Углеродные нанотрубки

Методы получения и разделения фуллеренов. Основные представления о симметрии фуллеренов. Межмолекулярные взаимодействия и полимеризация фуллеренов. Схематическое изображение нанотрубки, ее структура. Электронные и оптические свойства нанотрубок.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 30.07.2011
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Если энергия электронов мало отличается от энергии Ферми, то можно заменить истинный спектр электронов вблизи дираковской точки на простой конический, такой же как спектр безмассовой частицы, подчиняющейся уравнению Дирака в 2+1 измерениях.

* SU(4) симметрия

5. Преобразование спектра при сворачивании плоскости в трубку

* граничные условия Борна-Кармана

* Эффективное уравнение Дирака

* Металлические и полупроводниковые трубки

* Поведение спектра при приложении продольного магнитного поля

Учёт взаимодействия электронов

* Бозонизация

* Латтинжеровская жидкость

* Разделение спина и заряда

* Экспериментальный статус

Сверхпроводимость в нанотрубках

* Экспериментальный статус

Сверхпроводимость углеродных нанотрубок открыта исследователями из Франции и России (ИПТМ РАН, Черноголовка). Ими были проведены измерения вольт-амперных характеристик:

-- отдельной однослойной нанотрубки диаметром ~1нм;

-- свёрнутого в жгут большого числа однослойных нанотрубок;

-- также индивидуальных многослойных нанотрубок.

При температуре, близкой к 4К, между двумя сверхпроводящими металлическими контактами наблюдался ток. В отличие от обычных трёхмерных проводников, перенос заряда в нанотрубке имеет ряд особенностей, которые, судя по всему, объясняются одномерным характером переноса (как, например, квантование сопротивления R: см. статью, опубликованной в Science [17]).

6. Экситоны и биэкситоны в нанотрубках. Оптические свойства нанотрубок

углеродная нанотрубка фуллерен

Полупроводниковые модификации углеродных нанотрубок ( разнасть индексов хиральности не кратна трем) являются прямозонными полупроводниками. Это означает, что в них может происходить непосредственная рекомбинация электрон-дырочных пар, приводящая к испусканию фотона. Прямозонность автоматически включает углеродные нанотрубки в число материалов оптоэлектроники.

Свойства интеркалированных нанотрубок. Возможные применения нанотрубок.

Механические применения: сверхпрочные нити, композитные материалы, нановесы ;

Применения в микроэлектронике: транзисторы, нанопровода, прозрачные проводящие поверхности, топливные элементы;

Для создания соединений между биологическими нейронами и электронными устройствами в новейших нейрокомпьютерных разработках;

Капилярные применения: капсулы для активных молекул хранение металлов и газов, нанопипетки;

Оптические применения: дисплеи, светодиоды;

Медицина(в стадии основной разработки);

Одностенные нанотрубки (индивидуальные, в небольших сборках или в сетях) являются миниатюрными датчиками для обнаружения молекул в газовой среде или в растворах с ультравысокой чувствительностью - при адсорбции на поверхности нанотрубки молекул ее електросопротивление, а также характеристики нанотранзистора могут изменяться. Такие нанодатчики могут использоваться для мониторинга окружающей среды, в военных, медицинских и биотехнологических применениях.

Трос для космического лифта, так как нанотрубки теоретически, могут содержать и больше тонны… но только в теории. Потому как получить достаточно длинные углеродные трубки с толщиной стенок в один атом не удавалось до сих пор(18).

Листы из углеродных нанотрубок можно использовать в качестве плоских прозрачных громкоговорителей, к такому выводу пришли китайские ученые(19).

Получение углеродных нанотрубок

В настоящее время наиболее распространенным является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под давлением около 500 торр. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверности катода образуется осадок, в котором формируются нанотрубки углерода. Наибольшее количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность составляет около 100 А/см2. В экспериментальных установках напряжение между электродами обычно составляет около 15-25 В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1-2 мм. В процесси синтеза около 90% массы анода осаждается на катоде.

Образующиеся многочисленные нанотрубки имеют длину порядка 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверность катода, образуя сотовую структуру. Ее можно обнаружить, рассматривая осадок на катоде невооруженным глахом. Пространство между пучками нанотрубок заполнено смесью неупорядоченны наночастиц и одиночных нанотрубок. Содержание нанотрубок в углеродном осадке (депозите) может приблизаться к 60%.

Для разделения компонентов полученного осадка используется ультразвуковое диспергирование. Котодный депозит помещают в метанол и обрабатывают ультразвуком. В результате получается суспензия, которая (после добавления воды) подвергается разделению на центрифуге. Крупные частицы сажи прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 750?С в течение 5 мин. В результате такой обработки получается достаточно легкий и пористый материал, состоящий из многослойных нанотрубок со средним диаметром 20 нм и длиной около 10 мкм. Технология получения нанотрубок довольно сложна, поэтому в настоящее время нанотрубки - дорогой материал: один грамм стоит несколько сот долларов США.

