Лекции по оптике
Возникновение группы и множество точечных источников волн. Законы геометрической оптики: распределение света, отражение света, скорость, преломление и поглощение. Распространение волны, фокусное расстояние, когерентность волн и линии равного наклона.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 22.06.2010 |
Размер файла | 204,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Y
Ранее мы получили связь между характером изменения фазы колебаний непрерывно расположенных точечных источников при переходе от точки к точке и направлением излучения :
.
При малых значениях будет:
.
C
R
O
Применим это выражение к случаю отражения плоской волны от сферического зеркала. Обозначим на этот раз угол падения через и вместо дифференцирования по y нам нужно будет провести дифференцирование фазы по расстоянию x() от точки O.
Почему при переходе от точки к точке вдоль поверхности зеркала изменяется фаза вызванных волной колебаний электронов? Видно, что чем дальше точка падения от центра зеркала, тем меньше путь луча, попадающего в эту точку. Если разность хода равна L, то для подсчета разности фаз необходимо разделить эту величину на и умножить на 2. Таким образом (по модулю),
; .
Теперь мы можем найти зависимость угла направления излучения (по отношению к нормали, радиусу) от угла :
; .
Мы не получили нового результата. Как и должно быть, в чем мы убедились еще раз, угол отражения равен углу падения . Но для нас важно, что этот результат для отражения от сферического зеркала может быть получен и с помощью анализа зависимости фазы колебаний электронов, излучающих вторичную, отраженную волну, от x - расстояния от точки падения луча до оптической оси OC.
4.6 Параболическое зеркало
При отражении от сферического зеркала происходит фокусировка только параксиальных лучей. Попробуем теперь найти такое сечение зеркала, чтобы в его фокусе собирались все лучи независимо от расстояния до оптической оси. Для определения вида сечения зеркала воспользуемся принципов ферма.
У
F
f
y
x 0 X
Пусть соответствующая кривая описывается функцией y(x), координаты точки падения x и y. Обозначим буквой F фокус зеркала, его координата (фокусное расстояние) - f.
От точки падения луч пройдет до фокуса расстояние
.
Чтобы у всех параллельных лучей была одинаковая длина пути, необходимо чтобы выполнялось условие
-
после пересечения с горизонтальной пунктирной линии до фокуса совпадающий с оптической осью луч пройдет сначала путь y до точки отражения и затем - f в обратном направлении. Этот путь должен быть равен L, Только в этом случае все лучи соберутся в фокусе зеркала.
Таким образом, мы получаем:
;
;
.
Это парабола и, значит, необходимым нам свойством обладает параболическое зеркало.
4.7 Закон преломления света
4.7.1 Скорость света в веществе
Мы с Вами убедились в свое время, что из уравнений Максвелла следует волновое уравнение. Электромагнитные волны с длиной волны примерно в пределах 0,4 0,7 мкм, воспринимаемые глазом, называют светом. И среди множества веществ есть такие, в которых свет может распространяться без заметного уменьшения амплитуды электромагнитных колебаний, прозрачные вещества. Однако, скорость света в веществе отличается от скорости света в вакууме, выражение для которой мы в свое время получили. Повторим теперь проведенные ранее преобразования уравнений Максвелла, но теперь не для вакуума, а для некоторого вещества.
Выпишем уравнения Максвелла для случая отсутствия свободных зарядов и токов проводимости:
Мы будем также использовать выражения
,
считая вещество однородным.
Как и раньше, ограничимся случаем плоской волны, когда электрическое и магнитное поля зависят от одной координаты - от координаты x, т.е. в последующих выражения из производных по координатам отличны от нуля только производные по x:
.
Как видно из этого уравнения, . Это означает, что x - составляющая магнитного поля не зависит от времени. Положим ее равной нулю, поскольку стационарное поле (магнитное как и электрическое) к распространению волны отношения не имеет.
Далее, вектор имеет некоторое направление, и если мы вдоль этого направления направим ось 0Z, то будет и, следовательно, (см. уравнение). Таким образом,
. (*)
Аналогично получим
;
(поскольку ) и
. (**)
Продифференцируем уравнение (*) по координате x, а уравнение (**) по времени:
.
