Обледенение в технике и борьба с ним

Разработка "Устройства для сигнализации обледенения" для борьбы со льдообразованием в газоперекачивающих агрегатах и других видах техники. В основу устройства положен теоретический принцип работы пьезоэффекта в схеме параллельного резонанса частоты.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 20.02.2011
Размер файла 4,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

нн = (E3 - E1)/h.

Метод трёх уровней был применен по предложению Н. Бломбергена (1956, США) для создания квантовых усилителей радиодиапазона на парамагнитных кристаллах. Квантовые усилители обычно работают при температуре жидкого гелия (4,2 К), когда практически все частицы находятся на самом нижнем уровне энергии. При накачке половина всех имеющихся в кристалле частиц переводится на верхний уровень E2 и участвует в когерентном усилении. Если молекулярный генератор удовлетворил потребность электроники в высокостабильном источнике монохроматических колебаний, то квантовый усилитель решил др. важнейшую проблему радиофизики -- проблему резкого уменьшения шумов, т. е. увеличения чувствительности радиоприёмников СВЧ. Поэтому квантовые усилители нашли применение в радиоастрономии, радиолокации, линиях глобальной и космической связи.

Успехи квантовой электроники поставили вопрос о её продвижении в сторону более коротких волн. При этом существенную трудность представляла разработка резонаторов. В диапазоне СВЧ применяют закрытые полости с проводящими стенками, размеры которых сравнимы с длиной волны. Для оптического излучения резонаторы такого типа изготовить невозможно. В 1958 был предложен открытый резонатор (А. М. Прохоров). В субмиллиметровом диапазоне резонатор представлял собой два параллельных, хорошо отражающих металлических диска, между которыми возникает система стоячих волн. Для света этот резонатор сводился к двум параллельным зеркалам и подобен Интерферометру Фабри -- Перо.

Первым достижением квнтовой элетроники в оптическом диапазоне явилось создание в 1960 лазера (Т. Мейман, США). В качестве рабочего вещества в нём использовался монокристалл Рубина, а для получения инверсии населённости был применен метод трёх уровней. Отражающими зеркалами резонатора служили хорошо отполированные и посеребрённые торцы кристалла рубина. Источником накачки была лампа -- вспышка. Рубиновые лазеры наряду с лазерами на стекле с примесью неодима дают рекордные энергии и мощности. В режиме свободной генерации большие кристаллы рубина при мощной накачке дают в импульсе энергию до 1000 дж (мощность до 106 вт). Другой режим рубиновых лазеров достигается включением зеркал резонатора лишь в определённые моменты времени, когда инверсия населённостей достигает максимальной величины, Тогда все накопленные на метастабильном уровне частицы излучают практически сразу, и генератор выдаёт гигантский импульс излучения очень короткой длительности (10-8--10-9 сек) со сравнительно небольшой энергией (около 3 дж.). Но так как эта энергия излучается в очень короткое время, то пиковая мощность импульса достигает значений 3Ч106--3,5Ч106 вт.

Вскоре после рубинового лазера был разработан первый газовый лазер (А. Джаван, У. Беннетт, Д. Гарриот: 1960. США) на смеси атомов неона и гелия. Затем появился полупроводниковый инжекционный лазер (Р. Хол, а также У. Думке с сотрудниками; 1962, США). В газовых лазерах получение инверсии населённости достигается не световой накачкой, а при соударениях атомов или молекул рабочего газа с электронами или ионами, имеющимися в электрическом разряде. Среди газовых лазеров выделяются гелий-неоновый лазер и лазер на смеси углекислого газа, азота и гелия (СО2 -- лазер), которые могут работать, как в импульсном, так и в непрерывном режимах. С помощью гелий-неонового лазера получены световые колебания очень высокой стабильности (Квантовая электроника 10-13) и высокой монохроматичности (Дн = 1 гц при частоте 1014 гц). Хотя кпд этого лазера крайне невелик (0,01%), именно высокая монохроматичность и направленность его излучения (обусловленные, в частности, однородностью его активной среды) сделали этот лазер незаменимым при всякого рода юстировочных и нивелировочных работах. Мощный СО2 -- лазер (К. Пател, 1964, США) генерирует инфракрасное излучение (л = 10,6 мкм). Его кпд, достигающий 30%, превосходит кпд всех существующих лазеров, работающих при комнатной температуре. Особенно перспективен Газодинамический лазер на СО2. С его помощью можно получить в непрерывном режиме мощность в десятки квт. Монохроматичность, направленность и высокая мощность делают его весьма перспективным для целого ряда технологических применений.

В полупроводниковых лазерах инверсия достигается главным образом при инжекции носителей тока через Электронно-дырочный переход соответствующим образом легированного полупроводника. Имеется довольно много полупроводниковых материалов, из которых изготовляются лазеры в широком диапазоне длин волн. Наиболее распространённым из них является арсенид галлия (GaAs), который при температуре жидкого азота может излучать в непрерывном режиме в ближней инфракрасной области мощность до 10 вт при кпд = 30%. Изменяя ток инжекции, можно достаточно безынерционно управлять мощностью, генерируемой инжекционными лазерами. Это делает перспективным их применение в быстродействующих вычислительных машинах и в системах связи.

