Компоненты электронной техники
Условие эксплуатации и применения компонентов электронной техники. Основные параметры общих и специальных резисторов. Характеристики и параметры конденсаторов с диэлектрическим органическим изолятором. Разновидности и типы трансформаторов и дросселей.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 21.12.2011 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Основные параметры ферромагнитных сердечников. Эффективная магнитная проницаемость мс - отношение индуктивности катушки с сердечником к индуктивности этой катушки без сердечника. Чем больше магнитная проницаемость материала сердечника (измеряется на сердечниках кольцевой формы), ниже частота переменного напряжения на катушке и меньше расстояние между сердечником и обмоткой катушки, тем выше эффективная магнитная проницаемость сердечника.
Добротность характеризует потери, вносимые сердечником в катушку, и равна отношению реактивного сопротивления катушки к вносимому сопротивлению потерь. Измеряется на стандартной катушке.
Относительная добротность сердечника Qотн -- отношение добротности катушки с сердечником к добротности этой же катушки без сердечника -- характеризует потери, вносимые сердечником в катушку, и может служить мерой определения диапазона рабочих частот. Верхней границей диапазона рабочих частот является частота, при которой относительная добротность уменьшается до единицы. За пределами диапазона рабочих частот применение сердечника целесообразно только для регулировки индуктивности.
Стабильность параметров сердечника характеризуется изменением эффективной магнитной проницаемости и потерь при изменении температуры окружающей среды, влажности воздуха, а также со временем. При изменении температуры изменяется главным образом магнитная проницаемость. Это изменение характеризуется температурным коэффициентом магнитной проницаемости ТКмс равным относительному изменению мс при изменении температуры на 1° С. Изменение мс с течением времени вызывается старением материала и проявляется особенно резко в начальный период после изготовления сердечника.
Катушки с цилиндрическими сердечниками
Промышленностью выпускаются цилиндрические сердечники из карбонильного железа и ферритов (рис. 3.1). Резьбовые сердечники используются в цилиндрических одно и многослойных катушках, когда требуется подгонка индуктивности в процессе регулировки аппаратуры, и в качестве элемента подстройки (подстроечника) броневых сердечников. Для этих же целей используются гладкие (стержневые) и трубчатые сердечники с напрессованной резьбовой втулкой из пластмассы. Стержневые сердечники применяются также в дросселях высокой частоты, а трубчатые -- в ферровариометрах.
Для тонких катушек, намотанных непосредственно на сердечник, длина которого превышает длину катушки, эффективную магнитную проницаемость сердечника определяют по приближенной эмпирической формуле:
мс=мн/(1+0,84(Dc/lc)1,7(мн-1)), (3.6)
где мн -- начальная магнитная проницаемость материала сердечника; Dc-- диаметр цилиндрического сердечника; 1с -- длина сердечника.
Катушки с тороидальными (кольцевыми) сердечниками характеризуются минимальными размерами, практически полным отсутствием внешнего магнитного поля, что позволяет использовать их без экранов, и сравнительно высокой добротностью (при выборе соответствующих материалов). Недостатки этих катушек сложность намотки, невозможность регулировки индуктивности и пониженная стабильность индуктивности. Катушки с кольцевыми сердечниками применяются в контурах промежуточной частоты малогабаритных приемников, в контурах, перестраиваемых подмагничиванием, в качестве дросселей и т.п.
Выбор материала и типоразмера сердечника для тороидальных катушек определяется требованиями к катушке. При высоких требованиях к стабильности параметров катушки следует применять кольца из альсиферов с компенсированным ТКмн. Размеры кольца выбирают с учетом требований к индуктивности и добротности катушки. Чем больше индуктивность и добротность катушки, тем большими должны быть размеры кольца.
Для намотки катушек с кольцевыми сердечниками следует применять обмоточные провода с повышенной механической прочностью изоляции (с дополнительной, шелковой, изоляцией или изолированных высокопрочными эмалями). Намотку выполняют при помощи шпули, на которую предварительно наматывают провод. Перед намоткой кольцо следует обмотать лентой из лакоткани.
Индуктивно связанные катушки используются для магнитной связи между колебательными контурами, между антенной (или антенным фидером) и входным контуром приемника, в межкаскадных связях, в качестве широкополосных трансформаторов, и т.п. Для обеспечения магнитной связи между катушками их наматывают на общий каркас (или сердечник) либо располагают рядом так, чтобы их оси были параллельны. Отклонение от этого условия приводит к уменьшению связи.
Степень магнитной связи между катушками характеризуется взаимной индуктивностью, которая зависит от числа витков катушек, их формы и размеров.
Ферровариометры (вариометры с ферромагнитными сердечниками) применяются в качестве элементов настройки колебательных контуров, например, в автомобильных приемниках. Ферровариометр (рис. 3.2) состоит из цилиндрической катушки, внутрь которой вдвигается сердечник из материала с высокой магнитной проницаемостью, например из феррита. Катушка размещается внутри цилиндра из ферромагнитного материала.
Коэффициент перекрытия ферровариометра тем больше, чем больше магнитная проницаемость материала сердечника и чем ближе он расположен к виткам катушки. Если использовать ферритовый сердечник, можно получить коэффициент перекрытия 25...30 и больше. Следует выбирать сердечники, у которых длина в 5...10 раз больше диаметра, а диаметр сердечника меньше наружного диаметра каркаса катушки на 0,5....! мм.
Ферровариометры могут использоваться для одновременной перестройки нескольких колебательных контуров. При этом сопряжение настроек контуров преселектора приемника и гетеродина обычно достигается включением дополнительных сопрягающих катушек индуктивности. В этом случае ферровариометры преселектора и гетеродина идентичны. Сопряжение может также достигаться применением сердечников различных форм и размеров или катушек с разным расположением витков.
10. Трансформаторы и дроссели
Трансформатор -- статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.
Изобретателем трансформатора является русский ученый П.Н.Яблочков. В 1876г. Яблочков использовал индукционную катушку с двумя обмотками в качестве трансформатора для питания изобретенных им электрических свечей. Трансформатор Яблочкова имел незамкнутый сердечник. Трансформаторы с замкнутым сердечником, подобные применяемым в настоящее время, появились значительно позднее, в 1884г. С изобретением трансформатора возник технический интерес к переменному току, который до этого времени не применялся.
Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.
Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.
Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.
Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.
С допустимой для практики точностью можно считать, что отношение числа витков первичной обмотки к вторичной равно отношению приложенного напряжения к выходному.
Это отношение, называемое коэффициентом трансформации, обычно сокращают на меньшее из чисел, и тогда коэффициент трансформации получают в виде отношения единицы к некоторому числу (1:4; 1:50) или, наоборот, некоторого числа к единице (4:1; 50:1).
В радиоаппаратуре трансформаторы используются в первую очередь в питающих устройствах, позволяющих питать приемники от осветительной сети переменного тока. Такие трансформаторы называются силовыми. Кроме того, трансформаторы используются для понижения и повышения напряжения различной частоты в усилителях и радиоприемниках. Для низких (звуковых) частот эти трансформаторы изготовляются с сердечниками из листовой стали. Для токов сравнительно высокой частоты трансформаторы, как и катушки индуктивности, делаются или совсем без стальных сердечников или с сердечниками из магнетита, альсифера, карбонильного железа и других специальных металлов.
Общее устройство трансформаторов
Общее устройство трансформатора видно из представленного рисунка - это магнитопровод, набранный из отдельных пластин; обмотки, выполненные проводом; каркас из изоляционного материала, на котором намотаны обмотки.
Рисунок 1. Общее устройство трансформатора
Трансформатор, входящий в состав выпрямителя и предназначенный для питания лампового радиоприёмника, имеет следующие обмотки:
первичную, включаемую в сеть;
вторичную повышающую, дающую выпрямляемое напряжение;
вторичную понижающую, дающую напряжение для накала кенотрона;
вторичную понижающую, дающую напряжение для накала усилительных ламп радиоприёмника.
Иногда между первичной и вторичной обмотками помещается ещё экранная обмотка, предназначенная для защиты приемника от проникновения в него из сети всевозможных помех. Один конец этой обмотки заземляется, а другой изолирован и никуда не включается.
Первичная обмотка делается из нескольких секций, позволяющих включать трансформатор в сеть с различным напряжением.
Напряжение сети нередко колеблется под влиянием изменения нагрузки. Днем оно бывает нормальным, например 220 В, а вечером падает до 180-190 В, ночью и ранним утром повышается до 230-240 В. В таких случаях первичную обмотку иногда разбивают на ещё более мелкие секции (делают отводы, рассчитанные на напряжение 90, 100, 110, 120, 130, 180, 200, 220 и 240 В). Такая секционированная первичная обмотка позволяет подключать к сети количество витков, соответствующее фактическому напряжению, и таким образом обеспечивает нормальные напряжения для работы приемника.
Если от сети с колеблющимся напряжением питается радиоприемник или какое-либо другое радиоустройство, трансформатор которого не имеет подобных мелкосекционированных обмоток, приходится прибегать к помощи автотрансформатора. Последний специально изготовляется с большим числом отводов, переключая которые можно регулировать напряжение, подводимое к приемнику.
Вторичная повышающая обмотка силового трансформатора при однополупериодном выпрямлении состоит из одной секции без всяких отводов, а при двухполупериодном выпрямлении она рассчитывается на вдвое большее напряжение и имеет отвод от средней точки.
На качество изготовления вторичной обмотки должно быть обращено особое внимание, так как в ней получаются высокие напряжения. Для получения хорошего сглаженного тока при двухполупериодном выпрямлении обе половины повышающей обмотки должны быть совершено одинаковы. Поэтому их лучше наматывать не одну поверх другой, а располагать в соседних секциях каркаса.
Накальные обмотки трансформаторов наматываются из относительно толстого провода (1-2 мм). Обмотка накала кенотрона в схеме выпрямителя соединена с плюсом высокого напряжения, поэтому она должна быть особенно тщательно изолирована от сердечника трансформатора, других его обмоток и экрана.
Все обмотки трансформатора для лучшего использования его объема и для предохранения от пробоя изоляции проводов следует наматывать аккуратно, виток к витку. Слои обмоток нужно отделить один от другого тонкой пропарафинированной бумагой, а между обмотками прокладывать слой изолировочной ленты, тонкого электрокартона или два-три слоя лакоткани (специально изоляционной ткани, пропитанной лаком).
Чтобы крайние витки сползали в щель между щечкой каркаса и краем обмотки и верхние витки не касались нижних, находящихся под большим напряжением один относительно другого, прокладки следует делать на 6-8 мм шире длины каркаса, а края этой прокладки надрезаны и загнуты.
Каркас для намотки трансформатора обычно изготовляется из специального электрокартона или обычного плотного картона. Размеры каркаса определяются размерами стального сердечника трансформатора.
Сердечник трансформатора для уменьшения в нем вихревых токов изготовляется из тонких листов (0,35-0,5 мм) специальное трансформаторной стали. Каждая пластина трансформатора с одной стороны оклеивается тонкой папиросной бумагой или покрывается слоем изолирующего лака. Используемые в настоящее время трансформаторные пластины чаще всего имеют Ш-образную форму. Применяются также пластины Г-образной формы.
резистор конденсатор трансформатор дроссель
Рисунок 2. Виды пластин в сердечнике трансформатора
После намотки трансформатора каркас должен быть возможно плотнее заполнен трансформаторной сталью. Набивать силовой трансформатор надо вперекрышку: на то место, где был стык пластин, следующие пластины класть сплошной частью. Все пластины кладутся изолированной поверхностью в одну сторону.
Пластины трансформатора должны быть туго стянуты болтами, проходящими через специальные отверстия. Если пластины не имеют отверстий, они стягиваются при помощи стальных обжимок или деревянных брусочков.
Дроссели высокой частоты
Дросселем высокой частоты называют катушку индуктивности, включаемую в цепь для увеличения сопротивления токам высокой частоты. Основные параметры дросселя: полное сопротивление, сопротивление постоянному току и собственная емкость. Сопротивление дросселя постоянному току должно быть минимальным, полное сопротивление -- достаточно большим и иметь индуктивный характер. Собственная емкость С0 дросселя определяет его критическую частоту
fкр=0,5р(LC0)0,5, (3.7)
где L--индуктивность дросселя.