Тогда
.
Мы получили волновое уравнение, и скорость распространения света в веществе . При распространении световой волны с большой степенью точности можно считать = 1, и скорость света в веществе . Таким образом, для нахождения значения скорости v необходимо знать значение диэлектрической проницаемости .
Заметим, что на больших частотах, характерных для световой волны, значение существенно отличается от стационарного, которое входит в уравнения электростатики, и - зависит от частоты. Соответственно, от частоты зависит и (фазовая) скорость распространения световой волны в веществе. В таком случае говорят, что вещество обладает дисперсией.
Самым существенным, что происходит при взаимодействии поля с веществом, это “подвижка” электронов, поляризация молекул. При этом поляризованность оказывается пропорциональной полю, что свидетельствует о квазиупругом характере действующих на электрон “возвращающих” сил. Поэтому при взаимодействии электронов со световой волной будет:
.
Этому уравнению удовлетворяет решение вида . Подставив x в уравнение, получим:
; .
Итак, при смешении под действием электрического поля волны на электрон образуется диполь с моментом p = ex. Обозначив через N концентрацию электронов, мы получим такие выражения для поляризованности , для поляризуемости вещества и диэлектрической проницаемости :
;
; .
В зависимости от соотношения между и 0 и от величины N величина больше или меньше единицы и даже отрицательной. Соответственно мы должны сказать, что скорость света в веществе
будет либо меньше скорости света в вакууме, либо больше ее, либо мнимой. Эти возможности нам нужно будет обсудить более подробно. А пока сделаем одно уточнение.
В каком-то конкретном веществе входящие в атомы электроны могут иметь различные частоты свободных колебаний 0k, разными могут быть и их концентрации Nk. Все они будут вносить свой вклад в поляризованность вещества и, соответственно, в величину . поэтому в более общем случае выражение для скорости волны запишется в виде
.
Таким получается выражение для фазовой скорости волны в веществе.
Лекция 6
4.7.2 Преломление света
Преломление луча света происходит при переходе из одной среды в другую. Причина преломления - изменение скорости распространения. Применим для получения закона преломления принцип Ферма.
Пусть скорость распространения света в некоторой среде равна v, в вакууме - c. Обычно скорость распространения света в среде меньше скорости в вакууме. Это означает, что для прохождения некоторого пути l в веществе потребуется несколько большее время
Z
A
1 z
0 2 X
B
.
Мы ввели обозначение n = c/v, эта величина называется показателем преломления. Произведение ln называют оптической длиной пути. Для вакуума n = 1. Если n > 1, то время распространения света от точки A до точки B будет уменьшаться при отклонении пути распространения от прямолинейного, причем при таком отклонении, когда длина пути в вакууме несколько увеличивается, а в веществе - уменьшается. Подсчитаем время распространения света между точками A и B. Пусть (xA,zA) и (xB,zB) - координаты точек, z - координата точки преломления луча. В вакууме и в веществе свет проходит расстояния
и ,
время распространения -
.
Согласно принципу Ферма
.
Используя введенное ранее обозначение, мы можем записать закон преломления в виде:
.
Получим теперь закон преломления иначе, анализируя пересечение границы плоской волной.
1
1 0
n 2
2
Нарисуем фронты волны таким образом, чтобы они проходили через максимумы напряженности электрического поля при одинаковом их направлении. Они будут совпадать с гребнями волн. Тогда расстояние между фронтами будет равно длине волны света.
Частота колебаний в вакууме и в оптически более плотной среде (n > 1), естественно, одинакова. Значит, длины волны в этих средах различаются так же, как различаются скорости, - в n раз. Это приводит к “излому” фронтов на поверхности оптически плотной среды, причем углы между фронтами и этой поверхностью 1 и 2 равны углам падения и преломления (как углы со взаимно перпендикулярными сторонами).
Треугольники, в которых отрезки длиной n и 0 являются катетами, имеют общую гипотенузу. Поэтому,
.
Мы вновь получили закон преломления.
