Ультразвук и ультразвуковые технологии

Открытия в области звуковых колебаний. Маятник, кинематика его колебаний. Радиолокация, гидроакустическая локация и звукометрия. Ультразвук и его свойства, применение в медицине и фармации. Эффект Доплера в акустике. Генераторы ультразвуковых колебаний.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 26.09.2010
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Такая продолжительная выдержка, даже в производственных условиях, технологически очень не выгодна, т.к. требует больших площадей и энергозатрат. В домашних условиях такая выдержка создает большой перерыв между получением сока и приготовлением конечной продукции.

Ультразвуковое воздействие на сок при низких температурах (-2...+2) интенсифицирует процесс выпадения винного камня.

Оптимальный режим обработки заключается в ультразвуковой обработке сока в течение 20-40 мин с последующей выдержкой сока на холоде в течение 2-3 суток. Это обеспечивает удаление необходимого количества винного камня.

1.1.5 Применение ультразвука в сельском хозяйстве

Ультразвуковая обработка зерна и семян перед посадкой интенсифицирует процесс прорастания, повышает урожайность различных культур в среднем на 20...40%.

Так обработанные ультразвуком зерна ячменя дают всходы на 2-3 дня раньше, чем контрольные посадки, длина колоса и количество зерен в нем увеличиваются на 30%, количество стеблей от одного зерна также увеличивается на 25-30%.

Механизм ультразвукового воздействия на зерна и семена до конца не исследован. Ясно только, что ультразвук способен стимулировать жизненные силы, заложенные природой в каждую сельскохозяйственную культуру.

Экспериментальные исследования позволили установить, что ультразвуковое воздействие в большей или меньшей степени, но всегда положительно влияет на процесс прорастания зерен и семян и увеличивает урожайность. Максимальное повышение урожайности отмечено у дынь - на 46%.

Обработка семян огурцов перед посадкой ультразвуком приводит к тому, что междоузлия на взрослом растении (места образования плодов) формируются в полтора раза чаще, получаемые плоды отличаются от контрольных вкусом.

Обработка семян томатов ультразвуком позволила установить, что после посадки кусты разрослись сильнее, плодов образовалось больше, созрели они быстрее, чем контрольные. Анализ состава плодов показал, что обработанные ультразвуком томаты имели большее количество витаминов, чем контрольные.

Хорошие результаты были получены автором при обработке ультразвуком семян капусты, моркови, свеклы, лука.

При обработке семян ультразвуком в них можно вносить необходимые микроэлементы, уничтожать возбудителей болезней и вредителей, активизировать ферменты.

Так например, ультразвуковая обработка семян редиса в растворе органических удобрений повышает урожайность на менее чем в 2 раза.

При ультразвуковой обработке зерна и семян с помощью фитомиксера "АЛЁНА" необходимо учитывать следующее.

Обработка семян и зерен может осуществляться в воде или в водном растворе микроэлементов и удобрений. Обычно в качестве такого раствора используется водный раствор марганцовокислого калия. Такой раствор позволяет не только внести необходимый растениям калий, но и произвести предпосевную дезинфекцию семян.

Предварительно подготовленный слабый раствор марганцовокислого калия (бледно розового цвета) в количестве 200-250 мл. вливается в стакан миксера и в него помещаются обрабатываемые семена. Количество семян (по объему) не должно превышать 10 - 30%. Мелких семян допускается обрабатывать больше.

Время обработки семян не более 5 минут, время обработки зерен не более 10 мин. Признаком достаточной обработки может служить изменение цвета водного раствора с розового до светло-желтого. При обработке семян в маленьких стеклянных объемах (менее 200 мл) время обработки должно быть уменьшено до 3 мин. При обработке зерна в больших объемах (например, в трехлитровых банках) допускается обрабатывать до 1 кг зерна, обеспечивая его перемешивание. В этом случае время обработки составляет 20 минут и перемешивание зерна осуществляется через каждые 1-2 мин.

Рекомендации, изложенные в предыдущих разделах позволят вам с помощью фитомиксера подготовить растворы и экстракты удобрений, в том числе экстракты и настои дезинфицирующих веществ из растительного сырья.

Кроме вышесказанного, фитомиксер "АЛЁНА" может быть использован для фонофореза (введения) антибиотиков в яйцо перед закладкой в инкубатор.

1.1.6 Ультразвуковое снятие заусенцев

Ультразвуковое снятие заусенцев основано на эффекте увеличения эрозионной и кавитационной активности звукового поля при добавлении в жидкость мелких абразивных зерен, размер которых соизмерим с радиусом действия ударной волны, возникающей при захлопывании кавитационной полости (1-100 мкм). Кроме чисто кавитационного разрушения наиболее слабых участков деталей заусениц - происходит дополнительная их обработка абразивными зернами.

Снятие заусенцев осуществляется в стакане фитомиксера, заполненном водно-глицериновой смесью, в которой взвешены мелкие абразивные зерна. При возникновении акустических течений зерна абразива и детали из-за различия плотности и размеров получают неодинаковые скорости. При взаимном проскальзывании абразивных зерен и деталей происходит снятие заусенцев.

В качестве абразива рекомендуется применять электрокорунд, карбид кремния, карбид бора с размером частиц 3-20 мкм. Наиболее универсальна и широко применяется суспензия, содержащая воду, глицерин и абразив в соотношении 1:1:1. Могут удаляться заусенцы до 0.1 мм с мелких деталей (массой до 10г) из различных сталей, латуни и пр. Одновременно в стакан фитомиксера можно загружать детали в 2-3 слоя. Химически активные добавки интенсифицируют процесс обработки; например, 2%-й раствор медного купороса снижает время обработки на 93%.