Для получения инверсии населённости в парамагнитном квантовом усилителе, в рубиновом лазере, в газовых и полупроводниковых лазерах и др. используются совершенно различные физические явления. Но единым и главным фактором для всех методов создания инверсии населённости является необходимость преодоления процессов, направленных к восстановлению равновесной населённости. Препятствовать процессам восстановления равновесной населённости можно, только затрачивая энергию, поступающую от внешнего источника питания. При этом в лазерное излучение преобразуется, как правило, малая доля энергии накачки. В режиме свободной генерации кпд рубинового лазера меньше 1%, в режиме гигантских импульсов ещё меньше. Однако «проигрыш» в количестве энергии излучения компенсируется в К. э. выигрышем в его «качестве», монохроматичности и направленности излучения, обусловленных свойствами вынужденного излучения.

Монохроматичность и высокая направленность позволяют сфокусировать всю энергию лазерного излучения в пятно с размерами, близкими к длине волны излучения. В этом случае электрическое поле световой волны достигает значений, близких к внутриатомным полям. При взаимодействии таких полей с веществом возникают совершенно новые явления.

Применения квантовой электроники революционизировали радиофизику СВЧ и оптику. Наиболее глубокие преобразования К. э. внесла в оптику. В радиофизике создание мазеров означало появление радиоустройств хотя принципиально и новых, но вместе с тем обладающих привычными для радиоинженера свойствами. И до появления К. э. в радиофизике существовали когерентные усилители и монохроматические генераторы. К. э. лишь резко улучшила чувствительность усилителей (в 103 раз) и стабильность частоты генераторов (в десятки тысяч раз). В оптике же все источники света до появления лазеров не обладали ни сколько-нибудь заметной направленностью, ни монохроматичностью. Создание лазеров означало появление источников света, обладающих совершенно новыми свойствами. Это дало невиданную ранее в оптике возможность концентрировать энергию излучения как в пространстве, так и в узком частотном интервале.

Промышленность выпускает различные типы лазеров, которые используются не только как эффективный инструмент научных исследований, но и для решения разного рода практических задач. Основные преимущества лазерного воздействия -- малая область распространения тепла, отсутствие переноса электрических зарядов и механического контакта, возможность работать внутри вакуумных баллонов и в агрессивных газах. Одним из первых применений лазеров было измерение расстояния до Луны с большей точностью, чем это было сделано радиофизическим методом. После того как на Луне был установлен Уголковый отражатель, расстояние до неё было измерено с точностью до 1,5 м. Существует лазерная локационная служба расстояния Земля -- Луна.

Новые возможности открыло применение лазеров в оптических линиях связи. Развитие оптических линий связи с их задачами модуляции колебаний, детектирования, гетеродинирования, преобразования частоты световых колебаний потребовало переноса в оптику методов радиофизики и теории колебаний.

Возникла Нелинейная оптика, изучающая нелинейные оптические эффекты, характер которых зависит от интенсивности света Самофокусировка света, генерация оптических гармоник, Вынужденное рассеяние света, параметрическая генерация света, самопросветление или самозатемнения света. Методами нелинейной оптики создан новый класс перестраиваемых по частоте источников когерентного излучения в ультрафиолетовом диапазоне. Нелинейные явления в оптике существуют только в узком диапазоне интенсивностей лазерного излучения. При малых интенсивностях нелинейные оптические эффекты отсутствуют, затем по мере роста интенсивности они возникают, возрастают, но уже при потоках интенсивности 1014 вт/см2 все известные вещества разрушаются лазерным лучом и превращаются в плазму. Получение и исследование лазерной плазмы является одним из наиболее интересных применений лазеров. Осуществлен термоядерный синтез, инициируемый лазерным излучением.

Благодаря высокой концентрации электромагнитной энергии в пространстве и по спектру лазеры находят широкое применение в микробиологии, фотохимии, химическом синтезе, диссоциации, катализе. Квантовая электроника привела к развитию голографии -- метода получения объёмных изображений предметов восстановлением структуры световой волны, отражённой предметом.

Работы по квантовой электронике были отмечены Нобелевской премией 1964 по физике (Н. Г. Басов, А. М. Прохоров, СССР, и Ч. Таунс, США).

Вынужденное излучение [9]

Виды излучения: электромагнитное, синхротронное, циклотронное, тормозное, тепловое и т.д. (см. табл.). В целях изучения борьбы со льдообразования используем тепловое излучение.

Электромагнитное излучение

Синхротронное

Циклотронное

Тормозное

Тепловое

Монохроматическое

Черенковское

Переходное

Радиоизлучение

Микроволновое

Терагерцевое

Инфракрасное

Видимое

Ультрафиолетовое

Рентгеновское

Гамма-излучение

Ионизирующее

Реликтовое

Магнито-дрейфовое

Двухфотонное

Вынужденное

Тепловое излучение

Тепловое излучение -- электромагнитное излучение со сплошным спектром.

Спектр (лат. spectrum от лат. specter -- видемние, призрак) в физике -- распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр -- спектр частот (или, что то же самое, энергий квантов) электромагнитного излучения.

Основные понятия и характеристики теплового излучения

Энергетическая светимость тела

Энергетическая светимость тела -- физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.

; Дж/с·мІ=Вт/мІ

Спектральная плотность энергетической светимости

Спектральная плотность энергетической светимости -- функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн).

Аналогичную функцию можно написать и через длину волны

Можно доказать что спектральная плотность и энергетическая светимость выраженные через частоту и длину волны, связаны соотношением:

Поглощающая способность тела

Поглощающая способность тела -- -- функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи

где - поток энергии, поглощающейся телом.