4.7.3 Дисперсия и поглощение света
Полученное нами ранее выражение для скорости распространения света является достаточно грубым приближением. Однако, оно позволяет в принципе понять причину зависимости скорости света от частоты.
Заметим, что удовлетворительное описание зависимости фазовой скорости от частоты полученное нами выражение дает лишь при не слишком малой величине разности 0 и . Иначе амплитуда колебаний электронов становится слишком большой и некоторые наши утверждения оказываются неверными. Так, мы считали, что при колебании электронов не происходит диссипации механической энергии, что при больших амплитудах оказывается неверным. Кроме того, возникают некоторые проблемы с фазой колебаний.
Мы знаем, что при резонансе разность фаз колебаний вынуждающей силы (электрического поля ) и координаты равно /2. Это легко понять и запомнить после такого рассуждения.
При резонансе максимальны амплитуда и диссипация энергии. Значит, при резонансе максимальна мощность вынуждающей силы. Для этого необходимо, чтобы сила изменялась в фазе со скоростью:
.
Умножение экспоненты на мнимую единицу как раз и означает изменение фазы колебаний на /2. В таких условиях не будет пропорциональности между электрическим полем и поляризованностью вещества - они просто не совпадают по фазе, например, обращаются в нуль в разные моменты времени.
X
0
При малых потерях даже при не слишком большом различии 0 и разность фаз колебаний электрона и электрического поля можно считать равной нулю (при < 0) или (при > 0). Это обстоятельство важно для нас по нескольким причинам. Зависимость разности фаз от частоты мы в свое время обсуждали. Тем не менее представляется уместным сказать здесь об этом несколько слов. Рассмотрим этот вопрос на примере движения грузика на пружине. При действии медленно изменяющейся силы ( < 0) наличие грузика, собственно, несущественно - внешняя сила уравновешивается упругой силой деформированной пружины, и в соответствии с законом Гука эта сила пропорциональна смещению грузика. Поэтому изменение координаты, смещение происходит в фазе с силой.
n
1
01 02
Более удивительным представляется случай, когда частота вынуждающей силы больше резонансной частоты, когда смещение и сила изменяются в противофазе: не просто понять, почему грузик смещается, например, вверх, тогда как сила направлена вниз, “тянет” его в противоположную сторону. Для этого может быть предложено такое объяснение. При большой частоте несущественным оказывается наличие пружины. Движение грузика определяется законом Ньютона, т.е. в фазе с силой изменяется ускорение, а это последнее - изменяется в противофазе со смещением. Общий ход показателя преломления от частоты показан на рисунке. При частотах 01, 02 происходит поглощение света, при частотах меньших или больших этих значений показатель преломления оказывается больше или меньше единицы. Это означает, что скорость распространения волны в веществе оказывается больше или меньше скорости света в вакууме. И это обстоятельство непосредственно связано с фазами колебаний электронов. Сколько-нибудь точный расчет, приводящий к такому результату, провести с нашим уровнем знаний не представляется возможным. Попробуем, тем не менее, понять причины изменения скорости распространения волны хотя бы качественно. Дело в том, что, вообще говоря, скорость распространения электромагнитной волны и в веществе равна скорости волны в вакууме. Но при этом, проходя некоторый тонкий слой вещества, волна возбуждает в нем колебания электронов. В свою очередь, колебания электронов создают некоторую вторичную волну, которая складывается с волной, приходящей к этому слою. И здесь нам нужно провести достаточно тонкое рассуждение. Сказанное означает, что за слоем колебания представляют собой сумму двух колебаний: колебаний проходящей волны и другой, “вторичной” волны, излученной колеблющимися электронами. Естественно, мы будем рассматривать (бесконечно) тонкий слой и амплитуда колебаний вторичной волны (бесконечно) мала. Но при этом амплитуда результирующих колебаний должна остаться прежней. Это возможно только в том случае, если эти колебания различаются по фазе на . И это приводит к удивительному результату.
