостого хода, Вт

690

Потери короткого замыкания при 75 °С, Вт

3400

Уровень шума, дБ

65

Длина, мм

1220

Ширина, мм

660

Высота, мм

1280

Расстояние между осями катков, мм

520

Присоединение трансформаторов собственных нужд к питающей сети зависит от системы оперативного тока, применяемой на подстанции. Для подстанций на постоянном оперативном токе с аккумуляторными батареями трансформаторы собственных нужд присоединяются через выключатели к шинам распределительного устройства 10 кВ.

На напряжении 380/220 В от ТСН запитывается щит собственных нужд, выполняемый по схеме одиночной системы сборных шин, секционированной автоматическим выключателем (автоматом). Щит устанавливается в закрытом помещении комплектной трансформаторной подстанции 10/0,4 кВ (КТП).

Распределение приемников между щитами осуществляется по принципу территориальной близости к ним и удобства обслуживания. Приемники небольшой мощности, не допускающие перерывов в электроснабжении, нормально питаются от одной секции шин собственных нужд и имеют резервное питание от другой секции шин или резерв по оборудованию (например, два пожарных насоса, питаемых с разных секций).

Все освещение на подстанции подразделяется на рабочее и аварийное. Рабочее освещение является основным видом освещения и предусматривается во всех помещениях подстанции, а также на открытых участках территории, где в темное время суток может производиться работа или происходить движение транспорта и людей. Рабочее освещение включает в себя общее стационарное освещение напряжением 220 В, переносное (ремонтное) освещение, осуществляемое переносными лампами напряжением 50 В и местное освещение (на станках и верстаках) на напряжении 50 В [16].

Аварийное освещение выполняется в помещениях щита управления релейных панелей и силовых панелей собственных нужд, ЗРУ и аккумуляторной батареи только при наличии на подстанции аккумуляторных батарей 220 В. Вне зависимости от наличия в помещениях подстанции аварийного освещения персонал должен быть снабжен переносными аккумуляторными фонарями.

Питание сети рабочего освещения осуществляется от общих с силовыми потребителями трансформаторов собственных нужд с глухозаземленной нейтралью. При этом защитные и разъединяющие автоматические выключатели устанавливаются только в фазных проводах. В нулевых проводах коммутационные аппараты не устанавливаются.

Напряжение ламп общего освещения принимается равным 220 В, стационарного местного освещения - 50 В, переносных ручных ламп - 50 В.

Питание сети аварийного освещения нормально осуществляется от шин собственных нужд 380/220 В переменного тока и при исчезновении последнего автоматически переводится на шины оперативного постоянного тока. Включение аварийного освещения в каждом помещении производится отдельным выключателем. В помещении щита управления предусматриваются постоянно включенные четыре лампы, присоединяемые непосредственно к шинам постоянного тока через автоматические выключатели. В сети аварийного освещения защитные и разъединяющие аппараты устанавливаются в обоих полюсах группы.

Для освещения подстанции используются обычные лампы накаливания, а также люминесцентные лампы дневного света, низкого давления различных марок и цветности.

Освещение ОРУ осуществляется прожекторами ПСЗ-35 с лампами 500Вт.

8.2 Выбор системы и источников оперативного тока

Совокупность источников питания, кабельных линий, шин питания переключающих устройств и других элементов оперативных цепей составляет систему оперативного тока данной электроустановки. Оперативный ток на подстанциях служит для питания вторичных устройств, к которым относятся оперативные цепи защиты, автоматики и телемеханики, аппаратура дистанционного управления, аварийная и предупредительная сигнализация. При нарушениях нормальной работы подстанции оперативный ток используется также для аварийного освещения и электроснабжения электродвигателей (особо ответственных механизмов).

Проектирование установки оперативного тока сводят к выбору рода тока, расчету нагрузки, выбору типа источников питания, составлению электрической схемы сети оперативного тока и выбору режима работы.

К системам оперативного тока предъявляют требования высокой надежности при КЗ и других ненормальных режимов в цепях главного тока.

На подстанции применяется система постоянного оперативного тока - система питания оперативных цепей, при которой в качестве источника питания применяется аккумуляторная батарея.

