Вихревые горелки

Характеристики закрученных потоков. Формирование закрученных течений. Изменение структуры потока с увеличением закрутки. Структура рециркуляционной зоны. Пределы срыва и устойчивость пламени. Проектирование вихревых горелок. Горение в закрученном потоке.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 14.08.2012
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

9.ПРЕДЕЛЫ СРЫВА И УСТОЙЧИВОСТЬ ПЛАМЕНИ

В промышленных горелках, работающих на различных газообразных и жидких топливах, типичное значение параметра закрутки лежит в диапазоне 0.8<S<1.5. Одна из причин ухудшения характеристик вихревых горелок при более высокой интенсивности закрутки состоит в том, что при больших S зона обратных токов оказывается длиннее, чем 3De, вследствие чего горение заканчивается на расстояниях, меньших длины зоны, часть холодных продукгов вовлекается в рециркуляционное движение и таким образом полнота сгорания уменьшается. Влияние перечисленных факторов можно ослабить используя аксиально-радиальную подачу топлива и диффузор на выходе, за счет чего удается получить высокую степень закрутки и соответствующее улучшение характеристик, например расширение пределов срыва пламени, увеличение интенсивности процессов горения.

Одно из основных преимуществ стабилизации пламени с помощью закрутки по сравнению с другими способами состоит в значительном расширении пределов срыва пламени. Роль закрутки факела с отношением воздух/топливо, близким к стехиометрическому, состоит в перемешивании топлива и воздуха. В факеле без закрутки характеристика срыва на богатом пределе вблизи значений эквивалентного отношения, , очень крутая. По этой причине незначительные изменения коэффициента избытка воздуха или состава топлива могут привести к срыву пламени. Закрутка приводит к смещению срыва на богатом пределе в область меньших коэффициентов избытка воздуха и обеспечивает нечувствительность к случайным флуктуациям состава топлива и коэффициента избытка воздуха.

Срывные характеристики зависят от вида горения. При горении предварительно перемешанных компонент пределы срыва сужаются. В длинной тонкой рециркуляционной зоне, образующейся за лопаточным завихрителем без втулки, в рециркуляционное движение вовлекаются холодные продукты сгорания, что значительно понижает отношение (объем воздуха/объем топлива) для срыва на бедном пределе даже при незначительных расходах топлива. Характеристики срыва на бедном пределе в потоке с завихрителем с углами установки лопаток 30 и 45 (S=0.39 и 0.72 соответственно) существенно лучше, чем в потоке за завихрителем с лопатками, расположенными под углом 60 (S=1.6), где образуется очень длинная тонкая рециркуляционная зона. Также обнаружено, что при формировании более короткой рециркуляционной зоны получается довольно неплохая характеристика срыва на бедном пределе с диапазоном изменения коэффициента избытка воздуха от 6 (при малых Re) до 2.5 (при больших Re). Существует связь между характеристикой срыва на бедном пределе, температурой на границе рециркуляционной зоны в области, примыкающей к завихрителю, и средним значением модуля скорости в выходном сечении завихрителя.

10. ПРОЕКТИРОВАНИЕ ВИХРЕВЫХ ГОРЕЛОК

Из изложенных выше материалов ясно, что пока невозможно сформулировать общие методы проектирования вихревых горелок различного назначения. Можно, однако, сформулировать следующие рекомендации в помощь проектировщикам:

1. Для создания потока с параметром закрутки S < 0,7 достаточно эффективен кольцевой плосколопаточный завихритель, который имеет простую конструкцию и позволяет получить удовлетворительное распределение параметров.

2. Для закрутки потоков до интенсивности, характеризующейся значениями параметра S от 0,7 до 0,8, плосколопаточный завихритель является значительно менее эффективным устройством, поскольку большой угол атаки или наклона лопаток приводит к отрыву потока. Длинная тонкая рециркуляционная зона может оказаться менее пригодной для стабилизации пламени, чем рециркуляционные зоны за закручивающими устройствами других типов.

3. Для создания потока с параметром закрутки S > 0,8 рекомендуется использовать закручивающее устройство с тангенциальным подводом или завихритель с профилированными лопатками (изогнутыми для того, чтобы уменьшить потери на отрыв). В системе с аксиальным подводом желаемую степень закрутки можно получить, пропуская необходимое количество газа через лопаточный завихритель. Если же используется тангенциальный подвод, то для получения симметричного течения необходимо выпустить поток через ряд отверстий (по меньшей мере через четыре). В закручивающем устройстве с тангенциальным подводом диаметр горловины должен равняться половине внешнего диаметра, т.е. De/Do = 0,5, что позволяет свести к минимуму потери полного давления.

4. На горелку необходимо устанавливать диффузорную надставку из огнеупора, при этом следует руководствоваться правилом:

S > 0,5: полуугол раскрытия диффузора от 20° до 35°;

S < 0,5: полуугол раскрытия диффузора от 20° до 25°;

длина надставки (для получения факела типа II) Lдифф = 0,5Dе.

Диффузор на выходе существенно увеличивает размеры приосевой рециркуляционной зоны при всех интенсивностях закрутки.