dE dE
E' E
E E”
t+-kx t--kx
t-k'x t-k”x
Обратимся к векторной диаграмме, которую мы уже неоднократно использовали для сложения колебаний. Пусть на этой диаграмме колебания проходящей волны представлены вектором длиной E, а вторичной волны dE. Как мы выяснили, эти векторы перпендикулярны и на рисунке показаны возможные взаимные расположения этих векторов. С одной стороны в каждой точке частота колебаний одинакова. Но при переходе от точки к точке изменяется фаза колебаний, изменяется на kx. Таким образом, для этих колебаний в разных точках слагаемое -kx имеет смысл начальной фазы. Но при распространении света в веществе при переходе от точки к точке мы “подключаем” все новые и новые слои вещества, которые добавляют к начальной фазе колебаний плюс или минус . Иначе говоря, при одной и той же частоте в веществе при переходе от точки к точке фаза колебаний изменяется либо больше, чем на -kx, либо меньше чем в вакууме. Говоря иначе, волновое число k в веществе другое, не такое, как в вакууме. Поэтому и наблюдаемая фазовая скорость в веществе v = /k другая, отличная от скорости в вакууме c. Вспомним еще раз, что мы говорим о частотах, достаточно сильно отличающихся от резонансной, и при этом в зависимости от знака разности 0- фаза колебаний электронов по отношению к фазе электрического поля принимает либо значение 0, либо - . Поэтому, в зависимости от 0- фазовая скорость либо меньше, либо больше c.
4.7.4 Групповая и фазовая скорости света в веществе
Человека, хоть немного сведущего в физике, сильно шокирует утверждение, что скорость света в веществе может быть больше скорости света в вакууме c. Такой человек обычно знает, что согласно теории относительности Эйнштейна скорость c - это максимальная скорость движения физического объекта. Но фазовую скорость нельзя связать с движением какого-нибудь объекта, это лишь скорость движения точки с постоянной фазой колебаний:
.
Иное дело групповая скорость v = d/dk - она не может быть больше c.
Обратимся к зависимости фазовой скорости световой волны от частоты:
;
и рассмотрим в качестве примера распространение рентгеновских лучей. Для них характерна очень большая частота колебаний, так что в выписанном выражении можно пренебречь частотой 0, величина < 1. В этом случае
; .
Запишем выражение для квадрата волнового числа:
и возьмем дифференциал от обеих частей полученного выражения:
.
Таково соотношение между скоростью света в вакууме, фазовой и групповой скоростями. При этом
; .
Таким образом, хотя фазовая скорость электромагнитной волны в рентгеновском диапазоне больше c, групповая скорость оказывается меньше этой величины.
4.7.5 Аномальная дисперсия
Присмотримся внимательнее к выражению для скорости света в веществе:
.
Слагаемые под знаком суммирования велики при частотах ~0. При резонансной частоте такое слагаемое меняет знак, причем при меньшей по отношению к резонансной частоте фазовая скорость больше скорости света в вакууме, а при большей v < c. Такую зависимость фазовой скорости от частоты называют аномальной дисперсией.
Нормальная дисперсия наблюдается в промежутке между соседними резонансными частотами 0k и 0k+1. Аномальная дисперсия наблюдается в узком диапазоне частот, это объясняет тот факт, что, как правило, прозрачные вещества обладают нормальной дисперсией.
Для наблюдения дисперсии может быть использована призма, при прохождении которой лучи света отклоняются к ее основанию. При нормальной дисперсии в видимой области показатель скорость распространения красного цвета больше, а показатель преломления больш меньше, чем фиолетового. Поэтому красный и фиолетовый цвета будут наблюдаться в разных точках экрана, как это показано на рисунке. Для наблюдения аномальной дисперсии можно воспользоваться методом скрещенных призм. В этом случае отклонение по вертикали определяется дисперсией одной призмы, а по горизонтали - другой. Выбрав одну из призм такой, что дисперсия ее материала нормальная, мы сможем наблюдать на экране зависимость показателя преломления материала другой призмы от частоты. Ниже на рисунках показаны получающиеся при этом картинки. И более узкой области аномальной дисперсии происходит сильное поглощение света, что и определяет разрыв наблюдаемой кривой. Как мы видели, ничего ненормального в аномальной дисперсии нет. Просто в некоторых диапазонах частот показатель преломления увеличивается, а в некоторых - уменьшается. Теперь мы понимаем, почему это так происходит.