На частотах ниже критической полное сопротивление дросселя имеет индуктивный характер. Критическая частота дросселя должна быть возможно большей (по крайней мере больше максимальной рабочей частоты аппаратуры, в которой используется дроссель). Поэтому его собственная емкость должна быть минимальной. Точность индуктивности не имеет значения.
Конструктивно дроссели высокой частоты выполняются в виде одно- или многослойных катушек с ферромагнитными сердечниками или без них. Многослойные используют в диапазонах ДВ и СВ, однослойные -- на более коротких волнах. Для уменьшения собственной емкости многослойные катушки секционируют, а однослойные наматывают с принудительным шагом. Еще лучшие результаты можно получить при намотке с прогрессивным шагом, при этом дроссель должен быть подключен так, чтобы меньший потенциал высокой частоты был со стороны малого шага намотки.
Если добротность дросселя не имеет значения, то с целью уменьшения собственной емкости дросселя выбирают диаметр каркаса от 3 до 6 мм и наматывают провод малого диаметра (0,02... 0,06 мм). Однако плотность тока не должна превышать 4...5 А/мм2.
Дроссели с ферромагнитными сердечниками отличаются меньшими размерами, меньшим количеством витков при заданной индуктивности и, следовательно, меньшей собственной емкостью. Поэтому они могут работать в более широком диапазоне частот. Если через дроссель протекает небольшой ток и требуется большая индуктивность, то целесообразно использовать тонкие стержни (диаметром 1,5...2 мм) из ферритов с большой магнитной проницаемостью. Если использовать феррит марки 600НН, у которого с увеличением частоты уменьшается диэлектрическая проницаемость, а при частоте выше граничной -- и магнитная проницаемость, то индуктивность и собственная емкость дросселя будут уменьшаться с повышением частоты, что исключит резонансные явления в широком диапазоне частот.
Добротность дросселя важна в случаях, когда он подключается параллельно колебательному контуру (по переменному току). При этом целесообразно изготовление дросселя с ферромагнитным сердечником.
Число витков дросселя определяют так же, как число витков контурных катушек индуктивности. Диаметр провода выбирают так, чтобы получить приемлемую плотность тока и падение напряжения на дросселе не более 10% напряжения источника питания.
При изготовлении дросселей высокой частоты с ферромагнитными сердечниками цилиндрической формы на сердечник накладывают слой конденсаторной бумаги или диэлектрической пленки и сверху наматывают обмотку. Если используется броневой сердечник, обмотку располагают на секционированном каркасе из пластмассы. На тороидальном сердечнике обмотку наматывают секциями.
Дроссели сглаживающих фильтров питания
Основными параметрами дросселей сглаживающих фильтров питания являются индуктивность, номинальный ток подмагничивания, сопротивление постоянному току, допустимое переменное напряжение. Во многих случаях стремятся при заданных габаритных размерах и массе получить возможно большую (или заданную) индуктивность при минимальном сопротивлении постоянному току. Поскольку индуктивность дросселя зависит от тока подмагничивания и амплитуды переменного напряжения, ее измеряют при номинальном токе подмагничивания и заданном переменном напряжении.
11. Разновидности и типы трансформаторов
Трансформаторы можно классифицировать по признаку функционального назначения как: трансформаторы питания и трансформаторы согласования.
Рассмотрим трансформаторы питания, их можно классифицировать
1. По напряжению:
§ низковольтные
§ высоковольтные
§ высокопотенциальные
2. В зависимости от числа фаз преобразуемого напряжения
§ однофазные
§ трёхфазные
3. В зависимости от числа обмоток
§ двухобмоточные
§ многообмоточные
4. В зависимости от конфигурации магнитопровода
§ стержневые
§ броневые
§ тороидальные
5. В зависимости от мощности
§ малой мощности
§ средней мощности
§ большой мощности
6. В зависимости от способа изготовления магнитопровода
§ пластинчатые
§ ленточные
7. В зависимости от коэффициента трансформации:
§ повышающие
§ понижающие
8. В зависимости от вида связи между обмотками:
§ с электромагнитной связью (с изолированными обмотками)
§ с электромагнитной и электрической связью(со связанными обмоками)
9. В зависимости от конструкции обмотки:
§ катушечные
§ галетные
§ тороидальные
10. В зависимости от конструкции всего трансформатора
§ открытые
§ капсулированные
§ закрытые
11. В зависимости от назначения:
§ выпрямительные
§ накальные
§ анодно-накальные и т.д.
12. В зависимости от рабочей частоты трансформаторы делят на трансформаторы:
§ пониженной частоты (менее 50 Гц)
§ промышленной частоты (50 Гц)
§ повышенной промышленной частоты (400, 1000, 2000 Гц)
§ повышенной частоты (до 10000 Гц)
§ высокой частоты
Конструктивные особенности некоторых видов трансформаторов
Основными частями трансформатора являются магнитопровод и катушка с обмотками.
Материалом для магнитопровода трансформаторов служит листовая электротехническая сталь различных марок и толщины, горячей прокатки и холоднокатаная; от содержания кремния, которое отражено в марке стали, а также от толщины листа зависят потери мощности в магнитопроводе от вихревых токов. Толщину листа применяемой стали выбирают в зависимости от частоты сети, питающей трансформатор: с увеличением частоты толщину листа надо уменьшать. Ленточные (витые) магнитопроводы изготавливают из лент рулонной стали; предварительно лента покрывается изолирующим и склеивающим составом.
Стержневые магнитопроводы собирают из прямоугольных пластин одинаковой ширины. Части магнитопровода, на которых находятся обмотки, называются стержнями. Часть магнитопровода, соединяющая стержни между собой, называется ярмом.
Сборка частей магнитопровода может производиться встык и вперекрышку, причем в последнем случае увеличивается механическая прочность и уменьшается магнитное сопротивление магнитопровода. При сборке встык пластины собирают в единый пакет и предусматривают изоляционную прокладку между пакетами для предохранения от замыкания между отдельными листами магнитопровода. Сборка встык упрощает монтаж и демонтаж трансформатора. Пластины магнитопровода скрепляют в пакет либо с помощью изолированных от магнитопровода шпилек либо с помощью специальных бандажей из капроновых ниток.