- поток энергии, падающий на тело в области вблизи

Отражающая способность тела

Отражающая способность тела - - функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот вблизи

где - поток энергии, отражающейся от тела.

- поток энергии, падающий на тело в области вблизи

Абсолютно черное тело

Абсолютно черное тело - это физическая абстракция(модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение

- для абсолютно черного тела

Подробнее Абсолютно черное тело

Серое тело

Серое тело - это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

- для серого тела

Объемная плотность энергии излучения

Объемная плотность энергии излучения - - функция температуры, численно равная энергии электромагнитного излучения в единицу объема по всему спектру частот

Спектральная плотность энергии

Спектральная плотность энергии - - функция частоты и температуры, связанная с объемной плотностью излучения формулой:

Следует отметить, что спектральная плотность энергетической светимости для абсолютно черного тела связана со спектральной плотностью энергии следующим соотношением:

- для абсолютно черного тела

Основные законы теплового излучения

· Закон Стефана -- Больцмана

· Закон излучения Кирхгофа

· Закон смещения Вина

Электромагнимтное излучемние (электромагнитные волны) -- распространяющееся в пространстве возмущение электромагнитного поля (то есть иначе говоря -- взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников -- движущихся зарядов, затухая наиболее медленно с расстоянием.

К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Классификация диапазонов спектра электромагнитного излучения по-английски. Колонки: 1 (черная) -- аббревиатуры обозначения диапазонов, 2 -- частота, 3 -- длина волны, 4 -- энергия фотона.

В научный обиход термин спектр ввёл Ньютон в 1671--1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму.

Спектр испускается веществом и возникает за счёт его внутренней энергии (в отличие, например, от люминесценции, возникающей за счёт внешних источников энергии). В физике для корректного расчёта теплового излучения принята модель абсолютно чёрного тела.

Тепловое излучение -- один из трёх элементарных видов переноса тепла (теплопроводность, конвекция, излучение), которое осуществляется при помощи электромагнитных волн. ТЕПЛОВОЕ ИЗЛУЧЕНИЕ, энергия, выделяемая твердыми телами, жидкостями или газами за счет их внутренней температуры, вне зависимости от ее числового выражения. Эта энергия возникает в результате колебания атомов объекта и выделяется в виде ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, чаще всего ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ.

Закон Кирхгофа

Г. Кирхгоф Густав Роберт Кирхгоф (нем. Gustav Robert Kirchhoff; 12 марта 1824, Кёнигсберг -- 17 октября 1887, Берлин) -- один из великих физиков XIX века.

Он доказал, что отношение испускательной и поглощательной способностей не зависит от природы тела и является для всех тел одной и той же функцией частоты (длины волны) и температуры:

Сами величины rщT и aщT могут сильно меняться при переходе от одного тела к другому, но их отношение оказывается одинаковым для всех тел.

· ТЕПЛОВОЕ ИЗЛУЧЕНИЕ -- , энергия, выделяемая твердыми телами, жидкостями или газами за счет их внутренней температуры, вне зависимости от ее числового выражения. Эта энергия возникает в результате колебания атомов объекта и выделяется в виде… (Научно-технический энциклопедический словарь)

· ТЕПЛОВОЕ ИЗЛУЧЕНИЕ -- (температурное излучение), эл. магн. излучение, испускаемое в вом и возникающее за счёт его внутр. энергии (в отличие, напр., от люминесценции, к рая возбуждается внеш. источниками энергии). Т. и. имеет сплошной спектр,… (Физическая энциклопедия)

· тепловое излучение -- электромагнитное излучение, которое испускает вещество, имеющее определенную температуру, за счёт своей внутренней энергии. Если тепловое излучение находится в термодинамическом равновесии с веществом, оно называется равновесным, распределение энергии в его спектре определяется Планка законом излучения (Энциклопедический словарь)

· межзерновое тепловое излучение -- intersolid radiation… (Большой англо-русский и русско-английский словарь)

· тепловое излучение -- incandescence, thermal radiation…

· тепловое излучение атмосферы -- atmospheric thermal radiation…

· ТЕПЛОВОЕ ИЗЛУЧЕНИЕ -- ТЕПЛОВОЕ излучение, электромагнитное излучение, испускаемое веществом за счет его внутренней энергии. Определяется температурой вещества. Попытка найти закон распределения энергии в спектре равновесного теплового излучения привела М. Планка к… (Современная энциклопедия)

· ТЕПЛОВОЕ ИЗЛУЧЕНИЕ -- ТЕПЛОВОЕ излучение - электромагнитное излучение, которое испускает вещество, имеющее определенную температуру, за счет своей внутренней энергии. Если тепловое излучение находится в термодинамическом равновесии с веществом, оно называется… (Большой Энциклопедический словарь)

· Тепловое излучение -- температурное излучение, электромагнитное излучение, испускаемое веществом и возникающее за счёт его внутренней энергии (в отличие, например, от люминесценции (См. Люминесценция), возникающей за счёт внешних источников энергии). межзерновое тепловое излучение -- intersolid radiation … (Англо-русский словарь технических терминов)

Законы излучения абсолютно чёрного тела

Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию -- так называемой ультрафиолетовой катастрофе.