Детали в процессе обработки должны находиться в постоянном движении. Способность деталей под действием ультразвуковых колебаний удерживаться во взвешенном состоянии зависит от отношения массы детали m к её поверхности S. Наиболее оптимальным для снятия заусенцев является отношение m/S не более 0,005 г/ мм2.

При обработке в абразивной суспензии зерна абразива могут внедряться в поверхность деталей. Поэтому после удаления заусенцев необходимо проводить обычную очистку деталей в воде или слабом щелочном растворе, после которой абразивные зерна полностью смываются

1.1.7 Ультразвуковая дегазация жидкостей

Ультразвуковые колебания обеспечивают более быстрое и глубокое по сравнению с другими методами понижение концентрации растворенного в жидкости газа. Ультразвуковая дегазация жидких сред применяется в металлургии (очистка сплавов от примесей), нефтепереработке (удаление метановых фракций из нефти), для выделения газов из растворов смол, трансформаторного масла, вискозы, соусов, напитков, мягкого пива, шоколада, растительного масла, крахмальных и желатиновых эмульсий и пр.

В ряде случаев для предотвращения коррозии аппаратуры необходима дегазация смазочных материалов, воды (удаление растворённого в них кислорода). Большие возможности имеет применение ультразвуковой дегазации в электрохимии при нанесении покрытий. Обычно на катоде выделяется водород, что приводит к образованию пузырьков при осаждении металла и, как следствие, снижению прочности покрытий. При применении ультразвуковой дегазации получаются прочные, лишенные пор покрытия. Кроме того, в звуковом поле увеличивается КПД и плотность электрического тока, сокращается время, необходимое для нанесения покрытия заданной толщины.

При проведении операций ультразвуковой дегазации может использоваться стакан фитомиксера и обработка осуществляться в нем. Кроме того может использоваться только ультразвуковая колебательная система, снятая со стакана миксера.

1.1.8 Ультразвуковая мойка и очистка

В электронике, приборостроении, радиотехнике, оптике, точном машиностроении, медицине и фармакологии большой удельный вес занимает производство мелких и средних деталей, работа с лабораторными посудой и инструментом, в технологию изготовления и обработки которых включены операции очистки.

Основные преимущества ультразвуковой мойки и очистки перед всеми известными методами удаления загрязнений следующие: быстрота и высокое качество очистки, механизация трудоёмких ручных операций, исключение дорогостоящих токсичных и взрывоопасных растворителей и замена их более приемлемыми щелочными растворами, обработка изделий сложной конфигурации, возможность в ряде случаев удалять загрязнения, не поддающиеся удалению другими методами.

Оптимальная интенсивность ультразвуковых колебаний, используемых при очистке, составляет 3....5 Вт/см2 для водных растворов и 1....3 Вт/см2 для органических растворителей [69].

Действие ультразвука в основном сказывается на ускорении процесса растворения загрязнений в растворителях, доставке свежих порций растворителя к загрязнённым поверхностям и удалении отделившихся частиц загрязнений из зоны очистки.

В таблице даны составы водных моющих растворов и режимы ультразвуковой очистки в зависимости от видов загрязнений и материала очищаемых изделий.

Состав водных моющих растворов и режимы ультразвуковой очистки в зависимости от материала изделий.

Компонент

Содер-жание, г/см3

Темпе-рату-ра, град. С

Материал очищае-мых деталей

Загрязнения

Едкий натр

Сода кальционарованная

Жидкое стекло

Нитрит натрия

Неионогенное ПАВ

20-30

10-20

 

20

5-10

0,5-1,5

 

 

60-80

 

 

Сталь

 

 

Жир, консервирующие смазки

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

20-35

3

 

0,5-1,5

 

55-80

Сталь, медные сплавы, никель

Полировочные пасты, консервирующие и волочильные смазки, минеральные масла

Кальцинированная сода

Жидкое стекло

Неионогенное ПАВ

 

15-20

8-10

 

3

 

 

55-80

 

 

То же

 

 

То же

Жидкое стекло

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

5-10

10-30

3

0,5-1,5

 

 

55-80

Сталь, медные сплавы, алюминий

Масла, жиры, густые смазки и полировочные пасты

Дистиллированная вода

 

 

45-55

Полимерные пленки

Механические загрязнения, пыль

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

30

3

1

 

60-70

 

Сталь

Прокатные смазки, закаты, плены, конгломерированные загрязнения

Жидкое стекло

НеионогенноеПАВ

5

55-80

Алюминий, латунь

Полировочные пасты, сульфафрезол, эмульсол, стружка, масла, эмульсии олеиновой кислоты, флюсы.

Компонент

Содер-жание, г/см3

Темпе-рату-ра, град. С

Материал очищае-мых деталей

Загрязнения

Тринатрийфосфат или кальционированная сода

3-5

5-10

85-95

Кремний, герма-ний

 

Пицеиновый клей

Деионизированная вода

 

60-80

Кремний

Удаление абразив-

ной суспензии

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

25% -ный раствор аммиака в воде

10

3

1

5

60-70

Пластмассы

Золото, драго-ценные камни

Пемза с веретенным маслом, полировочные пасты

В таблице приводится классификация органических растворителей, применяемых при ультразвуковой очистке.

При выборе конкретных технологических режимов и приемов очистки и вспомогательных операций следует учитывать особенности конструкции, материала очищаемых поверхностей, виды загрязнений.

Из вспомогательных операций, как предшествующих ультразвуковой очистке, так и последующих за ней, следует отметить следующие:

- предварительное замачивание, которое приводит к ослаблению связей между отдельными частицами загрязнений. Однако, замечено, что изделия, выдержанные после замачивания на воздухе более 30 минут, очищаются значительно хуже изделий, вообще не подвергавшихся замачиванию.

- предварительный разогрев, который способствует размягчению загрязнений и их текучести. Особенно эффективен при очистке изделий большой массы.