Броневые магнитопроводы собирают из пластин Ш-образной формы и прямоугольных пластин, замыкающих Ш-образную пластину. Эти магнитопроводы имеют один стержень, на котором располагают все обмотки трансформатора. Сборка броневого магнитопровода производится так же, как и магнитопровода стержневого типа, описанного выше.
Поскольку в броневом магнитопроводе обмотка размещается на среднем стержне, магнитный поток разветвляется на правую и левую части и, таким образом, в крайних стержнях его значение будет в 2 раза меньше, чем в центральном; это позволяет уменьшить сечение крайних стержней в 2 раза по сравнению с центральным. собирают из отдельных штампованных колец, покрытых изолирующим лаком; сборка производится с помощью намотки на пакет пластин ленточной лакоткани. Этот магнитопровод обладает наилучшими магнитными свойствами: наименьшее магнитное сопротивление, минимальные индуктивность рассеивания и чувствительность к внешним магнитным полям, однако изготовление обмоток в данном случае может производиться только на специальных станках челночного типа или вручную.
Ленточные магнитопроводы стержневого и броневого типа собираются из отдельных, соединяемых встык, магнитопроводов подковообразной формы, а затем стягиваются специальными накладками (хомутами). Такая конструкция магнитопровода значительно упрощает сборку трансформатора. Ленточные магнитопроводы по сравнению с пластинчатыми допускают магнитную индукцию на 20--30 % выше, потерь в них меньше, заполнение объема магнитопровода и КПД трансформатора выше. По этим причинам ленточные магнитопроводы находят все более широкое применение.
Тороидальные ленточные магнитопроводы изготавливают путем навивки ленты на оправку заданного размера. Обмотки трансформатора производятся на намоточных станках челночного типа.
Рисунок 3. Конструкция магнитопроводов трансформаторов
Обмотки трансформатора выполняют из медного или алюминиевого изолированного провода. При изготовлении катушки с обмотками предусматриваются изолирующие прокладки: межобмоточная, межслойная и внешняя.
При диаметре провода более 1 мм каркас выполняется из электрокартона, а отдельные слои обмотки перевязываются хлопчатобумажной лентой.
Обмоточные провода маркируются по диаметру, виду изоляции и нагревостойкости.
Для повышения электрической прочности трансформаторы после сборки пропитывают электроизоляционными лаками, а иногда заливают специальными компаундами.
В трансформаторах средней мощности ближе к стержню располагают обмотку низшего напряжения. Это позволяет уменьшить слой изоляции между обмоткой и стержнем, а также создает лучшие условия охлаждения обмотки низшего напряжения, по которой протекает больший ток.
В низковольтных трансформаторах (до 100 В) малой мощности ближе к стержню помещают обмотку высшего напряжения. Эта мера позволяет уменьшить стоимость трансформатора, так как средняя длина витка обмотки высшего напряжения, выполняемой из дорогостоящего провода малого сечения, получается в этом случае меньше.
В высоковольтных трансформаторах (свыше 1000 В) применяется раздельное расположение обмоток на стержнях магнитопровода.
В низковольтных трансформаторах обмотки располагаются в соответствии с рис.1.2,б
Рисунок 4. Расположение обмоток на каркасе: а - в высоковольтном трансформаторе; б -- в низковольтном; в -- в броневом
Достоинство такого расположения обмоток -- небольшое значение магнитного потока рассеяния из-за меньшей толщины намотки и небольшой расход обмоточных проводов, так как снижение толщины намотки ведет к уменьшению средней длины витка обмотки.
В трансформаторах с броневыми магнитопроводами обмотки располагаются на одном стержне.
В трехфазном трансформаторе на каждом из стержней располагаются первичная и вторичная обмотки данной фазы.
В тороидальных трансформаторах обмотки располагаются по всей длине магнитопровода.
Стержневые и броневые магнитопроводы с находящимися на них обмотками собирают в узел с помощью шпилек и накладок либо путем запрессовки в скобу.
Тороидальные магнитопроводы с находящимися на них обмотками собирают в узел и крепят к шасси с помощью крепежных шайб и винта с гайкой.
В конструкции трансформатора должна быть предусмотрена панель, к которой припаиваются выводы обмоток. Корпус трансформатора (накладки, обоймы, скобы) электрически соединяется с магнитопроводом и заземляется. Эта мера необходима из соображений техники безопасности на случай пробоя одной из обмоток.
Виды трансформаторов
Выходной трансформатор
Кроме силовых трансформаторов, в ламповых радиоприемниках и усилителях употребляют выходные, междуламповые (или переходные) и входные (в усилителях низкой частоты) трансформаторы.
Выходные трансформаторы применяются для согласования сопротивления громкоговорителя с сопротивлением анодной цепи выходной лампы. Согласование это необходимо для того, чтобы можно было получить от лампы ту мощность, на которую она рассчитана. Отдать же наибольшую мощность лампа может только в том случае, если в анодной цепи ее стоит нагрузка с сопротивлением, являющимся оптимальным для данной лампы. В справочниках эта оптимальная нагрузка обозначается обычно Rа или Rа опт.
Анодная нагрузка выходных низкочастотных ламп составляет обычно несколько тысяч Ом, в то время как сопротивление обмоток современных громкоговорителей равна единицам Ом. Если громкоговоритель с такой низкоомной звуковой катушкой включить прямо в анодную цепь лампы, то только маленькая доля мощности будет расходоваться на громкоговорителе, а вся остальная мощность будет бесполезно тратиться на нагрев лампы. При включение же в анодную цепь лампы понижающего трансформатора, к выходной обмотке которого подключен громкоговоритель, положение резко изменится.