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

,

где:

· -- плотность энергии излучения

· -- частота излучения

· -- температура излучающего тела

· -- функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана -- Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина» называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

· где uн -- плотность энергии излучения

· н -- частота излучения

· T -- температура излучающего тела

· C1,C2 -- константы.

Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C1 и C2. С учётом этого, второй закон Вина можно записать в виде:

· где uн -- плотность энергии излучения

· н -- частота излучения

· T -- температура излучающего тела

· h -- постоянная Планка

· k -- постоянная Больцмана

· c -- скорость света в вакууме

Закон Рэлея -- Джинса

закон Рэлея -- Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея -- Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея -- Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея -- Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Формула Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:

где I(н) -- мощность излучения на единицу площади излучающей поверхности в диапазоне частот от н до н + dн.

Эквивалентно,

,

где u(л) -- мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от л до л + dл.

Закон Стефана -- Больцмана

Закон Стефана -- Больцмана

Общая энергия теплового излучения определяется законом Стефана -- Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

,

где j -- мощность на единицу площади излучающей поверхности, а

Вт/(мІ·К4) -- постоянная Стефана -- Больцмана.

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где е -- степень черноты (для всех веществ е < 1, для абсолютно чёрного тела е = 1).

Константу Стефана -- Больцмана у можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

Ультрафиолемтовая катастромфа -- физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность мощности излучения должна была неограниченно расти по мере сокращения длины волны.

По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всяком случае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.

Так как это не согласуется с экспериментальным наблюдением, в конце 19 века возникали трудности в описании фотометрических характеристик тел.

Проблема была решена при помощи квантовой теории излучения Макса Планка в 1900 году.

Закон открыт независимо Й. Стефаном (англ.) и Л. Больцманом в предположении пропорциональности плотности энергии излучения и его давления p = с / 3. В 1880 г. подтверждён Лео Гретцем.

Важно отметить, что закон говорит о суммарной излучаемой энергии, однако она распределена неоднородно по длинам волн излучения. Точнее, имеется единственный максимум в спектре, который задаётся законом Вина.

Применение закона к расчёту эффективной температуры поверхности Земли даёт оценочное значение, равное 249 К или ?24 °C.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

где T -- температура в кельвинах, а лmax -- длина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна , его давление равно . Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон -- заполняющее Вселенную излучение с температурой около 3 К.

Цветность чернотельного излучения

Температурный интервал в Кельвинах

Цвет

до 1000

Красный

1000--1500

Оранжевый

1500--2000

Жёлтый

2000--4000

Бледно-жёлтый

4000--5500

Желтовато-белый

5500--7000

Чисто белый

7000--9000

Голубовато-белый

9000--15000

Бело-голубой

15000--?

Голубой

Цвета даны в сравнении с рассеянным дневным светом (D65). Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Эпюры уровней индуцимрованного излучения

Рис.1a. Поглощение фотона.

Рис. 1б. Вынужденное испускание фотона.

Рис. 1в. Спонтанное испускание фотона.

Вымнужденное излучемние, индуцимрованное излучение -- генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) из возбуждённого в стабильное состояние (меньший энергетический уровень) под воздействием индуцирующего фотона, энергия которого была равна разности энергий уровней. Созданный фотон имеет те же энергию, импульс, фазу и поляризацию, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными.

Теория Эйнштейна о вынужденном излучении[10]

Большой вклад в разработку вопроса о вынужденном излучении (испускании) внес А. Эйнштейн. Гипотеза Эйнштейна состоит в том, что под действием электромагнитного поля частоты щ молекула, атом может перемещаться с одного энергетического уровня на другой.

Применительно ко льдообразованию выдвинем аналогичную гипотезу, состоящую в том, что молекула воды под действием кванта тепловой энергии (аналогично тому, как под действием электромагнитного поля частоты щ) и н д у ц и р у е т фотон, энергия которого была равна разности энергий уровней. При этом созданный фотон имеет те же энергию, импульс, фазу и поляризацию, что и индуцирующий фотон, который при этом не поглощается. Оба фотона являются когерентными, а введённое нами понятие кванта тепловой энергии относительно молекулы воды обладает аналогичными свойствами (отличие лишь в частоте щ, переходящей в инфракрасный диапазон) и может аналогично:

· 1. перейти с более низкого энергетического уровня на более высокий с поглощением фотона энергией (см. рис. 1a);

· 2. перейти с более высокого энергетического уровня на более низкий с испусканием фотона энергией (см. рис. 1б);

· 3. кроме того, как и в отсутствие возбуждающего поля, остаётся возможным самопроизвольный переход молекулы (атома) с верхнего на нижний уровень с испусканием фотона энергией (см. рис. 1в).

Первый процесс принято называть поглощением, который обеспечивает таяние льда. Второй называют вынужденным испусканием и третий -- спонтанным испусканием, они обеспечивают льдообразование. При этом в ряде случаев спонтанное испускание играет запускающую роль для вынужденного испускания. Скорость поглощения и вынужденного испускания энергии фотона пропорциональна вероятности соответствующего перехода: и где -- коэффициенты Эйнштейна для поглощения и испускания, -- спектральная плотность излучения.

Спектральная плотность

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье.