Лекция 7
5. Распространение (плоской) волны. Некоторые “тонкости”
по фронту
= const
излучение при = 0
Мне бы хотелось еще раз подчеркнуть, что колебания в некоторой области пространства вызывает колебания в соседних областях, они в свою очередь вновь вызывают колебания и так происходит распространение волны. Рассмотрим на примере плоской волны этот вопрос несколько подробнее. На рисунке показана плоскость, параллельная фронту волны, распространяющейся направо. Колебания в этой плоскости происходят с постоянной (по осям координат) фазой, и мы выяснили, что в такой ситуации излучение происходит по направлению = 0. Но таких направлений два - налево и направо. И представляется довольно естественным вопрос: почему волна распространяется только в одном направлении? Почему колебания электрического поля плоской волны в некоторой плоскости, параллельной фронту, вызывает распространение колебаний лишь в одном направлении, в направлении распространении волны? Попробуем ответить на этот вопрос. Рассмотрим некоторую протяженную узкую область, например, в виде цилиндра, ось которой перпендикулярна фронту плоской волны . Выберем в этой области две произвольные точки на расстоянии x. В этих точках, как и в любой другой точке внутри выделенной области, происходят колебания вида . При этом разность фаз колебаний 2-1 = -kx - мы уже говорили, что для разных точек вдоль оси 0X величина -kx имеет смысл начальной фазы. Эти точки (области малого объема) являются (не “могут считаться”, а именно “являются”!) источниками волн, распространяющихся во времени колебаний. И эти колебания в точке 3 происходят в фазе, складываются. Действительно, колебания в точке 1 опережают колебания в точке 2 на kx, но из этой точки колебания до точки 3 распространяются дольше на . Поэтому разность фаз колебаний волн, приходящих в точку 3 из точек 1 и 2
.
Естественно, из точек 1 и 2 колебания распространяются и назад, к точке 4. Но теперь дольше распространяются колебания от точки 2. Поэтому
и всегда найдутся такие две точки, что будет выполняться равенство 2kx = , - колебания будут гасить друг друга. Этим и объясняется, то обстоятельство, что если в некоторой области распространяется плоская волна.
6.1 Отражение света на границе раздела двух сред
Рассмотрим несколько подробнее процесс отражения на границе двух сред.
Прежде всего вспомним, что мы говорили при анализе отражения света от металлического зеркала. При падении на поверхность металла волна, естественно, вызывает колебания находящихся в нем электронов. Эти колеблющиеся электроны, в свою очередь, влево и вправо от поверхности излучают плоские волны с амплитудой, равной по модулю амплитуде падающей волны и противоположной по знаку. То, что эти вторичный волны одинаковы следует из соображений симметрии, а изменение знака амплитуды следует из такого элементарного рассуждения. В направлении распространения падающей волны (в металле) волна не распространяется. Но она равна сумме волны падающей и излученной колеблющимися электронами. Значит, их амплитуды противоположны по знаку.
Обратите внимание - мы не анализируем характер движения электронов, не подсчитываем амплитуду их колебаний и амплитуду излучаемых волн и проч. Мы судим о одной из волн по результату сложения другой с падающей волной.
E0 E1 E1
E2 E2
E0 E0 E0
При падении луча света на границу раздела двух сред, когда возможно распространение волны (в отличии от металла) в обеих средах, происходят достаточно сложные процессы. И прежде всего сложности связаны с тем, что процесс отражения происходит по-разному для волн, колебания вектора электрического поля которых происходят перпендикулярно плоскости падения (E0) и параллельно ей (E0). Любая волна представляет собой сумму волн с такими направлениями колебаний электрического вектора, но процессы отражения и преломления их мы рассматриваем по отдельности, одновременно их сравнивая.
Введенные обозначения должны быть понятны из рисунка.
Отражение двух компонент с разными направлениями линейной поляризации происходит по-разному. Отраженная волна, как и в случае металлического зеркала, излучается колеблющимися электронами Среды, и их колебания происходят в направлении, перпендикулярном преломленному лучу.