- дополнительные операции очистки, применяемые как до, так и после ультразвуковой очистки, но обычно для удаления остатков моющих веществ и растворителей.

Органические растворители, применяемые при ультразвуковой очистке

Растворитель

Взрывамость смесей

Предельная концентрация, г/м3

Температура, град. С

Материал очищаемых деталей

Удаляемые загрязнения

Недостатки растворителя

Трихлорэтилен

Не взрывается

0,01

5-70

Все металлы, кроме алюминия

Мин. масла, парафинсмлы, каучук, пасты

Разлагается в воде и при перегреве, токсичен

Четыреххлори-стый углерод

Не взрывается

0,02

5-70

Сталь

Мин. масла, парафинсмлы, пасты

Разлагается, токсичен

Фреон-113

Не взрывается

0,8

5-70

Все металлы

То же

Высокая стоимость

В ряде случаев, особенно при очистке массивных изделий или изделий сложной формы, целесообразно производить перемещение рабочего инструмента колебательной системы относительно изделия, либо вводить рабочий инструмент непосредственно в полости изделия.

Распространённым приёмом, снижающим энергоёмкость ультразвуковой очистки, является облучение отраженной волной. Для этого используется полуволновой слой моющей жидкости в стакане миксера при его использовании или полуволновой слой над очищаемым объектом.

При очистке изделий с полостями, сообщающимися с атмосферой узкими каналами, целесообразно в процессе очистки периодически извлекать изделия из ванны для вытекания из полостей технологической жидкости.

После проведения ультразвуковой очистки следует провести операции промывки и, если необходимо, пассивирования и сушки.

1.2 Применение ультразвуковых многофункциональных аппаратов для обработки твердых тел

1.2.1 Общая характеристика

В настоящем разделе сформулированы проблемы размерной обработки твердых хрупких материалов, сварки и резки полимерных материалов, и применительно к существующим на практике задачам показаны пути их решения с помощью ультразвуковых многофункциональных и специализированных аппаратов.

Все рассмотренные процессы можно осуществить и с помощью других многофункциональных аппаратов, выполняя отверстия различных диаметров и обеспечивая различную производительность процессов.

При разработке методик применения использованы теоретические и практические положения, выработанные ранее в лабораторных исследованиях и полученные разными авторами при использовании УЗ техники на крупных производствах и в лабораторных условиях.

Разработанные ранее методики трансформированы применительно к техническим возможностям электронного фитомиксера "АЛЁНА" для прошивки отверстий в твердых хрупких материалах и фасонной обработки таких материалов, для обработки полимерных термопластичных материалов и тканей, применительно к решению проблем:

- сварки полимерных материалов (листы и трубки):

- сварки листовых полимерных материалов по контуру с одновременной высечкой:

- резки полимерных материалов и тканей:

В разделе приведены результаты исследований и практического использования, показаны достигнутые технические характеристики, обсуждены методические особенности и эффективность использования многофункциональных аппаратов.

1.2.2 Ультразвуковая размерная обработка

Одним из наиболее интересных и перспективных промышленных применений ультразвука является процесс, получивший название ультразвуковой размерной обработки или ультразвукового резания.

Ультразвуковое резание было открыто более 50 лет назад американским инженером Л.Бэлемут. Исследуя дробление ультразвуком абразивных порошков, он обнаружил, что приближение колеблющегося торца рабочего инструмента излучателя к поверхности сосуда, в котором находилась суспензия абразива, приводит к разрушению поверхности в месте контакта. Выяснилось, что таким способом легко разрушаются все хрупкие материалы - стекло, керамики, твердые сплавы, драгоценные и поделочные камни и минералы. Особенно важным оказался тот факт, что форма полученного углубления весьма точно повторяет рельеф и форму рабочего инструмента излучателя.

Способ ультразвуковой обработки быстро нашел промышленное применение и уже в начале шестидесятых годов в различных странах начали появляться промышленные образцы ультразвуковых станков.

Обусловлено это было тем, что ультразвуковой способ удачно дополнил известную группу немеханических способов обработки - электроэрозионный, электрохимический, электронно-лучевой, лазерный и химический.

С его помощью удается существенно упростить и ускорить процесс изготовления фасонных деталей из твердых и хрупких материалов. Так например, в сотни раз повышается производительность вырезания пластин любой формы из различных керамик, полупроводниковых материалов, появляется возможность выполнять отверстия любой формы, упрощается технология изготовления матриц и пуансонов из твердых сплавов.

В ходе многочисленных исследований удалось установить, что совершая колебательные движения, рабочий инструмент периодически ударяет по зернам абразива. Под действием этих ударов под частицами абразива образуются трещины и выколы.

Полученные результаты показали, что разрушение хрупкого материала происходит только в случае прямого удара рабочего инструмента по частицам абразива, контактирующего в свою очередь с обрабатываемой поверхностью. В тех случаях, когда инструмент ударяет по частице абразива, взвешенной в жидкости, разрушение стекла не наблюдалось, хотя частица ударялась о поверхность со скоростью, близкой к колебательной скорости торца рабочего инструмента.

Применение абразивных суспензий, приготовленных на воде и глицерине свидетельствует о том, что скорость ультразвуковой обработки при использовании глицерина значительно меньше, чем при использовании воды. Объясняется это тем, что скорость потоков, возникающих в рабочем зазоре, а следовательно, и скорость движения частиц уменьшается с ростом вязкости используемой жидкости, а возникающие потоки играют определяющую роль в подаче абразивной суспензии в зону обработки, выносе выколотых частиц и измельченного абразива.

Современные представления о механизме ультразвуковой обработки свидетельствуют о том, что она сводится к двум различным по своей природе явлениям: образованию выколов при ударе инструмента по частицам абразива и перемещению выколотых частиц обрабатываемого материала и разрушенного абразива под действием ультразвуковых колебаний. Второй процесс обеспечивает подачу абразива и удаление отработанного абразива и снятого материала.