5. Для получения факела типа I в горелке с диффузорной надставкой с полууглом раскрытия от 20° до 35° в целях обеспечения хорошей устойчивости пламени необходимо подавать газообразное топливо со скоростью, примерно втрое превышающей скорость воздуха. Тепловая нагрузка может быть значительно увеличена за счет удлинения диффузорной надставки до длины Lдифф = 1,5De. Следует придерживаться рекомендации 3, но для получения факела типа I лучше не использовать лопаточные завихрители, поскольку в этом случае газовая струя горящего топлива не сможет пробить рециркуляционную зону.

6. Следует проявлять осторожность при использовании вихревых горелок с диффузорной надставкой в топках с большим стеснением факела или в ситуациях, когда горелки расположены близко друг к другу. Экспериментальные данные позволяют предположить, что приосевая рециркуляционная зона пропадает при Af / Ab > 4 (S ? 1). Таким образом, в указанных ситуациях предпочтительнее горелки с цилиндрической выгодной частью, за которыми образуются рециркуляционные зоны с интенсивным движением в них.

7. Горелки с тангенциальным подводом не годятся для сжигания предварительно перемешанных газообразного топлива и воздуха, поскольку в них пламя может легко распространяться вверх по потоку от мест подвода (исключения составляют газообразные топлива с низкой теплотой сгорания - менее 3 ... 4 МДж/м3). Предварительно перемешанные газообразное топливо и воздух можно сжигать в горелках с лопаточными завихрителями.

Влияние вида топлива (уголь, нефть, синтетическое топливо) на характеристики вихревой горелки опять-таки трудно параметризовать, но можно указать следующую основную закономерность: длина факела возрастает при последовательном переходе от газообразных топлив к легким жидким топливам (бензин), от них к тяжелым жидким топливам (мазут, некоторые синтетические топлива) и, наконец, к распыленному углю. Такая последовательность отражает уменьшение испаряемости топлива. При сжигании распыленного угля обычно необходимо использовать в качестве носителя около 20 % подаваемого воздуха. При сжигании мазута необходимо для стабилизации пламени добавлять к форсунке дисковый стабилизатор.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Парогенераторы промышленных предприятий.

Л. Н. Сидельковский, В. Н. Юренев.

Теория горения и топочные устройстваю

Д. М. Хазмалян, Я. А. Каган.

Закрученные потоки.

А. Гупта, Д. Лилли, Н. Сайред.

1. Размещено на www.allbest.ru


Подобные документы

  • Горелка - устройство для контролируемого сжигания жидкого, газообразного и пылеобразного топлива. Основные виды газовых горелок. Применение дизельных горелок. Классификация горелок по типу работы. Устройство газовой горелки, принципы ее работы.

    реферат [33,8 K], добавлен 01.07.2013

  • Кинетика горения. Влияние влажности на горение капли углеводородных топлив. Критическое условие воспламенения капли и его зависимость. Метод Зельдовича. Гистерезис горения. Срыв пламени. Горение в потоке воздуха. Естественная и вынужденная конвекция.

    курсовая работа [2,5 M], добавлен 28.03.2008

  • Введение в турбулентный поток жидкости примесей. Механическая деструкция макромолекул при длительном пребывании в турбулентном потоке. Структура турбулентных течений с добавками. Влияние добавок полимеров и пав на течения со свободными границами.

    контрольная работа [36,8 K], добавлен 25.08.2014

  • Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.

    курсовая работа [224,1 K], добавлен 24.03.2008

  • Распространение пламени в горючих смесях, в газофазных смесях. Воспламенение газовых смесей и скорость распространения пламени. Ламинарное пламя в пылях. Распространение пламени в гибридных смесях. Методика исследования пламени гибридных смесях.

    курсовая работа [94,6 K], добавлен 20.03.2008

  • Экспериментальное изучение теплоотдачи конвекцией от вертикального цилиндра к закрученному потоку воздуха в циклонной камере. Расчет статистических показателей, характеризующих отклонение опытных точек от рекомендуемой зависимости, оценка погрешностей.

    курсовая работа [982,8 K], добавлен 20.07.2014

  • Обработка и анализ результатов экспериментального исследования теплоотдачи конвекцией от вертикального цилиндра к закрученному потоку воздуха в циклонной камере. Оценка степени достоверности результатов обработки и погрешности полученных измерений.

    курсовая работа [126,0 K], добавлен 12.09.2010

  • Поля скоростей в потоках при их движении и продолжительность пребывания в промышленных аппаратах. Идеализированные и неидеализированные модели гидродинамической структуры потоков, их сравнительная характеристика и описание, внутренняя структура.

    презентация [119,2 K], добавлен 29.09.2013

  • Сущность и принцип работы вихревого теплогенератора. Уникальность новых генераторов энергии. Вихревые теплогенераторы седьмого поколения. Схема подключения вихревого теплогенератора и экономика его внедрения. Сравнительная таблица отопительных установок.

    реферат [1,9 M], добавлен 30.10.2011

  • Изучение конструктивных особенностей резервуара для хранения нефтепродуктов. Построение переходной характеристики объекта при условии мгновенного изменения величины входного потока. Определение уровня жидкости в резервуаре нефтеперекачивающей станции.

    реферат [645,4 K], добавлен 20.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.