Вспомним особенности зависимости амплитуды излучаемой диполем в перпендикулярной и параллельной направлению его колебаний плоскостях. В первой амплитуда волны не зависит от направления, как это и следует из соображений симметрии. Иначе обстоит дело в параллельной направлению колебаний плоскости.
dE/d = 0 E = E0cos()
Дело в том, что в направлении, совпадающим с направлением колебаний, диполь волну не излучает. Для произвольного направления, составляющим угол с направлением колебаний диполя, амплитуда колебаний E = E0cos(). Это будет понятным, если вспомнить, что диполь можно представить как сумму двух диполей - параллельного направлению излучения (амплитуда излучаемой волны нулевая) и перпендикулярного - .
Таким образом, в перпендикулярном преломленному лучу направлении и при параллельной плоскости падения поляризации свет отразиться не может: амплитуда отраженной волны в этом случае пропорциональна - угол между преломленным лучем, который направлен перпендикулярно направлению колебаний диполя, и лучем отраженным равен 1800--, и .
Это обстоятельство приводит к любопытному эффекту: при +=/2 отражения света при такой поляризации не происходит. Такой угол падения называется углом Брюстера:
.
Коэффициентом отражения называют отношение интенсивности отраженного луча к интенсивности луча падающего.
Они, в свою очередь, пропорциональны квадратам амплитуд колебаний соответствующих волн. Их значения даются формулами Френеля. Мы опустим вывод этих формул, но упомянуть о них необходимо:
; .
Знак '-' перед отношениями тригонометрических функций означает, что при отражении от границы с оптически более плотной средой (>) отражение происходит с потерей полуволны.
Соответственно, коэффициенты отражения
; .
При +=/2 будет и .
6.2 Полное отражение
До сих пор мы рассматривали падение луча на границу вакуум - некоторое вещество, в вакууме n=1.
При падении света на границу раздела двух сред, для которых n11 и n21 вид закона преломления несколько изменится:
.
При падении света на границу с оптически менее плотной средой (n1>n2) относительный показатель преломления n12<1 и >, и если sin()=n12, то =.
При дальнейшем увеличении угла преломленного луча наблюдаться не будет.
Такой предельный угол падения называется углом полного отражения - при таком и больших значениях коэффициент отражения равен единице.
450
1
2
2'
1'
Явление полного (внутреннего) отражения используется в так называемой обращающей призме. Обычно это прямоугольная призма, угол падения на границу равен =450. Чтобы происходило полное внутреннее отражение необходимо, чтобы коэффициент преломления n был больше .
При отражении от металлического зеркала мы говорили, что отраженная волна генерируется в результате колебаний электронов металла вблизи поверхности. Но при отражении от поверхности, разделяющей некую среду и вакуум, справа от поверхности электронов нет. Тогда возникновение отраженной волны можно объяснить только таким образом.
Электромагнитное поле проникает правее поверхности отражения, в вакуум, и там происходят электромагнитные колебания. Эти колебания и вызывают появление волны, которая гасит волну падающую (справа от границы отражения), и создает волну отраженную. И вот здесь, для понимания физики отражения оказывается существенным прежнее наше замечание, что при колебаниях электронов причиной излучения является, собственно, не сами колебания электронов, а колебания электромагнитного поля, которые обусловлены колебаниями электронов. В рассматриваемом случае электронов справа от поверхности отражения нет, но есть колебания электромагнитного поля как причина излучения отраженной волны.
Обратимся вновь к отражению световой волны на границе раздела вакуум-металл. В этом случае также происходит проникновение электромагнитного поля за границу отражения - в металл. При этом диэлектрическая проницаемость
.
При таком условии распространения волны наблюдаться не будет. Формально при отрицательном значении скорость распространения становится величиной мнимой как и показатель преломления n=c/v.
Давайте также формально воспользуемся выражением для фазовой скоростью в случае мнимого ее значения:
.
Вместо действительного волнового числа k в знаменателе теперь стоит мнимая величина ik'. Запишем выражение для колебаний в “волне” при мнимом волновом числе:
.