Производительность, точность обработки и качество поверхности, а также износ рабочего инструмента зависят от обоих явлений. Однако, производительность процесса и чистота обработанной поверхности определяются, в основном величиной и скоростью образования выколов. Скорость обработки определяется количеством частиц абразива между инструментом и обрабатываемой поверхностью. При использовании в качестве рабочих инструментов тонких пластин концентрация абразива была постоянной по всему сечению. С увеличением площади рабочей поверхности инструмента скорость ультразвуковой обработки уменьшалась. Обусловлено это тем, определяющую роль в перемещении частиц абразива под рабочей поверхностью инструмента играют кавитационные пузырьки. При использовании в качестве рабочего инструмента цилиндра и выполнении отверстий различных диаметров было установлено, что максимальное число кавитационных пузырьков образуется в центре обрабатываемого круга. Кавитационные пузырьки, способствующие перемешиванию абразива, одновременно схлапываются и создают мощные гидродинамические потоки, разбрасывающие частицы абразива от центральной зоны рабочей поверхности инструмента. Вследствие этого практически 2/3 поверхности под инструментом оказывается свободным от абразива и скорость обработки существенно снижается.

В связи с этим, при УЗ обработке целесообразно применять инструменты в виде полых трубок при выполнении отверстий различной формы и диаметра или ножевого типа при выполнении пазов и разрезании пластин. Кроме того эти же инструменты можно использовать для клеймения деталей, гравировки и т.п.

При принятии решения о необходимости выполнения отверстий необходимо учитывать функциональные возможности рассматриваемых многофункциональных ультразвуковых технологических аппаратов.

Многофункциональные аппараты N1 и N2 не комплектуются сменными рабочими инструментами и без дополнительных инструментов можно выполнять отверстия только одного диаметра - 7 мм. Однако, при необходимости выполнения отверстий меньшего диаметра, потребитель использовать дополнительный рабочий орган в виде иглы или специально изготовленного дополнительного рабочего органа необходимой формы.

При использовании многофункционального аппарата N3 можно обеспечить выполнение отверстий диаметром до 15...20 мм, При этом используются рабочие инструменты, входящие к комплект аппарата или изготавливаются рабочие инструменты необходимой формы и диаметра. При этом необходимо обеспечивать примерное равенство веса изготавливаемых инструментов, весу инструментов, входящих в комплект.

При применении многофункционального аппарата N 4 можно обеспечить выполнение отверстий до 40 мм. При этом также могут использоваться рабочие инструменты, входящие в комплект или изготавливаться в соответствии с решаемыми задачами.

Ультразвуковая обработка хрупких и твердых материалов осуществляется по следующей методике.

Прежде всего необходимо подготовить рабочий инструмент нужного вам диаметра. В комплект поставки обычно включаются рабочие инструменты для выполнения отверстий диаметром 5, 10, 15 мм (для аппарата N 3) и 20, 26, 32 и 36 мм. (для аппарата N 4). Потребитель по мере необходимости изготавливает необходимые инструменты в нужном количестве, руководствуясь изложенными выше рекомендациями и учитывая, что длина цилиндрической поверхности рабочего инструмента должна быть не более 35 мм и не менее толщины обрабатываемого изделия.

Воспользовавшись двумя ключами рабочий инструмент присоединяется к концентратору. Усилие затягивания должно быть достаточным для обеспечения акустического контакта и исключать повреждение резьбового соединения. Для улучшения работоспособности станка рекомендуется осуществлять соединение рабочего инструмента и концентратора через прокладку из меди толщиной 0.2 мм. Далее в отдельной емкости готовится необходимое для работы количество абразивной суспензии. Для её приготовления берется не менее 30% и не более 50% абразивного материала (карбида бора, карбида кремния, электрокорунда и т.п.) с размером зерен 30...70 мкм и 70% (не менее 50 %) воды (по объему).

Приготовленная суспензия наносится с помощью кисти на участок поверхности обрабатываемого объекта.

Ультразвуковая колебательная система устанавливается на обрабатываемый участок таким образом, что бы рабочий инструмент соприкасался с обрабатываемым материалом. Усилие, необходимое для обработки обеспечивается собственным весом колебательной системы.

При подготовке к работе многофункционального аппарата электронный блок подключается к сети. Ручка регулятора "НАСТРОЙКА" устанавливается в крайнее левое положение. Постепенно производится настройка на рабочую частоту вращением ручки "НАСТРОЙКА". Момент захвата рабочей частоты (оптимальный режим работы) фиксируется по максимальному эффекту сверления.

О нормальной работоспособности аппарата свидетельствует распыление воды, наносимой на торцевую поверхность рабочего инструмента кистью.

Нанося кистью суспензию на объект производится прошивка.

Для повышения производительности обработки и обеспечения высокого качества поверхностей выполняемых отверстий рекомендуется:

- при входе и на выходе рабочего инструмента из объекта снижать давление на обрабатываемый объект,

- выполнять отверстия длиной более 7...10 мм прошивкой с двух сторон,

- периодически выводить рабочий инструмент из отверстия и наносить суспензию на объект при прошивке глубоких отверстий,

- использовать принудительное охлаждение преобразователя потоком воздуха от бытового вентилятора при длительной непрерывной работе многофункционального аппарата,

- для ускорения процесса прошивки проворачивать колебательную систему вокруг оси на 30...90 градусов.

Применение многофункциональных аппаратов для размерной обработки твердых материалов позволяет, кроме выполнения отверстий, осуществлять обработку кромок стекла и других хрупких материалов, полировать поверхности, гравировать (наносить рисунки вручную и по трафарету), выполнять геммы (т.е. переносить рисунок, выполненный на поверхности рабочего инструмента на поверхность любого материала), обрабатывать бетонные изделия (выполнять отверстия малого диаметра), в домашних условиях выполнять отверстия в кирпичных и бетонных стенах, прожигать отверстия в дереве и многое другое.