Трансформатор, понижая напряжение, действующее в анодной цепи лампы, в то же время как бы "повышает" сопротивление, подключенное к анодной цепи. Если коэффициент трансформации выходного трансформатора равен 20:1, т.е. во вторичной (выходной) обмотке в 20 раз меньше витков, чем в первичной (анодной), то напряжение, подводимое к громкоговорителю, будет в 20 раз меньше действующего на аноде лампы, а сопротивление, "ощущаемое" лампой, станет в 400 раз больше сопротивления обмотки громкоговорителя, т.е. возрастет в 20*20=202 раз.
Расчет выходного трансформатора сложен для начинающего радиолюбителя, поэтому в таблице приведены данные обмоток выходных трансформаторов для наиболее употребляемых выходных ламп и громкоговорителей.
Входные трансформаторы
Входные трансформаторы служат для согласования входа усилителя звуковой частоты с микрофоном, звукоснимателем или магнитной головкой. Так как максимальная амплитуда переменного напряжения для входных трансформаторов бывает не более 1В, то их изготовляют повышающими. Входные трансформаторы должны иметь повышенную помехозащищенность и слабую чувствительность к воздействию внешних магнитных полей, так как в противном случае в них могут появиться значительные напряжения помех.
Для уменьшения помех входные трансформаторы тщательно экранируют, оси их обмоток располагают перпендикулярно к магнитным силовым линиям источника помех, а также принимают меры по возможно большему удалению входных цепей от выходного трансформатора и трансформатора питания.
Учитывая, что наименьшей чувствительностью к воздействию внешних магнитных полей обладают трансформаторы с магнитопроводами броневого или тороидального типа, входные трансформаторы изготавливаются на штампованных или ленточных сердечниках из пермаллоя. 80НХС или 79НМ, а также из стали. Входные трансформаторы помещают в экран или опрессовывают пластмассой. Их крепят на печатных платах с помощью "лапок" или непосредственно пайкой выводов из луженой проволоки диаметром 1 - 1,5 мм.
Междуламповые и междукаскадные трансформаторы.
Междукаскадные трансформаторы применяются для связи в УЗЧ, получающих питание от автономных источников, так как в этом случае от усилителя необходимо получить максимальный коэффициент усиления при минимальном количестве транзисторов и радиоламп.
Конструктивно междукаскадные трансформаторы не отличаются от входных. Они изготавливаются с коэффициентом трансформации не более чем 1:4, так как больший коэффициент вызывает большие гармонические искажения.
Междуламповые трансформаторы употребляются, когда при ограниченном количестве ламп и небольшом анодном напряжении необходимо получить большое усиление. Такие требования часто предъявляются к батарейным радиоприемникам.
Междуламповые трансформаторы большей частью делают с малым сечением стального сердечника (1,5 - 3 см2). Первичные обмотки, включаемые в анодную цепь лампы, обычно состоят из 3000 - 5000 витков эмалированного провода диаметром 0,08 - 0,1 мм. Вторичные обмотки трансформаторов имеют от 6000 до 20 000 витков того же провода, что и первичная обмотка.
Коэффициент трансформации междуламповых трансформаторов, т.е. отношение количества витков первичной обмотки к количеству витков вторичной обмотки, берутся в пределах от 1:2 до 1:5.
Казалось бы, что для большего усиления надо иметь большие коэффициенты трансформации. Однако при повышении коэффициента трансформации даже только до 1:4, 1:5 трансформаторы уже дают заметно худшее качество воспроизведения звука, чем трансформаторы с коэффициентом 1:2. Причина в том, что при очень большом количестве витков во вторичной обмотке ее собственная емкость становится настолько большой, что ухудшает трансформацию верхних звуковых частот.
Кроме того, намотанный тонким проводом междуламповый трансформатор является наиболее надежной деталью приемника или усилителя.
Поэтому по возможности междуламповый трансформатор не следует применять.
Применение переходных трансформаторов в сетевых приемниках нежелательно ещё потому, что при использовании междулампового трансформатора очень трудно избавится от прослушивания фона переменного тока. Это явление вызывается тем, что магнитный поток силового трансформатора не весь замыкается по сердечнику. Часть потока проходит в окружающем пространстве, пересекает витки обмотки междулампового трансформатора и наводит в нем переменное напряжение.
Наведенное напряжение усиливается и, попадая в громкоговоритель, создает неприятное гудение.
12. Болометры
Болометр - основной элемент инфрокрасных спектрометров.
Впервые в 1800 году Вильям Гершель открыл излучение за красной границей спектра, которое обладало сильной нагревательной способностью. При этом был использован обычный ртутный термометр. В 1826 году на основе данного открытия зеебек изобрел термопару. Она могла измерять очень малые разности температур. Чуть позже Мергони создал термобатарею (последовательное соединение термопар). С помощью этого диапазон изучения инфрокрасного спектра намного расширился. В этом же году Беккерель открыл фотографический эффект. Но эти эффекты наблюдаются в спектре до 1.3 микрона. В 1843 году Беккерель открыл излучение урана. В 1880 году Ланлей впервые изобрел болометр, что дало большой вклад для исследования инфрокрасного излучения.
Приинцип действия болометра: тонкая проволочка под действием излучения изменяет свое сопротивление (но незначительно). В то время чувствительность болометров была намного выше чувствительности термоэлектрических батарей.
Инфракрасное излучение имеет длиныволн 0.75?1000 мкм. Этот спектр делится на три декады:
1. близкое инфракрасное излучение 0.75?1.5 мкм.
2. Среднее инфракрасное излучение 1.5?10 мкм.
3. Дальнее инфракрасное излучение 10?1000 мкм.
Оптическая часть электромагнитного излучения делится на инфракрасное, видимое и ультрафиолетовое. Для регистрации этих излучения существуют методы:
1. Метод фотографии. Имеет преимущества - чувствительность, может принимать несколько излучений сразу. Недостаток - селективность (зависимость чувствительности от длины волны), степень чернения нелинейно зависит от интенсивности излучения, необходимости проявки.
2. Фотоэлектрический - на основе фотоэлементов. Недостатки - селективность, существование красной границы фотоэффекта.
3. Тепловой (радиометрический) метод. Основан на температурной зависимости различных физических свойств веществ. Чувствительность этого метода намного ниже. Характеристики линейные, неселективные. Он является единственным методом, применяемым для регистрации волн длиной 8мкм?1мм.