Мы получили выражение для колебаний, амплитуда которых экспоненциально зависит от координаты. Физический смысл это выражение может иметь только при k'<0 - амплитуда колебаний не может расти неограниченно. Заметим, что этот результат может быть получен и непосредственно из уравнений Максвелла.
Металлы часто бывают окрашенными. Мы наблюдаем их в отраженном свете и причина окрашенности отраженного света в том, что при некоторой частоте (частотах) электромагнитные колебания поглощаются в металле. Это согласуется с утверждением, что электромагнитная волна проникает на некоторую глубину внутрь металла. Об этом свидетельствует и то, что (весьма) тонкий слой металла может пропускать свет, коэффициент отражения тонкого слоя зависит от его толщины. Такое зеркало называют полупрозрачным и оно используется на практике достаточно часто. Коэффициент пропускания такого зеркала равен 1- зависит от того, как сильно уменьшается амплитуда колебаний . Вспомним еще раз, что в этом выражении k'<0.
Цвет металла в проходяшем свете оказывается дополнительным к цвету, наблюдаемому при его (света) при отражении.
6.3 Затухание волны
При частотах, близких к резонансной, происходит поглощение волны. Сколько-нибудь точный обсчет этого процесса для нас затруднителен. Ограничимся поэтому лишь качественным обсуждением того, что при этом происходит. Объясняя, каким образом фазовая скорость может быть больше или меньше скорости света в вакууме, мы рассматривали сложение распространяющейся (со скоростью c), так сказать, первичной волны и другой, излучаемой колебаниями электронов некоторого слоя вещества. При этом соответствующая “добавка”, вектор был направлен перпендикулярно вектору . И направление вектора либо совпадало с направлением вращения вектора , либо противоположно. Связано это было со значением разности фаз между вынуждающей силой (действующим на электроны электрическим полем) и смещением электронов. Эти два случая соответствуют разности фаз 0 или .
При резонансе разность фаз равна /2. Поэтому вектор оказывается направлен вдоль вектора или составляет с ним некоторый угол, отличный от /2. В результате изменяется амплитуда колебаний. При затухании волны, поглощении энергии, естественно, должно наблюдаться уменьшение амплитуды.
Соответствующее выражение для затухающей плоской волны можно получить, введя комплексное выражение для волнового числа:
;
.
Мы получили выражение для волны с экспоненциально убывающей амплитудой.
Отметим, что векторы и - это вспомогательные векторы векторной диаграммы, не векторы электрических полей.
Лекция 8
7. Линза
7.1 Фокусные расстояние для сферической поверхности
A
s'
O s R O'
B C n=1 n>1
Рассмотрим прохождение световой волной сферической поверхности, разделяющей вакуум и некоторую среду, например, стекло, показатель которой равен n. Пусть в точке O находится источник света. Ранее мы получили соотношение между углом излучения (падения) луча света и производной начальной фазы вдоль поверхности раздела двух сред:
.
В данном случае справа и слева у нас разные углы - это углы падения и , и разные длины волн - 0 в вакууме и в стекле. Прямая OO' обозначает оптическую ось и мы ограничиваемся параксиальными лучами, т.е. лучами, проходящими через преломляющую поверхность вблизи оптической оси. Это означает, что углы и малы. С учетом этих замечаний мы можем записать:
; .
Здесь h - расстояние точки A от оптической оси.
Из этих уравнений следует:
; .
Собственно, мы здесь записали закон преломления для малых углов
и из него получили выражение, с помощью которого можно подсчитать радиус сферической поверхности, необходимой для того, чтобы вышедшие из точки O лучи собирались в точке O'.
Ограничиваясь лишь рассмотрением параксиальных лучей, мы можем не делать различия между величинами s и s' с одной стороны и длинами отрезков OB и O'B с другой. Обозначим длины этих отрезков как x и x'.
Устремив теперь величину x к бесконечности (на сферическую поверхность падает плоская волна), мы получим
; .
Иначе говоря, при падении на сферическую поверхность параллельного пучка параксиальных лучей они соберутся в точке O' на расстоянии x'=f' от поверхности. Величина f' называется фокусным расстоянием.