Если процесс x(t) имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

(1)

Однако она оказывается почти бесполезной для описания ансамбля процесса. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия

(2)

Функция характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу x(t), реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

(3)

Если существует прямое преобразование, то существует и обратное преобразование Фурье, которое по известной Sx(f) определяет kx(ф):

(4)

Если полагать в формулах (3) и (4) соответственно f = 0 и ф = 0, имеем

(5)

(6)

Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади по всей кривой спектральной плотности. Размерную величину Sx(f)df можно трактовать как долю энергии, сосредоточенную в малом интервале частот от f ? df / 2 до f + df / 2. Если понимать под x(t) случайный (флуктуационный ток) или напряжение, то величина Sx(f) будет иметь размерность энергии [В2/Гц] = [В2с]. Поэтому Sx(f) иногда называют энергетическим спектром. В литературе часто можно встретить другую интерпретацию: - рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину Sx(f) называют спектром мощности случайного процесса.

Свойства спектральной плотности

· Энергетический спектр стационарного процесса (вещественного или комплексного) - неотрицательная величина:

.

(7)

· Энергетический спектр вещественного стационарного в широком смысле случайного процесса есть действительная и четная функция частоты:

.

(8)

Корреляционная функция kx(ф) и энергетический спектр Sx(f) стационарного в широком смысле случайного процесса обладают всеми свойствами, характерными для пары взаимных преобразований Фурье. В частности, чем «шире» спектр Sx(f) тем «уже» корреляционная функция kx(ф), и наоборот. Этот результат количественно выражается в виде принципа или соотношения неопределенности.

Продолжение теории излучения А. Эйнштейна

(применительно ко льдообразованию)

Число переходов с поглощением энергии выражается как

с испусканием энергии даётся выражением:

где -- коэффициент Эйнштейна, характеризующий вероятность спонтанного излучения, а -- число частиц в первом или во втором состоянии соответственно. Согласно принципу детального равновесия, при термодинамическом равновесии число квантов энергии (света) при переходах должно равняться числу квантов испущенных в обратных переходах

Между коэффициентами Эйнштейна существует связь, которую мы сейчас найдем.

Связь между коэффициентами

Рассмотрим замкнутую полость, стенки которой испускают и поглощают электромагнитное излучение. Такое излучение характеризуется спектральной плотностью получаемой из формулы Планка:

Формула Планка -- выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения u(щ,T):

Формула Планка была получена после того, как стало ясно, что формула Рэлея -- Джинса удовлетворительно описывает излучение только в области длинных волн. Для вывода формулы Планк в 1900 году сделал предположение о том, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности впоследствии назвали постоянной Планка, = 1.054 · 10?27 эрг·с.

Так как мы рассматриваем термодинамическое равновесие, то Используя уравнения (2) и (3), находим для состояния равновесия:

откуда:

При термодинамическом равновесии распределение частиц по уровням энергии подчиняется закону Больцмана:

Перечислим основные достижения Больцмана в области статистической механики. В 1866 получил формулу для равновесного распределения по импульсам и координатам молекул идеального газа, находящегося во внешнем потенциальном поле (распределение Больцмана). В 1871 предложил эргодическую гипотезу для обоснования закономерностей статистической физики. В 1872 вывел основное уравнение микроскопической теории неравновесных процессов (физической кинетики), носящее его имя, а также установил так называемую H-теорему, выражающую закон возрастания энтропии для изолированной системы. В 1872 показал статистический характер второго начала термодинамики, связав энтропию замкнутой системы с числом возможных микросостояний, реализующих данное макросостояние. Это стало указанием на несостоятельность представления о «тепловой смерти Вселенной».

где и -- статистические веса уровней, показывающие количество независимых состояний квантовой системы, имеющих одну и ту же энергию (вырожденных). Будем считать для простоты, что статвеса уровней равны единице.

Итак, сравнивая (4) и (5) и принимая во внимание, что получим:

Так как при спектральная плотность излучения должна неограниченно возрастать, то нам следует положить знаменатель равным нулю, откуда имеем:

Далее, сопоставив (3) и (6), легко получить:

Последние два соотношения справедливы для любых комбинаций уровней энергии. Их справедливость сохраняется и при отстутствии равновесия, так как определяются только характеристикой систем и не зависят от температуры.

Свойства вынужденного испускания

По свойствам вынужденное испускание существенно отличается от спонтанного.

· Наиболее характерная черта вынужденного излучения заключается в том, что возникший поток распространяется в том же направлении что и первоначальный возбуждающий поток.

· Частоты и поляризация вынужденного и первоначального излучений также равны.

· Вынужденный поток когерентен возбуждающему.

Применение

На вынужденном излучении основан принцип работы квантовых усилителей, лазеров

(лазер - оптимческий квамнтовый генерамтор -- устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим экстремально больших пиковых мощностей) и мазеров

(мамзер (англ. maser) -- квантовый усилитель, усиливающий когерентные радиоволны. Его название -- сокращение фразы «Усиление микроволн с помощью вынужденного излучения» (microwave amplification by stimulated emission of radiation) -- было предложено в 1954 году американцем Ч. Таунсом, одним из его создателей. Кроме Таунса к открытию непосредственного принципа работы квантового генератора причастны советские учёные А. М. Прохоров, Н. Г. Басов, а также американцы Дж. Вебер, Д. Гордон и Х. Цейгер. В 1964 г Прохорову, Басову и Таунсу была присуждена Нобелевская премия по физике «за фундаментальные работы в области квантовой электроники, которые привели к созданию осцилляторов и усилителей, основанных на принципе лазера -- мазера». Изначально, после изобретения, считалось, что мазер -- чисто человеческое творение, однако позже астрономы обнаружили, что некоторые из далёких галактик работают как исполинские мазеры. В огромных газовых облаках, размером в миллиарды километров, возникают условия для генерации, а источником накачки служит космическое излучение. Мазеры используются в технике (в частности, в космической связи), в физических исследованиях, а также как квантовые усилители стандартной частоты)