1.2.3 Соединение порлимерных материалов под действием ультразвука

В связи с широким применением полимерных материалов в домашнем хозяйстве и различных отраслях промышленности, возникает необходимость в соединении однородных и разнородных полимерных деталей, пленок, текстильных материалов на основе химических волокон.

В настоящее время используется большое количество разнообразных способов соединения полимерных материалов, таких как: клеевой, тепловой токами высокой частоты. Каждый из этих методов имеет существенные недостатки. Так, тепловой способ, не обеспечивает необходимой прочности, а формируемый им шов является хрупким. Высокочастотный способ соединения может использоваться только для полимеров с высокими диэлектрическими потерями, так как основан на поглощении полимерным материалом энергии токов высокой частоты, вызывающей внутренний разогрев материала. Поэтому, высокочастотный способ не пригоден для множества широко распространенных материалов, например, для полиэтиленовых пленок.

Большой проблемой является также соединение тканей на основе синтетических волокон. Использование обычных способов соединения в этом случае не всегда приемлемо из-за высокой упругости синтетических волокон.

Наиболее перспективным способом решения проблем соединения полимерных материалов является ультразвуковой способ, обеспечивающий прочный, долговечный и эластичный шов, высокую производительность процесса, безопасность и возможность легко автоматизировать процесс. В настоящее время ультразвуковая сварка является одним из наиболее эффективных, малоэнергоемких и наиболее широко используемых для соединения полимерных материалов способов.

Анализ технических возможностей ультразвукового способа соединения полимерных материалов (сварки) применительно к решению перечисленных проблем позволил выявить его несомненные достоинства, к основным из которых относятся:

1. Возможность получения надежного шва при температуре, меньшей температуры плавления материала, что позволяет избежать термического разложения материалов в воздухе (т.е. исключить выделение хлора и содержащих его продуктов в атмосферу.

2. Возможность повышения качества герметизирующего шва за счет увеличения (в миллионы раз) диффузионного взаимопроникновения свариваемых материалов, обусловленного знакопеременными механическими напряжениями в ультразвуковом поле высокой интенсивности.

3. Возможность снижения, по сравнения с тепловым способом, формирующего шов сварочного усилия до значений, значительно меньших предела текучести свариваемого материала, что позволяет значительно снизить массогабаритные и стоимостные характеристики устройства сжатия полимерных материалов и обеспечить соединение полимерных материалов вручную с помощью колебательных систем многофункциональных ультразвуковых аппаратов.

4. Возможность сварки материала, на поверхности которого имеются механические загрязнения или нанесены жидкие, вязкие и жировые пленки.

5. Ультразвуковая сварка осуществляется односторонним способом и ультразвуковую энергию можно вводить на значительном расстоянии от места соединения.

6. При ультразвуковой сварке полимерных материалов максимальный разогрев происходит на соединяемых поверхностях, что исключает перегрев материала по толщине.

7. При сварке ультразвуком на соединяемых выступах нет напряжений и отсутствуют радиопомехи.

С помощью ультразвука легко и качественно соединяются любые термопластичные материалы, к которым относятся: полиэтилен, полипропилен, полистирол, поливинилхлорид, полиамид, полиакрилат, поликарбонат и др.

В процессе действия ультразвуковых колебаний такие пластмассы, разогреваясь, переходят за сравнительно короткий промежуток времени в высокоэластичное состояние, а при дальнейшем повышении температуры в вязкопластичное состояние. Термопластичные материалы способны к многократному нагреву, не теряют исходных свойств и сохраняют свою структуру.

Основным недостатком ультразвукового способа сварки является невозможность соединения термореактивных пластмасс (их невозможно соединять и любыми другими способами, связанными с нагреванием).

Наибольший экспериментальный материал накоплен по соединению изделий из органического стекла, полихлорвинила, полиизобутилена, полистирола и полиамида.

Легче всего с помощью многофункциональных ультразвуковых аппаратов выполнить нахлесточные и тавровые точечные соединения с помощью рабочих инструментов. С помощью этих же инструментов можно выполнять шовные соединения и соединения по контуру.

Технология сварки заключается в следующем. На опору, (желательно массивную), в качестве подкладки укладывается резина, которая отражает часть энергии в свариваемые материалы. Применение подкладки из эластичного материала обеспечивает высокое качество швов при малом давлении и времени сварки. На подкладку, при выполнении нахлесточного соединения укладываются в два или более слоев свариваемые материалы. При выполнении точечной сварки, рабочий инструмент прижимается к свариваемым материалам с усилием, меньшем предела текучести, генератор многофункционального аппарата включается на время, необходимое для перевода материалов в вязкопластичное состояние (0,5......5 сек), затем генератор автоматически (с помощью таймера) или принудительно выключается. После выключения генератора статическое усилие на рабочий инструмент удерживается в течении 1...2 сек для стабилизации сварного шва.

В качестве примера рассмотрим режимы ультразвуковой сварки винипласта и полиэтилена.

При ультразвуковой сварке винипласта толщиной от 5 до 10 мм с помощью крестообразного соединения или соединения встык при амплитуде колебаний рабочего инструмента колебательной системы около 35 мкм и усилии зажатия в пределах от 50 до 70 кг (усилие создавалось вручную) качественное соединение получалось при времени ультразвукового воздействия 2...3 сек. Полученные таким образом швы разрушались лишь при усилиях 230...240 кг (разрушение происходило вблизи шва). Использовался резиновый отражатель толщиной 5 мм.

При ультразвуковой сварке, без применения резинового отражателя, полиэтилена толщиной 2....3 мм ультразвуковыми колебаниями с амплитудой 35 мкм и усилии сжатия всего 5 кг время воздействия было от 0,5 до 2 сек. Для разрушения таких соединений достаточно усилий порядка 50 кг.