Согласно публикации в журнале NanoLetters, физикам из нескольких китайских исследовательских центров удалось доработать технологию, которой пользовались ученые по всему миру - технологию химического осаждения атомов углерода из газовой среды. Им удалось синтезировать углеродные нанотрубки длиной до 18,5 сантиметров.

Цуньшень Ванг (Xueshen Wang) и его коллеги использовали смесь веществ, которые многим известны отнюдь не в качестве химреактивов: свои рекордные нанотрубки китайцы вырастили в атмосфере паров спирта и воды. Правда, эти вещества находились в несколько нестандартных по алкогольным меркам пропорциях: 4 части спирта на 1 часть воды.

Кроме того, китайские ученые использовали водород, продуваемый через специальный реактор, а также сверхтонкий порошок железа и молибдена - это были зерна для затравки реакции. Также им пригодилась пленка из обычных, меньшей длины, нанотрубок, - для эффективного удаления «мусора» в виде растущих в неправильны направлениях углеродны цилиндров вкупе с аморфным и потому неинтерсным углеродом (20).

Токсичность нанотрубок

Результаты экспериментов, проведенных в последние годы, показали, что длинные многостенные углеродные нанотрубки (МСНТ) могут вызвать отклик, аналогичный асбестовым волокнам. У людей, занятях на добыче и переработке асбеста, верояятность возникновения опухолей и рака легких в несколько раз больше, чем у основного населения. Канцерогенность волокон разных видов асбеста весьма различна и зависит от диаметра и тапа волокон. Благодаря своему малому весу и размерам, углеродные нанотрубки проникают в дыхательные пути вместе с воздухом. В итоге они концентрируются в плевре. Мелкие частицы и короткие нанотрубки выходят через поры в грудной стенке (диаметр 3-8 мкм), а длинные нанотрубки могут задерживаться и со временем вызвать патологические изменения.

Заключение

Тот факт, что фуллерены обнаружены в естественных минералах, имеет большое значение для науки о Земле. Не исключено, что ряд неидентифицированных полос в спектрах оптического поглощения и рассеяния межзвездной пыли обусловлен фуллеренами. Еще в 60-х годах на основании теоретического анализа частот этих полос было высказано предположение о том, что они обусловлены углеродными частицами. Возможно, фуллерены помогут нам получить дополнительные сведения о возникновении и эволюции Вселенной. Что касается практической деятельности человека, то здесь полезны способности фуллерена изменять свои свойства при легировании от диэлектрических до сверхпроводящих и от диамагнетизма до ферромагнетизма. Относительно простая технология получения фуллеритов с различными свойствами позволяет надеяться на создание в скором времени квантоворазмерных структур с чередующимися слоями сверхпроводник - полупроводник (или диэлектрик), металл -- ферромагнетик, сверхпроводник - магнетик и т.д. Возможно, такие структуры станут основой создания новых электронных приборов. Активные исследования твердых фуллеренов ведутся только пять лет. Многое еще не исследовано, и сейчас трудно предсказать все возможные применения этого необычного материала в практической деятельности.

Открытие углеродных нанотрубок относится к наиболее значительным

достижениям современной науки. Эта форма углерода по своей структуре занимает промежуточное положение между графитом и фуллереном. Однако многие свойства углеродных нанотрубок не имеют ничего общего ни с графитом, ни с фуллереном. Это позволяет рассматривать и исследовать нанотрубки как самостоятельный материал, обладающий уникальными физико-химическими характеристиками.

Исследования углеродных нанотрубок представляют значительный

фундаментальный и прикладной интерес. Фундаментальный интерес к этому объекту обусловлен, в первую очередь, его необычной структурой и широким диапазоном изменения физико-химических свойств в зависимости от хиральности.

К проблеме исследования фундаментальных свойств углеродных нанотрубок вплотную примыкает проблема прикладного использования. Решение этой проблемы, в свою очередь, от создания способов дешевого получения углеродных нанотрубок в больших количествах. Эта проблема пока исключает возможность крупномасштабного применения этого материала. Тем не менее такие свойства нанотрубок, как сверхминиатюрные размеры, хорошая электропроводность, высокие эмиссионные характеристики, высокая химическая стабильность при существующей пористости и способность присоединять к себе различные химические радикалы, позволяют надеяться на эффективное

применение нанотрубок в таких областях, как измерительная техника,

электроника и наноэлектроника, химическая технология и др. В случае

успешного решения этих задач мы станем свидетелями еще одного примере эффективного влияния фундаментальных исследований на научно технический прогресс.

Список используемой литературы

1. «Фуллерены. Их физические и электрические свойства», СПб, 1999 год.

2. ст. В.Ф. Мастеров «Физические свойства фуллеренов», Соровский

образовательный журнал №1, 1997 год.