В рабочем теле лазера путём накачки создаётся избыточное (по сравнению с термодинамическим ожиданием) количество атомов в верхнем энергетическом состоянии. Рабочее тело газового лазера находится в резонаторе (в простейшем случае -- пара зеркал), создающем условия для накапливания фотонов с определённым направлением импульса. Первоначальные фотоны возникают за счёт спонтанного излучения, затем их поток лавинообразно усиливается благодаря вынужденному излучению. Лазеры обычно используются для генерации излучения, тогда как мазеры, работающие в области радиочастот, применяются также и для усиления.

Главный вывод

В указанной теории А. Эйнштейна индуцированное излучение применено для разработки квантового генератора (лазера). С переходом на частоту щ инфракрасного спектра диапазона частот мы получили возможность применить индуцированное излучение в области борьбы с обледенением, где поглощение фотона рис 1а обуславливает таяние льда, а излучение фотона рис 1б обуславливает образование льда из воды и влаги атмосферы. Фаза и форма льда соответствует температуре и давлению окружающей среды, т.е. атмосферы воздуха.

Последние открытия

Британские ученые смогли замедлить испускание фотона при помощи «побочных продуктов», остающихся при генерировании квантовых точек.

ОРИГИНАЛ

Quantum doughnuts slow and freeze light at willResearch led by the University of Warwick has found a way to use doughnut shaped by-products of quantum dots to slow and even freeze light, opening up a wide range of possibilities from reliable and effective light based computing to the possibility of "slow glass".

The key to this new research is the “exciton”. This describes the pairing of an electron that has been kicked into a higher energy state by a photon, with a hole or gap it (or another electron) leaves within the shell or orbit around the nucleus of an atom. Despite its new high energy state the electron remains paired with one of the holes or positions that has been vacated by electrons moving to a higher energy state. When an electron's high energy state decays again it is drawn back to the hole it is linked to and a photon is once again emitted.

That cycle usually happens very quickly but if one could find a way to freeze or hold an exciton in place for any length of time one could delay the reemitting of a photon and effectively slow or even freeze light.

The researchers, led by PhD researcher Andrea Fischer and Dr. Rudolf A. Roemer from the University of Warwick's Department of Physics, looked at the possibilities presented by some tiny rings of matter accidentally made during the manufacture quantum dots. When creating these very small quantum dots of a few 10-100nm in size physicists some times cause the material to splash when depositing it onto a surface leaving, not a useful dot, but a doughnut shaped ring of material. Though originally created by accident these “Aharonov-Bohm nano rings” are now a source of study in their own right and in this case seemed just the right size for enclosing an exciton. However simply being this useful size does not, in itself, allow them to contain or hold an exciton for any length of time.

However remarkably the Warwick led research team have found that if a combination of magnetic and electric fields is applied to these nano-rings they can actually then simply tune the electric field to freeze an exciton in place or let it collapse and re-emit a photon.

While other researchers have used varying exotic states of matter to dramatically slow the progress of light this is the first time a technique has been devised to completely freeze and release individual photons at will.

Dr Roemer said:

“This has significant implications for the development of light based computing which would require an effective and reliable mechanism such as this to manipulate light. “

The technique could also be used to develop a “buffer” of incoming photons which could re-release them in sequence at a later date thus creating an effect not unlike the concept of “Slow Glass” first suggested by science fiction author Bob Shaw several decades ago.

The new research paper is entitled “Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning" by University of Warwick PhD student Andrea M.Fischer, Dr Rudolf Roemer (University of Warwick) Vivaldo L. Campo Jr. (Universidade Federal de Sao Carlos-UFSCar, Brazil), and Mikhail E. Portnoi (University of Exeter), and has just been published in Physical Review Letters (PRL)

?For further information please contact:

Dr. Rudolf A. Roemer, Department of Physics, University of Warwick,

Tel +44 (0)2476 574328 r.roemer@warwick.ac.uk

Peter Dunn, Press and Media Relations Manager

Communications Office, University House,

University of Warwick, Coventry, CV4 8UW, United Kingdom

email: p.j.dunn@warwick.ac.uk Tel: +44 (0)24 76 523708 Mobile/Cell: +44 (0)7767 655860

9h March 2009

ПЕРЕВОД

Квантовые кольца (форменные побочные продукты квантовых точек) замедляют свет до замораживания. В willResearch во главе с Университетом Warwick нашли способ использовать кольца, чтобы замедлить и даже заморозить свет, открывая широкий диапазон возможностей от надежного и эффективного легкого основанного вычисления до возможности «медленного разбирательства».

Ключ к этому новому исследованию называется “exciton”. Он описывается взаимодействием электрона, который пнули в более высокое состояние энергией фотона, с отверстием или дыркой, которую он (или другой электрон) оставляет в пределах орбиты вокруг ядра атома. Несмотря на его новую высокую энергию заявляют, что электрон остается соединенным с одной из дырок или позицией, которая была освобождена электронами, перемещающимися в более высокое состояние энергии. Когда высокая энергия электрона заявляет распад, снова его отодвигает к отверстию, с которым он связан, и фотон еще раз испускается.