Приведенные результаты показывают, что прочность сварного шва практически равна прочности основного материала. Кроме того, при сварке вдоль направления ориентации, прочность, близкая к прочности основного материала достигается в три раза быстрее, чем при сварке поперек волокон.

Следует отметить еще одну особенность (и преимущество перед другими способами сварки) ультразвуковой сварки. Для жестких пластмасс, таких как: полистирол, полипропилен, жесткий ПВХ, полиакрилат, поликарбонат и др., характеризуемых малым коэффициентом поглощения УЗ колебаний, допускается вводить ультразвуковые колебания на значительных расстояниях от места соединения. Подобная методика сварки позволяет располагать рабочий инструмент для ввода ультразвуковых колебаний на расстоянии до 20 мм от сварного шва, обеспечивая тем самым возможность осуществлять сварку в труднодоступных местах.

Кроме пластмасс, с помощью многофункциональных ультразвуковых аппаратов можно соединять полимерные пленки полиэтилена, полипропилена, полистирола, полиамидов, а также различные ткани, содержащие синтетические волокна, нетканые материалы с поливинилхлоридным, полистирольным и полипропиленовым покрытием.

Достаточно легко осуществляется соединение пленок с бумагой (ламинирование) и хлопчатобумажной тканью.

Многофункциональные аппараты могут быть использованы для сварки различных оболочек, используемых в качестве тары для хранения жидкостей и сыпучих тел, а также для упаковки изделий.

Многофункциональные ультразвуковые аппараты могут быть с успехом использованы в автоматических установках для соединения пленок и листов толщиной от 50 мкм до 3 мм. При этом может быть обеспечена скорость сварки в пределах от 1 до 10 м/мин.

При использовании многофункциональных аппаратов в автоматизированных сварочных установках для выполнения непрерывной полосовой сварки, вместо рассмотренной колебательной системы с рабочими инструментами N 3 и N 4 могут быть использованы катящиеся ультразвуковые колебательные системы. В таких колебательных системах используется кольцевой (трубчатый) пьезоэлектрический элемент. Для излучения ультразвуковых колебаний используется цилиндрическая поверхность пьезоэлемента, перекатывающегося по поверхности свариваемых материалов.

Передача высокочастотной электрической энергии на электроды вращающегося пьезоэлемента осуществляется через индуктивный токосъемник, выполненный в виде двух катушек индуктивности, расположенных на общем замкнутом сердечнике магнитопровода.

Один из участков магнитопровода проходит внутри трубчатого пьезоэлемента и механически связанной с ним катушки индуктивности

Эта катушка индуктивности электрически подключена к электродам пьезоэлемента и вращается вместе с ним.

Вторая катушка, расположена на другом (противоположном) участке магнитопровода, электрически соединяется с генератором электрических колебаний, и во время вращения пьезоэлемента остается неподвижной.

Глава 2. Применение ультразвука в медицине

2.1 Диагностика

2.1.1 Принципы УЗ-диагностики

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании больного необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Генератором ультразвуковых волн является пьезодатчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы. В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллов, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа. Для щитовидной железы используются конвексные трансдюсоры на 7,5 МГц, для исследования почек и печени в равной степени пригодны как линейные, так и конвексные датчики. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Конвексный датчик имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. Секторный датчик имеет еще большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки (рис. 27).

Рис. 27 - Виды ультразвукового сканирования (схема): а - линейное (параллельное); б - конвексное; в - секторное

Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная - черным (эхонегативные участки). При негативной регистрации наблюдается обратное положение.

Выбор позитивной или негативной регистрации не имеет значения. Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью термопринтера.

Первая попытка изготовить фонограммы человеческого тела относится к 1942 году. Немецкий ученый Дуссиле "освещал" ультразвуковым пучком человеческое тело и затем измерял интенсивность пучка, прошедшего через тело (методика работы с рентгеновскими лучами Мюльхаузера). Вначале 50-х годов американские ученые Уилд и Хаури впервые и довольно успешно применили ультразвук в клинических условиях. Свои исследования они сосредоточили на мозге, так как диагностика с помощью рентгеновских лучей не только сложна, но и опасна. Применение ультразвука для диагноза при серьезных повреждениях головы позволяет хирургу точно определить места кровоизлияний.

Получение такой информации с помощью рентгеновских лучей требует около часа времени, что весьма нежелательно при тяжелом состоянии больного. При использовании переносного зонда можно установить положение средней линии мозга (она разделяет его на два полушария) примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий. Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика, при определении местонахождения камней в желчном пузыре. Существуют зонды, которые помогают во время операций на сердце следить за работой митрального клапана, расположенного между желудочком и предсердием.

2.1.2 Эхо-имульсивные методы визуализации и измерений

Методы ультразвуковой эхо-импульсной визуализации уже нашли широкое и разнообразное применение в медицине.

Основным элементом любой системы визуализации является электроакустический преобразователь, который служит для излучения зондирующего акустического импульса в объект и для приема акустических эхо-сигналов, переизлучаемых мишенью.

Приемник представляет собой своего рода систему сопряжения между преобразователем и дисплеем или системой записи, которые применяются для передачи наблюдателю информации, полученной с помощью ультразвука. В хороших системах эхо-сигналы на выходе преобразователя имеют большой динамический диапазон.

Эхо-импульсные методы в настоящее время стали широко применятся во многих областях медицины.

2.1.3 Акушерство

Акушерство - та область медицины, где эхо-импульсивные ультразвуковые методы наиболее прочно укоренились как составная часть медицинской практики. Рассматриваемые здесь четыре основных задачи иллюстрируют ценность многих полезных свойств ультразвуковых методов.