Всех потребителей энергии, получающих питание от аккумуляторной батареи, можно разделить на три группы:

- постоянно включенная нагрузка - аппараты устройств управления, блокировки, сигнализации и релейной защиты, постоянно обтекаемые током. Постоянная нагрузка на аккумуляторной батареи зависит от мощности постоянно включенных ламп сигнализации и аварийного освещения, а также от типов реле. Так как постоянные нагрузки невелики и не влияют на выбор батареи, в расчетах можно ориентировочно принимать для крупных подстанций 110 кВ значение постоянно включенной нагрузки 25 А;

- временная нагрузка - появляющаяся при исчезновении переменного тока во время аварийного режима - токи нагрузки аварийного освещения и электродвигателей постоянного тока. Длительность этой нагрузки определяется длительностью аварии (расчетная длительность 0,5 часа);

- кратковременная нагрузка (длительностью не более 5 с) создается токами включения и отключения приводов выключателей и автоматов, пусковыми токами электродвигателей и токами нагрузки аппаратов управления, блокировки, сигнализации и релейной защиты, кратковременно обтекаемых током.


Подобные документы

  • Модернизация релейной защиты подстанции 110/35/10 кВ "Буда-Кошелёво". Совершенствование противоаварийной автоматики на подстанции, электромагнитной совместимости электрооборудования. Охрана труда и безопасность при эксплуатации устройств релейной защиты.

    дипломная работа [576,1 K], добавлен 15.09.2011

  • Характеристика понизительной подстанции и ее нагрузок. Расчет короткого замыкания. Схема соединения подстанции. Выбор силовых трансформаторов, типов релейной защиты, автоматики, оборудования и токоведущих частей. Расчёт технико-экономических показателей.

    курсовая работа [3,7 M], добавлен 30.05.2014

  • Технический проект реконструкции тяговой подстанции Толмачёво Санкт-Петербургской Балтийской дистанции электроснабжения. Расчет релейной защиты и автоматики силовых трансформаторов. Проверка эксплуатируемых и токоведущих частей и электрических аппаратов.

    дипломная работа [1,5 M], добавлен 15.06.2014

  • Определение параметров схемы замещения и расчет функциональных устройств релейной защиты и автоматики системы электроснабжения. Характеристика электроустановки и выбор установок защиты заданных присоединений: электропередач, двигателей, трансформаторов.

    курсовая работа [422,5 K], добавлен 23.06.2011

  • Выбор и расчет устройства релейной защиты и автоматики. Расчёт токов короткого замыкания. Типы защит, схема защиты кабельной линии от замыканий. Защита силовых трансформаторов. Расчетная проверка трансформаторов тока. Оперативный ток в цепях автоматики.

    курсовая работа [1,3 M], добавлен 08.01.2012

  • Выбор электрической аппаратуры, токоведущих частей и изоляторов, измерительных трансформаторов, оперативного тока. Расчет собственных нужд подстанции, токов короткого замыкания, установок релейной защиты. Автоматизированные системы управления процессами.

    дипломная работа [1,4 M], добавлен 11.01.2016

  • Система электроснабжения понизительной подстанции. Расчет электрических нагрузок, токов короткого замыкания, потерь напряжения и мощности, установки блоков микропроцессорной защиты распределительных линий и трансформаторов. Выбор электрооборудования.

    дипломная работа [7,0 M], добавлен 29.01.2013

  • Анализ существующей схемы режимов электропотребления. Расчет режимов работы подстанции, токов короткого замыкания в рассматриваемых точках системы электроснабжения. Выбор устройств релейной защиты и автоматики. Общие сведения о микропроцессорных защитах.

    курсовая работа [355,6 K], добавлен 18.01.2014

  • Характеристика нагрузки понизительной подстанции. Выбор силовых и измерительных трансформаторов, типов релейных защит и автоматики, оборудования и токоведущих частей. Расчет токов короткого замыкания. Меры по технике безопасности и защите от пожаров.

    курсовая работа [2,3 M], добавлен 20.09.2012

  • Характеристика проектируемой подстанции и ее нагрузок. Выбор трансформаторов, расчет токов короткого замыкания. Выбор типов релейных защит, электрической автоматики, аппаратов и токоведущих частей. Меры по технике безопасности и противопожарной технике.

    курсовая работа [1,2 M], добавлен 24.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.