Этот цикл случился очень быстро, т.к. смогли находить способ замораживать или держать (exciton) на месте в течение любого отрезка времени переиспускание фотона и тем самым эффективно замедлять или даже замораживать свет.

Исследователи, во главе с PhD исследователем Андреа Фишером и доктором Рудолфом Аом. Roemer от Университета Отдела Варвика Физики, изучили возможности, представленные некоторыми крошечными кольцами, случайно излучённого в течение квантовых точек кванта света. При излучении кванта очень маленькие квантовые точки несколько 10-100nm в физических размерах некоторое время заставляют материал плескать при оставлении поверхности не в полезной точке, а в форменном кольцо материала. Хотя первоначально созданные случайно эти “ Aharonov-Bohm nano кольца ” являются теперь источником изучения. И в этом случае оказался только правильным размер для приложения «exciton». Однако просто являющийся этим полезным размером он сам по себе позволяет им содержать или задержать «exciton» в течение любого отрезка времени.

Однако замечательно Warwick, ведомая команда исследования нашла, что комбинация магнитных и электрических полей применяется к этим nano-кольцам, они могут фактически тогда просто настраивать электрическое поле, чтобы заморозить «exciton» в данном месте или позволять этому разрушиться и заново испустить фотон света.

В то время как другие исследователи использовали полученные экзотические выводы, чтобы драматично замедлить продвижение фотона, это - впервые, когда технический принцип, был изобретён, чтобы полностью замораживать и выпустить индивидуальные фотоны света по желанию.

Доктор Роемер сказал:

«Это имеет существенные значения для развития легкого основанного вычисления, которое позволило бы создать механизм эффективного и надежного управления фотоном».

Технический принцип может также использоваться для создапия «буфера» фотонов, которых могли заново выпускать в последовательности позднее, чтобы таким образом создать эффект, мало чем отличающегося от концепции «Медленного замедления». Сначала предложенный автором научной фантастики Боб Шав несколько десятилетий назад.

Новая бумага исследования имеет право «еxciton хранению в nanoscale Aharonov-Bohm кольцо с электрической настройкой поля» Университетом Warwick PhD студент Андреа М.Фишер, Доктор Рудолф Роемер (Университет Warwick) Vivaldo L. Campo младший (Universidade Федеральный Сао Carlos-UFSCar, Бразилия), и Mikhail E. Portnoi (Университет Exeter), и только что был издан в Физических Письмах Обзора (PRL)

Для дальнейшей информации пожалуйста войдите в контакт:

Доктор Рудолф А. Roemer, Отдел Физики, Университет Warwick,

Телефон +44 (0 2476 574328 r.roemer@warwick.ac.uk

Питер Дунн, Пресс(печать) и Менеджер Отношений Средств информации

Офис Коммуникаций, Университетский Дом,

Университет Warwick, Coventry, CV4 8UW, Великобритании

Email: p.j.dunn@warwick.ac.uk Телефон: +44 (0) 24 76 523708 Передвижной / ячейка: +44 (0) 7767 655860

9h март 2009

Квантовые точки (КТ) - это изолированные нанообъекты, свойства которых существенно отличаются от свойств объемного материала такого же состава. Сразу следует отметить, что квантовые точки являются скорее математической моделью, нежели реальными объектами. И связано это с невозможностью формирования полностью обособленных структур - малые частицы всегда взаимодействуют с окружающей средой, находясь в жидкой среде или твердой матрице.

Чтобы разобраться в том, что такое квантовые точки, и понять их электронное строение, представьте себе древнегреческий амфитеатр. Теперь вообразите, что на сцене разворачивается увлекательное представление, а зрительские ряды наполнены публикой, пришедшей посмотреть игру актеров. Так вот оказывается, что поведение людей в театре во многом похоже на поведение электронов квантовой точки (КТ). Во время представления актеры передвигаются по арене, не выходя в зрительский зал, а сами зрители следят за действием со своих мест и не спускаются на сцену. Арена - это нижние заполненные уровни квантовой точки, а зрительские ряды - возбужденные электронные уровни, обладающие более высокой энергией. При этом как зритель может находиться в любом ряду зала, так и электрон способен занять любой энергетический уровень квантовой точки, но не может располагаться между ними. Покупая в кассах билеты на представление, все стремились получить самые лучшие места - как можно ближе к сцене. Действительно, ну кто же захочет сидеть в последнем ряду, откуда лицо актера не рассмотришь даже в бинокль! Поэтому, когда перед началом представления зрители рассаживаются, все нижние ряды зала оказываются заполнены, также как в стационарном состоянии КТ, обладающем наименьшей энергией, нижние энергетические уровни полностью заняты электронами. Однако во время представления кто-то из зрителей может покинуть свое место, например, потому что музыка на сцене слишком громко играет или просто сосед неприятный попался, и пересесть на свободный верхний ряд. Вот так и в КТ электрон под действием внешнего воздействия вынужден переходить на более высокий, не занятый другими электронами энергетический уровень, приводя к образованию возбужденного состояния квантовой точки. Наверное, Вам интересно, что при этом происходит с тем пустым местом на энергетическом уровне, где раньше был электрон - так называемой дыркой? Оказывается, посредством зарядовых взаимодействий электрон остается с ней связан и в любой момент может перейти обратно, также как пересевший зритель всегда может передумать и вернуться на обозначенное в его билете место. Пару “электрон-дырка” называют «экситоном» от английского слова “excited”, что означает “возбужденный”. Миграция между энергетическими уровнями КТ, аналогично подъему или спуску одного из зрителей, сопровождается изменением энергии электрона, что соответствует поглощению или излучению кванта света (фотона) при переходе электрона соответственно на более высокий или низкий уровень. Описанное выше поведение электронов в квантовой точке приводит к нехарактерному для макрообъектов дискретному энергетическому спектру, за который КТ часто называют искусственными атомами, в которых уровни электрона дискретны.