1. ^ http://www.sciencedaily.com/releases/2004/09/040917091336.htm

2. ^ УФН, Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, апрель 2002г, т. 172, № 4, ст. 401

3. ^ http://www.sciencedaily.com/releases/2004/09/040917091336.htm

4. ^ УФН, Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, апрель 2002г, т. 172, № 4, ст. 401

5. ^ Углеродные нанотрубки, А. В. Елецкий, УФН, сентябрь 1997г, т. 167, № 9, ст. 954

6. ^ Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002г, т. 172, № 4, ст. 403

7. ^ Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002г, т. 172, № 4, ст. 404

8. ^ Углеродные нанотрубки, А. В. Елецкий, УФН, сентябрь 1997г, т. 167, № 9, ст. 955

9. ^ Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002г, т. 172, № 4, ст. 408

10. ^ Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002г, т. 172, № 4, ст. 408

11. ^ H.W. Kroto, J.R.Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 162 (1985)

12. ^ S. Iijima, Helical microtubules of graphitic carbon, Nature 354 56 (1991)

13. ^ A. Oberlin, M. Endo, and T. Koyama. High resolution electron microscope observations of graphitized carbon fibers Carbon, 14, 133 (1976)

14. ^ J.A.E. Gibson. Early nanotubes? Nature, 359, 369 (1992)

15. ^ Л. В. Радушкевич и В. М. Лукьянович. О структуре углерода, образующегося при термическом разложении окиси углерода на железном контакте. ЖФХ, 26, 88 (1952)

16. ^ D.E.H. Jones (Daedalus). New Scientist 110 80 (1986)

17. ^ З. Я. Косаковская, Л. А. Чернозатонский, Е. А. Фёдоров. Нановолоконная углеродная структура. Письма в ЖЭТФ 56 26 (1992)

18. ^ М. Ю. Корнилов. Нужен трубчатый углерод. Химия и жизнь 8 (1985)

19. ^ Science (Frank с сотр., Science, т. 280, с. 1744); 1998

20. ^ http://news.mail.ru/society/2933557/

21. ^ Nano Letters: Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers (29 октября 2008 г.)

^ http://news.mail.ru/society/2933557/

Размещено на Allbest.ru


Подобные документы

  • История развития сканирующей туннельной микроскопии. Рассмотрение строения фуллеренов, фуллеритов, углеродных нанотрубок. Характеристика термодинамической модели зарождения и роста кластеров. Изучение магнитных свойств наносистемы оксидов железа.

    курсовая работа [2,4 M], добавлен 07.06.2010

  • Наночастицы - молекулярные соединения, принадлежащие классу аллотропных форм углерода. Сущность нанотехнологии; наноматериалы: углеродные нанотрубки, фуллерены, нанокластеры, их характеристики, свойства, применение в микроэлектронике, оптике, медицине.

    презентация [2,9 M], добавлен 27.02.2012

  • Структура и модификации углеродных нанотрубок, способы их получения. Методы исследования углеродных нанотрубок. Экспериментальное определение энтальпии образования углеродных нанотрубок из графита в зависимости от типа полученного углеродного материала.

    курсовая работа [5,4 M], добавлен 28.12.2011

  • Трековые мембраны, их свойства, определение, получение, применение. Наноразмерные материалы: наноструктуры, нанопроволоки и нанотрубки. Матричный синтез, микроскопия. Получение наноструктур из ферромагнитных материалов, микроскопия металлических реплик.

    дипломная работа [1,9 M], добавлен 29.06.2012

  • Оптические свойства стекол (показатель преломления, молярная и ионная рефракция, дисперсия). Оптические свойства и строение боросиликатных стёкол, которые содержат на поверхности наноразмерные частицы серебра и меди. Методы исследования наноструктур.

    дипломная работа [3,0 M], добавлен 18.09.2012

  • Классификация, структурные свойства и возможные отрасли применения нанотрубок. Особенности электрического сопротивления. Возможность создания устройства с высоконелинейными характеристиками включения на основе полупроводниковых одностенных нанотрубок.

    реферат [47,5 K], добавлен 21.11.2010

  • Структура и типы квазикристаллов, методы их получения, области применения, физические свойства: оптические, механические и поверхностные, сверхпроводимость, магнетизм, теплопроводность. Электронный спектр и структурная стабильность. Возбуждения решетки.

    курсовая работа [942,4 K], добавлен 14.01.2015

  • Способы получения и анализа поляризованного света. Описание установки для получения информации об отражённом свете, ее схематическое изображение. Принципы метода эллипсометрии, его реализация при изучении показателя преломления прозрачных диэлектриков.

    курсовая работа [5,8 M], добавлен 19.04.2012

  • Рассмотрение предмета, целей и основных направлений в развитии нанотехнологий. Характеристика фуллерена, фуллерита, углеродной нанотрубки, сверхпрочных и высокопроводящих материалов. Изучение методов формирования нанокластерной системы оксидов железа.

    реферат [2,4 M], добавлен 19.04.2010

  • Композит как основа из одного материала, армированная наполнителями из волокон. Методы получения композитов: искусственные, естественные. Взаимодействия в композиционных материалах. Структура и физические свойства (1-х)(La0.5Eu0.5)0.7Pb0.3MnO3+PbTiO3.

    дипломная работа [1,5 M], добавлен 22.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.