Болометр Ланлея.
Разработан на основе моста Уитстона. Два его плеча состоят из одинаковых тонких лент платины. В других плечах моста использованы резисторы с близкими номиналами, один из которых переменный для уравновешивания моста. Платиновые ленты очернены, излучение действует на одну из лент. Чтобы температура окружающей среды воздействовала на них одинаково, они располагаются близко друг от друга.
Когда отсутствует избыток излучения, мост находится в равновесии. При избыточном излучении температура одной ленты увеличивается и это приводит к изменению ее сопротивления. Нарушается равновесие моста и через гальвонометр G потечет ток.
Обычно температурный коэффицент металов близки друг к другу. Прочность платины высокая и из нее легко изготовить ленты. Иногда вместо платины используют никель или полупроводниковые пленки, полученные термовакуумным напылением.
Для обеспечения быстрой реакции болометра темловые емкости элементов болометра должны быть минимальными.
Простейшая теория работы болометра.
Изменение электрического сопротивления при нагревании зависит от температурного коэффицента сопротивления или , где R - сопротивление при температуре Т; R0 - сопротивление при 0оС. Во многих металлах . При комнотной температуре (для платины б=0.003К-1, б=0.006К-1). Для полупроводников зависимость сопротивления выглядит следующим образом , где А - положительная постоянная. Для полупроводников б значительно меньше, чем у металлов. При малых изменениях температуры запишем . Чтобы найти разность тока, обусловленную изменением сопротивления, используется простейшая установка, где используется один болометрический элемент. Изменение напряжения на сопротивлении R1 нагрузки из-зи изменения сопротивления R является полезным сигналом, который передается через конденсатор к усилителю. Постоянный ток, который течет через сопротивления R и R1 обеспечивается источником питания с напряжением U. Пусть при изменении сопротивления R на величину ДR напряжения на R1 изменяется на ДU. Если ДR<<R, то тогда
.
где I - постоянный ток, текущий через болометр.
Другая запись этого выражения , где - фактор моста. Для моста Уитстона F=1/2.
.
Чувствительность болометра S0 - отношение полезного сигнала к мощности излучения, поглощаемой чувствительным элементом болометра:
. .
Полупроводниковый болометр.
Чуствительность болометра опрелеляется в основном температурным коэффицентом сопротивления, поэтому целесообразно использовать полупроводниковые материалы, у которых ТКС в 10 раз больше, чем ТКС металлов, что позволяет создавать болометры с большей чувствительностью. Обычно ТКС полупроводников определяется следующим образом:
,
где ДE - энергия активации носителей заряда. То есть, если брать собственный полупроводник, это ширина запрещенной зоны, при примесном полупроводнике - ширина примесной зоны.
,
где г - коэффицент поглощения; к - отношение изменения мощности к изменению температуры, то есть коэффицент рассеивания.
Для изготовления полупроводниковых болометров используют различные оксиды металлов. Лучшие результаты показывают оксиды марганца, никеля, кобальта или смесь оксида марганца и оксида никеля. При этом смесь оксидов изготавливают в таких соотношениях, что удельное сопротивение первого материала равна 2.5·103 Ом·см. Тогда б?4·10-2 град-1. Малоинерционные болометры на основе германия изготавливаются испарением германия и осаждением его на подложку из слюды при высоком вакууме. Его толщина 1 мкм, сопротивление 2Мом, б=2.5·10-2 град-1, чувствительность - излучение мощностью 10-9Вт.
13. Позитроны, термисторы, варисторы
Термистор -- полупроводниковый резистор, электрическое сопротивление которого существенно убывает с ростом температуры.
Для термистора характерны большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.
Терморезистор изготовляют в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1--10 мкм до 1--2 см.
Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.
Термистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году.
Различают терморезисторы с отрицательным (термисторы) и положительным (позисторы) ТКС.
Терморезисторы с отрицательным ТКС изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoO, NiO, CuO), легированных Ge и Si, полупроводников типа AIII BV, стеклообразных полупроводников и других материалов.
Различают терморезисторы низкотемпературные (рассчитанные на работу при температуpax ниже 170 К), среднетемпературные (170--510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4,2 К и ниже и при 900--1300 К. Наиболее широко используются среднетемпературные терморезисторы с ТКС от -- 2,4 до ?8,4 %/К и номинальным сопротивлением 1--106 Ом.
Режим работы терморезисторов зависит от того, на каком участке статической вольт-амперной характеристики (ВАХ) выбрана рабочая точка. В свою очередь ВАХ зависит как от конструкции, размеров и основных параметров терморезистора, так и от температуры теплопроводности окружающей среды, тепловой связи между терморезистором и средой. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрической цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электро-магнитного излучения на СВЧ, стабилизаторов температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой.
Изготовляются также терморезисторы специальной конструкции -- с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.
Из терморезисторов с положительным температурным коэффициентом наибольший интерес представляют терморезисторы, изготовленные из твёрдых растворов на основе BaTiO3. Такие терморезисторы обычно называют позисторами. Известны терморезисторы с небольшим положительным температурным коэффициентом (0,5--0,7 %/К), выполненные на основе кремния с электронной проводимостью; их сопротивление изменяется с температурой примерно по линейному закону. Такие терморезисторы используются, например, для температурной стабилизации электронных устройств на транзисторах.
Стоит отметить, что график изображённый на рисунке "Вольт-Амперная характеристика (ВАХ) для позистора." некорректен, так как неправильно расположены оси -- нужно поменять их местами. Для получения ВАХ термистора график необходимо повернуть влево на 90 градусов и инвертировать по вертикали.
Варистор - это нелинейный полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Зависимость сопротивления от напряжения наблюдается у ряда окислов и сульфидов металлов, диборита титана, карбида кремния и у многих материалов сложного состава. Для изготовления варисторов чаще применяют технический карбид кремния (SiC) различных аллотропических модификаций в виде порошка, смешанного со специальным связующим диэлектрическим веществом (связкой). В качестве связки применяют керамику, жидкое стекло, кремнийорганические лаки и другие материалы. Карбид кремния, связанный керамикой, называют тиритом. Материал со стеклянной связкой называют вилитом, а с ультрофарфоровой - лэтином.