Сила (энергия) связи дырки и электрона определяет радиус экситона, который является характеристической величиной для каждого вещества. Если размер частицы меньше радиуса экситона, то экситон оказывается ограничен в пространстве ее размерами, а соответствующая энергия связи значительно изменяется по сравнению с объемным веществом (см. «квантоворазмерный эффект»). Не трудно догадаться, что если энергия экситона изменяется, то изменяется и энергия фотона, излучаемого системой при переходе возбужденного электрона на свое исходное место. Таким образом, получая монодисперсные коллоидные растворы наночастиц различных размеров, можно управлять энергиями переходов в широком диапазоне оптического спектра.

Первыми квантовыми точками были наночастицы металлов, которые синтезировали еще в древнем Египте для окрашивания различных стекол (кстати, рубиновые звезды Кремля получены по близкой технологии), хотя более традиционными и широко известными КТ являются выращенные на подложках полупроводниковые частицы GaN и коллоидные растворы наноокристаллов CdSe. В настоящий момент известно множество способов получения квантовых точек, например, их можно «вырезать» из тонких слоев полупроводниковых «гетероструктур» с помощью «нанолитографии», а можно спонтанно сформировать в виде наноразмерных включений структур полупроводникового материала одного типа в матрице другого. Методом «молекулярно-пучковой эпитаксии» при существенном отличии параметров элементарной ячейки подложки и напыляемого слоя можно добиться роста на подложке пирамидальных квантовых точек, за исследование свойств которых академику Ж.И.Алферову была присуждена Нобелевская премия. Контролируя условия процессов синтеза, теоретически можно получать квантовые точки определенных размеров с заданными свойствами.


Подобные документы

  • Ознакомление с техническими требованиями на разработку схемы сигнализации. Рассмотрение структурной электрической схемы и её описание. Выбор элементов и расчёт параметров устройства тревожной сигнализации. Основы применения мигающего сигнала и звука.

    курсовая работа [119,4 K], добавлен 29.10.2014

  • Вспомогательные устройства и механизмы электростанций для управления, регулирования режима работы, сигнализации, релейной защиты и автоматики. Технические характеристики: аккумуляторные батареи, зарядно-подзарядные устройства, другие системы снабжения.

    реферат [29,7 K], добавлен 03.07.2008

  • Возбуждение ядер в магнитном поле. Условие магнитного резонанса и процессы релаксации ядер. Спин-спиновое взаимодействие частиц в молекуле. Схема устройства ЯМР-спектрометра. Применение спектроскопии ЯМР 1H и 13CРазличные методы развязки протонов.

    реферат [4,1 M], добавлен 23.10.2012

  • Ультразвук как не слышимые человеческим ухом упругие волны, частоты которых превышают 20 кГц, его основные источники и приборы для анализа. Физические свойства и особенности распространения. Устройства для генерирования ультразвуковых колебаний.

    презентация [703,8 K], добавлен 16.04.2015

  • Разработка структурной схемы и алгоритма работы многофункционального бытового устройства. Выбор электрической принципиальной схемы. Разработка чертежа печатной платы. Экономическое обоснование проекта и анализ вредных и опасных факторов при производстве.

    дипломная работа [1,7 M], добавлен 11.07.2014

  • Особенности вынужденных колебаний. Явление резонанса, создание неразрушающихся конструкций. Использование колебаний в строительстве, технике, для сортировки сыпучих материалов. Вредные действия колебаний. Качка корабля и успокоители; антирезонанс.

    курсовая работа [207,5 K], добавлен 21.03.2016

  • Автоматическая защита воздушных кабельных линий и систем электроснабжения от многофазных и однофазных замыканий, устройства сигнализации. Расчет токов КЗ, схема электроснабжения. Дифференциальная и газовая защита трансформатора, АД от замыканий на землю.

    курсовая работа [6,6 M], добавлен 23.08.2012

  • Электрические цепи переменного тока, их параметры. Понятие и основные условия явления резонанса. Особенности изменения индуктивного и емкостного сопротивления. Анализ зависимости фазового сдвига между током и напряжением на входе контура от частоты.

    контрольная работа [216,6 K], добавлен 16.01.2010

  • Устройство, управляющее полупроводниковыми ключами и содержащий в своем составе цифровой автомат. Описание функциональной схемы. Разработка принципиальной схемы и конструкции цифрового управляющего устройства. Входные и выходные сигналы устройства.

    курсовая работа [1,2 M], добавлен 16.07.2009

  • Электрические схемы распределительных устройств станций и подстанций. Выбор схемы распределительного устройства высокого напряжения. Распределительные устройства с одной и двумя системами сборных шин. Устройства, выполненные по схемам кольцевого типа.

    презентация [372,2 K], добавлен 07.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.