Надежное определение положения плаценты - задача первостепенной важности в акушерской практике. С развитием техники, обеспечивающее высокое расширение по контрасту, эта процедура стала уже рутинной. Приборы, работающие в реальном времени, эргономически более выгодны, так как позволяют определять положения плаценты быстрее, чем статические сканеры.

Второй вид процедур, ставших уже привычными, - оценка развития плода по измерению одного или более его размеров, таких как диаметр головки, окружность головки, площадь грудной клетки или живота. Так как даже очень малые изменения этих размеров могут иметь диагностическое значение, эти методы требуют высокой точности самой аппаратуры и методик ее применения.

Третий вид процедур, появившийся не так давно и не столь еще укоренившийся в практике, - раннее обнаружение аномалий плода. Это приложение требует особенно хорошего пространственного разрешения и разрешения по контрасту, предпочтительно в сочетании с режимом реального времени и быстрым сканированием. Хорошие методики и качественная аппаратура позволяют обнаруживать такие дефекты, как недоразвитие (гибель) яйца, анэнцефалия (полное или почти полное отсутствие мозга), гидроцефалия (избыток жидкости в мозге, наблюдаемый в виде уширения желудочков), спинальные (позвоночные) дефекты, зачастую необнаружимые биохимическими методами, и дефекты желудочно-кишечного тракта. Вспомогательную, но очень важную роль играет ультразвук в процедуре амниоцентеза (пункции плодного пузыря) - взятии околоплодных вод для цитологических исследований и выявления возможных генетических нарушений. Ввод иглы при амниоцентезе под контролем ультразвуковой визуализации, обеспечивает значительно большую безопасность этой процедуры.

Наконец, необходимо отметить ультразвуковое исследование движения плода. Это явление лишь недавно стало предметом подробного исследования. Сейчас происходит накопление большого количества информации как по движению конечностей плода и псевдодыханию, так и по динамике сердца и сосудов. Здесь основной интерес представляет исследования физиологии и развития плода; до обнаружения аномалий плода пока еще далеко.

2.1.4 Офтальмология

Может быть, из-за относительно малых размеров глаза офтальмология несколько выделилась из прочих областей применения ультразвука.

Ультразвук особенно удобен для точного определения размеров глаза, а также для исследования патологии и аномалий структур глаза в случае их непрозрачности и, следовательно, недоступности для обычного оптического исследования. Здесь также важна точность работы и калибровки аппаратуры, необходимо также уделить особое внимание эффектам, связанным с преломлением ультразвука в хрусталике и роговице.

Область позади глаза - орбита - доступна ультразвуковому обследованию через глаз, поэтому ультразвук вместе с компьютерной томографией стал одним из основных методов неинвазивного исследования патологий этой области. Структуры орбиты имеют малые размеры и требуют хорошего пространственного разрешения и разрешения по контрасту, что достижимо на высоких частотах. Практические сложности могут возникать, однако, если пытаться использовать аппаратуру, характеристики которой заимствованы из телевизионной техники, а полоса пропускания соответственно ограничена.

2.1.5 Исследование внутренних органов

Под таким заголовком можно рассмотреть множество разнообразных задач, в основном связанных с исследованием брюшной полости, где ультразвук используется для обнаружения и распознавания аномалий анатомических структур и тканей. Зачастую задача такова: есть подозрение на злокачественное образование и необходимо отличить его от доброкачественных или инфекционных по своей природе образований.

При исследовании печени кроме важной задачи обнаружения вторичных злокачественных образований ультразвук полезен для решения других задач, включая обнаружение заболеваний и непроходимости желчных протоков, исследования желчного пузыря с целью обнаружения камней и других патологий, исследование цирроза и других доброкачественных диффузных заболеваний печени, а также паразитарных заболеваний, таких как шистосоматоз. Почки - еще один орган, в котором необходимо исследовать различные злокачественные и доброкачественные состояния (включая жизнеспособность после трансплантации) с помощью ультразвука. Гинекологические исследования, в том числе исследования матки и яичников, в течение долгого времени являются главным направлением успешного применения ультразвука. Здесь зачастую также необходима дифференциация злокачественных и доброкачественных образований, что обычно требует наилучшего пространственного и контрастного разрешения. Аналогичные заключения применимы и к исследованию многих других внутренних органов и областей. Возрастает интерес к применению ультразвуковых эндоскопических зондов. Эти устройства, которые можно вводить в естественные полости тела при обследовании или применять при хирургическом вмешательстве, позволяют улучшить качество изображения из-за более высокой рабочей частоты и/или отсутствия на пути ультразвука таких неблагоприятных акустических сред, как газ или кость.

2.1.6 Приповерхносные и наружные органы

Щитовидная и молочная железы, хотя и легко доступны ультразвуковому обследованию, часто требуют использования водяного и ионного буфера, чтобы на изображение не повлияли аномалии ближней зоны поля. При исследовании щитовидной и паращитовидной железе основное применение ультразвука - различение кистозных и твердых образований, что возможно при хорошем подавлении шума и артефактов, вызванных реверберацией и боковыми лепестками излучения.

Захватывающая перспектива - скрининг для выявления самых разных признаков рака молочной железы при отсутствии выраженных симптомов, особенно у женщин с аномально высоким фактором риска. Технически здесь необходимо обнаружить аномалию размеров около 2мм в диаметре, когда эта аномалия относительно редко встречается в заданной группе, например, будет только у одной пациентке.

Методы визуализации молочной и щитовидной желез, часто использующие акустическую задержку распространения, применимы также к обследованию других приповерхностных тканей, например, при измерении толщины кожи, необходимо в радиационной терапии для облучения электронами, при обследовании приповерхностных кровеносных сосудов, таких как сонная артерия, а также при исследовании реакции опухолей на терапевтические воздействия.