Стехиометрическому составу карбида кремния соответствуют: 70,045% Si и 29.955% C. Кристаллы с составом бесцветны, обладают собственной электропроводностью и шириной запрещённой зоны, равной 2,8…3,1 эВ. При нарушении этого состава изменяется тип проводимости: при избытке атомов кремния преобладает электронная проводимость, а при избытке атомов углерода - дырочная.
Тип проводимости и окраска зависят также от вида примеси. Электронная проводимость и зелёная окраска получаются от примеси элементов пятой группы: N, P, As, Sb, Bi. Дырочную проводимость дают примеси второй - Ca, Mg и третьей - Al, B, Ga, In группы, окрашивая основной материал в голубой или фиолетовый цвет. Изготавливают варисторы по керамической технологии: карбид кремния измельчают в порошок, просеивают на фракции, смешивают со связкой (до 10% связки) и из этой массы прессовкой получают образцы в виде цилиндров, дисков или пластин; затем следует термическая обработка, нанесение электродов и остальные операции, типичные для производства полупроводниковых приборов.
Маркировка варисторов расшифровывается следующим образом:
· СН - сопротивление нелинейное;
· первая цифра обозначает материал (1 - карбид кремния, 2 - селен);
· вторая цифра - тип конструкции (1, 8 - стержневой, 2, 6, 7, 10 - дисковый, 3 - микромодульный);
· третья - порядковый номер разработки;
· далее указывается классификационное напряжение в вольтах и его допустимый разброс в процентах.
Например: СН1-1-1-820 10%. Расшифровка: сопротивление нелинейное из карбида кремния стержневого типа первой разработки, рассчитанное на работу при классификационном напряжении 820 В с разбросом 10%.
Рисунок 1. - Структура рабочего тела варистора: 1-электроды; 2-зёрна карбида кремния, 3-связующий материал
Рабочая область варистора (рис. 1) состоит из поликристаллов карбида кремния или другого полупроводника, разделённых диэлектрической связкой. Под действием приложенного напряжения в локальных местах соприкосновения отдельных зёрен карбида кремния или в оксидных плёнках на поверхности зёрен развиваются тепловые эффекты или эффекты сильного поля (лавинный или туннельный пробой). При увеличении плотности тока и выделяемой мощности возможен переход эффектов сильного поля в тепловые. Из-за нерегулярности площадей и сопротивлений контактов зерен, варистор обладает нелинейной и, практически, симметричной ВАХ (рис. 2).
Рисунок 2. - Вольт - амперные характеристики варисторов: 1 - СН1-2-1-56 20; 2 - …82 20%; 3 - …120 10%; 4 - …180 10%; 5 - …270 10%
Основное назначение варисторов - защита элементов электрических цепей постоянного, переменного и импульсного токов от перенапряжений; защита контактов реле разрушения и обмоток от пробоя. Варисторы применяют также для регулировки и стабилизации различных цепей и блоков РЭА, для улучшения их помехоустойчивости и ряда других важных функций.
Рассмотрим некоторые простые примеры практического применения варисторов. На рисунке 3 показана схема стабилизатора выходного напряжения и его выходная характеристика. Известно, что коэффициент стабилизации прямо пропорционален коэффициенту нелинейности ВАХ варистора. В частности, при:
а при :
где RСТ - статическое сопротивление варистора, в - коэффициент ВАХ нелинейности варистора.
Рисунок 3. - а) схема стабилизации напряжения; б) его внешняя характеристика: R - линейный резистор, В1 - варистор, RН - сопротивление нагрузки
Таким образом, для получения лучшей стабилизации нужно выбрать варистор с максимальным коэффициентом нелинейности в рабочей точке ВАХ.
Выходное напряжение может изменяться при изменении сопротивления нагрузки. При этом коэффициент стабилизации:
где ?RН, ?UВЫХ - приращения сопротивления соответственно нагрузки и выходного напряжения. Если, ?RН / RН =0,3, R / RСТ =2, то КСТ =5,8 при. =4.
Если вместо линейного резистора R включить второй варистор с коэффициентом нелинейности 2 = 1 = 4, то при ?RН / RН =0,3 и RС2 / RС1 = 2 коэффициент КСТ = 7,4. При этом внешняя характеристика стабилизатора будет такой, как показано на рис. 1.4. Специальным выбором режима работы стабилизатора можно получить и большие значения КСТ. Здесь через RС обозначено статическое сопротивление варистора. Другой пример - включение варистора в схему с индуктивными элементами (рис. 5).
Рисунок 4. - Внешняя характеристика при замене линейного сопротивления варистором
Специальным выбором режима работы стабилизатора можно получить и большие значения КСТ. Здесь через RС обозначено статическое сопротивление варистора. Другой пример - включение варистора в схему с индуктивными элементами (рис. 5).
Рисунок 5. - Схема включения варистора для искрогашения
Здесь варистор играет роль нелинейного шунта, имеющего большое сопротивление при низком напряжении и малое при всплесках. При включённой кнопке ККН напряжение на варисторе равно U, его сопротивление больше активного сопротивления RL катушки индуктивности и ток через варистор очень мал. В момент размыкания цепи возникает ЭДС самоиндукции и всплеск напряжения, сопротивление варистора резко уменьшается и ток самоиндукции замыкается на варистор. В противном случае в разрыве контактов возникла бы искра, и при многократных разрывах контакты подгорали бы.
Кроме варисторов, в качестве резисторов, управляемых электрическим полем, применяются полупроводниковые приборы с p - n переходом и МДП-структуры.
14. Интегральные микросхемы
Интегральная микросхема (ИМС) - это изделие, выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов, которые могут рассматриваться как единое целое, выполнены в едином технологическом процессе и заключены в герметизированный ккорпус.