2.1.7 Кардиология

Ультразвуковые методы широко применяются при обследовании сердца и прилегающих магистральных сосудов. Это связано, в частности, с возможностью быстрого получения пространственной информации, а также возможностью ее объединения с томографической визуализацией. Так, для обнаружения и распознавания аномалий движения клапанов сердца, в частности митрального, очень широко используется М-режим. При этом важно регистрировать движение клапанов вплоть до частот порядка 50Гц и, следовательно, с частотой повторения около 100Гц. Эта цифра, оставаясь значительно ниже упомянутого выше придела для эхо-импульсных приборов (около 5кГц), в сущности, недостижима при любых других методах исследования.

2.1.8 Неврология

До появления рентгеновской компьютерной томографии мозг было особенно сложно исследовать. Начиная с 1951г., в Лондонском королевском онкологическом госпитале предпринимались значительные усилия для применения ультразвука к этой задаче. К сожалению, этому мешают физические свойства черепа взрослого человека, поскольку череп представляет собой сильно поглощающую трехслойною структуру переменной толщины. Хотя было сделано несколько интересных попыток преодолеть эти трудности, в том числе с использованием управляемых многоэлементных решеток, когда датчик прилегает к ограниченной области черепа, а также с частичной автоматической компенсацией фазовой задержки для учета изменений толщины черепа, такое применение не встретило одобрения диагностов. Однако еще не затвердевший череп плода или новорожденного в акустическом плане не представляет значительных преград, связанных с возникновением затухания или преломления, и поэтому ультразвуковое обследование здесь применяется все чаще.

2.1.9 Использование эффекта Доплера в диагностике

Особый интерес в диагностике вызывает использование эффекта Доплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя. В настоящее время на основе эффекта Доплера исследованы только движение крови и биение сердца. Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки легко регистрируются. На ранней стадии беременности звук проходит через мочевой пузырь. Когда матка наполняется жидкостью, она сама начинает проводить звук. Положение плаценты определяется по звукам протекающей через нее крови, а через 9 - 10 недель с момента образования плода прослушивается биение его сердца. С помощью ультразвуковых устройств количество зародышей или констатировать смерть плода.

2.2 Применение ультразвука в терапии и хирургии

2.2.1 Принципы применения УЗ в терапии и хирургии

Давно известно, что ультразвук, действуя на ткани, вызывает в них биологические изменения. Интерес к изучению этой проблемы обусловлен, с одной стороны, естественным опасением, связанным с возможным риском применения ультразвуковых диагностических систем для визуализации, а с другой - возможностью вызвать изменения в тканях для достижения терапевтического эффекта.

Терапевтический ультразвук может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей - не повреждающей нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях основная цель - вызвать управляемое избирательное разрушение в тканях.

Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

2.2.2 Нагрев

Распределение температуры в тканях млекопитающих при ультразвуковом нагреве, уже подробно обсуждались. Управляемый нагрев глубоко расположенных тканей может дать продолжительный терапевтический эффект в ряде случаев.

Высокий коэффициент поглощения ультразвука в тканях с большими молекулами обусловливает заметное нагревание коллагенсодержащих тканей, на которые чаще всего и воздействуют ультразвуком при физиотерапевтических процедурах.


Подобные документы

  • Основные законы и правила распространения звуковых волн в различных средах, виды звуковых колебаний и их применение. Основные объективные и субъективные характеристики, скорость распространения, интенсивность. Эффект Доплера, ультразвук и инфразвук.

    реферат [38,4 K], добавлен 24.06.2008

  • Ультразвук как не слышимые человеческим ухом упругие волны, частоты которых превышают 20 кГц, его основные источники и приборы для анализа. Физические свойства и особенности распространения. Устройства для генерирования ультразвуковых колебаний.

    презентация [703,8 K], добавлен 16.04.2015

  • Физические основы ультразвука — упругих колебаний, частота которых превышает 20 КГц , распространяющихся в форме продольных волн в различных средах. Явление обратного пьезоэлектрического эффекта. Медицинские области применения ультразвуковых исследований.

    контрольная работа [88,0 K], добавлен 06.01.2015

  • Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.

    реферат [28,2 K], добавлен 04.06.2010

  • Понятие ультразвука, его предельная верхняя граница. Ученые, занимающиеся изучением ультразвуковых волн. Применение ультразвука в медицине, в приборах для контрольно-измерительных целей и в технике. Ультразвуковые импульсы и лучи в живой природе.

    доклад [15,4 K], добавлен 26.01.2009

  • Кинематика и динамика колебаний физического маятника. Изучение механических, электромагнитных, химических и термодинамических колебаний. Нахождение суммы потенциальной и кинетической энергий. Фрикционный маятник Фроуда. Использование его в часах.

    курсовая работа [177,8 K], добавлен 19.04.2015

  • Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук. Хирургическое применение ультразвука. Эффект Доплера, применение для неинвазивного измерения скорости кровотока. Вибрации, физические характеристики.

    контрольная работа [57,9 K], добавлен 25.02.2011

  • Электронные генераторы как устройства, преобразующие электрическую энергию источника постоянного тока в энергию электрических колебаний заданных формы. Условия самовозбуждения колебаний. Автогенераторы типа фазосдвигающих цепей. Условие баланса фаз.

    лекция [78,0 K], добавлен 15.03.2009

  • Единый подход к изучению колебаний различной физической природы. Характеристика гармонических колебаний. Понятие периода колебаний, за который фаза колебания получает приращение. Механические гармонические колебания. Физический и математический маятники.

    презентация [222,7 K], добавлен 28.06.2013

  • Общие характеристики колебаний, их виды, декремент затухания, добротность колебательной системы. Уравнение собственных затухающих колебаний физического и пружинного маятников. Сущность периодического и непериодического механизма затухающих колебаний.

    курсовая работа [190,0 K], добавлен 13.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.