Электронная аппаратура на ИМС обладает следующими большими преимуществами:
1. высокой надежностью и технологичностью, поскольку ИМС изготавливают на специализированных предприятиях на основе хорошо автоматизированной современной технологии. При создании аппаратуры на ИМС резко снижаются затраты труда на сборку и монтаж аппаратуры, уменьшается число паянных соединений, которые являются одним из наименее надежных элементов электронных узлов. Поэтому аппаратура на ИМС намного надежнее, чем аппаратура на дискретных элементах, меньше вероятность ошибок при монтаже. Только ИМС обеспечили высокую надежность, необходимую для создания систем управления космическими аппаратами и современных больших вычислительных систем.
2. Аппаратура на ИМС обладает малыми массой и габаритами.
3. При создании аппаратуры из готовых ИМС резко сокращается время на разработку изделия, так как используются готовые уззлы и блоки, упрощается внедрение в производство.
4. Применение аппаратуры на ИМС массового выпуска снижает стоимость изделия, так как уменьшаются расходы на монтаж и наладку устройства, да и сами микросхемы стоят дешевле заменяемых ими схем на дискретных компонентах, так как выпускаются по наиболее совершенной и производительной технологии.
5. Создание аппаратуры на ИМС упрощает организацию производства за счет уменьшения числа комплектующих изделий.
В зависимости от технологии изготовления интегральные микросхемы могут быть полупроводниковыми, пленочными или гибридными.
Полупроводниковая микросхема -микросхема, все элементы и межэлементные соединения которой выполнены в объеме и на поверхности полупроводника.
Пленочная микросхема - микросхема, все элементы и межэлементные соединения которой выполнены только в виде пленок проводящих и диэлектрических материалов. Вариантами пленочных являются тонкопленочные и толстопленочные микросхемы.
Различие между тонкопленочными и толстопленочными микросхемами может быть количественным и качественным. К тонкопленочным условно относят микросхемы с толщиной пленок менее 1 мкм, а к толстопленочным - микросхемы с толщиной пленок свыше 1 мкм.
Гибридная микросхема - микросхема, содержащая кроме элементов простые и сложные компоненты (например, кристаллы микросхемы полупроводниковых микросхем). Одним из видов гибридной микросхемы является многокристальная микросхема.
В зависимости от функционального назначения интегральные микросхемы делятся на аналоговые и цифровые. Аналоговые микросхемы предназначены для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции. Частным случаем этих микросхем является микросхема с линейной характеристикой, линейная микросхема. С помощью цифровых микросхем преобразуются, обрабатываются сигналы, изменяющиеся по закону дискретной функции. Частным случаем цифровых микросхем являются логические микросхемы, выполняющие операции с двоичным кодом, которые описываются законами логической алгебры.
Минимальный состав комплекта интегральных микросхем, необходимый для решения определенного круга аппаратурных задач, называется базовым.
После появления микропроцессоров были введены дополнительные термины. Микропроцессор определен как программно-управляемое устройство, осуществляющее процесс обработки цифровой информации и управления им. Это устройство изготовлено на основе одной или нескольких больших интегральных схем (БИС).
Микропроцессорной названа микросхема, выполняющая функцию МП или его часть. Совокупность этих и других микросхем, совместимых по архитектуре, конструктивному исполнению и электрическим параметрам, называется микропроцессорным комплектом.
В последние годы в классификацию ИС вводятся новые понятия: микросхемы общего назначения, заказные и полузаказные.
Заказная микросхема - микросхема, разработанная на основе стандартных и (или) специально созданных элементов узлов по функциональной схеме заказчика предназначена для определенной радиоэлектронной аппаратуры (РЭА).
Подобные документы
Понятие радиоэлектроники, ее сущность и особенности, история возникновения и развития. Развитие электронной техники на современном этапе, характерные черты. Принципы работы и использование резисторов, их разновидности. Устройство и значение конденсаторов.
курс лекций [373,1 K], добавлен 21.02.2009Характеристика сущности резисторов, которые предназначены для перераспределения и регулирования электрической энергии между элементами схемы. Классификация, конструкции и параметры резисторов, характеризующие их эксплуатационные возможности применения.
реферат [409,2 K], добавлен 10.01.2011Метрологическое обеспечение контроля электрических величин. Параметры и свойства измерительной техники: показания средств измерений; градуировочная характеристика; разрешающая способность, диапазон, предел, чувствительность. Методика выполнения измерений.
презентация [175,0 K], добавлен 31.07.2012Представление об основах литографии. Установки изготовления образцов. Параметры коррекции распределения дозы, чувствительность резиста. Основы электронной литографии при низком ускоряющем напряжении. Оценка эффективного диаметра электронного луча.
курсовая работа [1,1 M], добавлен 18.11.2012Понятие полупроводниковых приборов, их вольтамперные характеристики. Описание транзисторов, стабилитронов, светодиодов. Рассмотрение типологии предприятий. Изучение техники безопасности работы с электронной техникой, мероприятий по защите от шума.
дипломная работа [3,5 M], добавлен 29.12.2014Основные сведения о конструкциях трансформаторов тока. Устройство, режим работы и принципы действия различных типов трансформаторов тока. Основные параметры и характеристики отдельных конструкций, а также их применение, классификация и назначение.
реферат [867,9 K], добавлен 08.02.2011Назначение и классификация трансформаторов напряжения, маркировка их обмоток и основные параметры. Элементы и условия эксплуатации трансформатора напряжения однофазного с естественным масляным охлаждением, технические характеристики и схемы его моделей.
контрольная работа [1,6 M], добавлен 03.03.2014Ветроэлектростанции, их характеристики. Разновидности геотермальных электростанций, их применения в децентрализованных системах электроснабжения. Основные способы преобразования энергии биотопливa в электроэнергию. Классификация солнечных электростанций.
реферат [202,6 K], добавлен 10.06.2014Физические процессы, лежащие в основе электронной оже-спектроскопии (ЭОС). Механизмы ЭОС, область ее применения. Относительная вероятность проявления оже-эффекта. Глубина выхода оже-электронов. Анализ тонких пленок, преимущества ионного распыления.
реферат [755,3 K], добавлен 17.12.2013Свойства объектов и методы измерения электронной плотности по упругому рассеянию. Экспериментальные методы исследования комптоновского рассеяния. Атомно-рассеивающий фактор, распределение радиальной электронной плотности в литии по комптоновским профилям.
дипломная работа [1,3 M], добавлен 06.06.2011