Если мы хотим, чтобы вышедшие из точки O лучи после преломления на сферической поверхности были параллельны оптической оси, нам в полученном выражении нужно положить равной бесконечности величину x's' и тогда
; .
Таким образом, слева и справа фокусные расстояния неодинаковы и различаются в n раз. С учетом полученных выражений мы можем записать такие соотношения:
или .
O' O
Предположим теперь, что величина x<f. тогда будет n/x'<0. Это означает, что точка O' будет находиться слева от сферической поверхности. Точку O' называют изображением точки O. Если x'<0, реальные лучи не пересекаются в точке O', они идут после преломления таким образом, как если бы они вышли из этой точки. В таком случае говорят, что изображение точки O мнимое. Если лучи пересекаются в точке O', то говорят о действительном изображении.
O
O'
Но может быть и такое положение, что лучи направлены в точку O, расположенную справа от поверхности (x<0) и после преломления пересекаются в точке O'. Тогда говорят о мнимом источнике света, в отличии от действительного, из которого на самом деле исходят лучи света. Разумеется, при x'<f' мнимый источник расположен по отношению к преломляющей поверхности ближе правого фокусного расстояния.
7.2 Фокусное расстояние линзы
Обычно используется устройство из стекла или другого материала, ограниченное двумя сферическими поверхностями. Если эти поверхности расположены близко друг от друга, говорят о тонкой линзе. Подсчитаем фокусное расстояние тонкой линзы. Пусть радиусы сферических поверхностей, отделяющих стекло от вакуума, равны R1 и R2. Запишем координату точки, в которой собрались бы параллельные оси лучи справа от первой поверхности:
.
На таком расстоянии оказывается изображение бесконечно удаленного источника света после прохождения первой сферической поверхности. Оно является (мнимым) источником для второй сферической поверхности. Применим полученное выше выражения для определения координаты изображения точки O', которое получается с помощью второй сферической поверхности. Но здесь необходимы некоторые пояснения. Заменяя x на y, мы можем записать для нее такое выражение:
.
В этом выражении нам следует положить y=-f', поскольку (мнимый) источник находится правее преломляющей поверхности, а поверхности мы считаем близко расположенными. Наконец, в точке с координатой y' соберутся параллельные лучи, падающие на линзу. Поэтому введем обозначение F'=y' - фокусное расстояние линзы. Таким образом,
; .
Если по обе стороны линзы вакуум, то левый и правый фокусы находятся на одинаковых расстояниях от нее. Докажем это утверждение, повторив с некоторыми изменениями наши рассуждения.
Если источник света расположен в левом фокусе линзы F, после нее пучок лучей должен быть параллельным оптической оси. Для этого изображение источника, полученное с помощью первой поверхности должно находиться в левом фокусе второй преломляющей поверхности (слева от первой, почему x'<0). Кроме того y'=. Поэтому:
; ;
.
Что мы и хотели доказать.
7.3 Фокусное расстояние линзы. Другой подход
Решая ту или иную задачу мы применяем, по возможности, самый подходящий метод решения. И, вообще говоря, нет нужды решать задачу еще и другим методом. Но некоторые методы не слишком просты и сами по себе не всегда до конца понятны. Тогда и решение задачи также оказывается непонятным. Поэтому полезно иногда решить одну и ту же задачу разными методами. Собственно, нашей целью является не столько изучение задач, сколько изучение разных методов их решения. Поэтому мы сейчас и обращаемся к задаче об определении фокусного расстояния линзы, используя иные рассуждения.
Вернемся вновь к задаче распространения волны, плоской волны. Вдоль показанного на рисунке фронта фаза колебаний постоянна - согласно определению фронта. Эти колебания, как мы знаем, являются источниками других колебаний, распространение которых и есть распространение волны. Причем очень удобно, что мы заранее знаем направление ее распространения.
Y Y l
0 X 0 X
=0cos(t-kx)
Колебания вдоль фронта происходят в фазе, на левой картинке и излучение происходит по нормали к поверхности фронта, что не представляется удивительным. Проведем теперь плоскость под углом к фронту волны. Мы уже говорили, что величина -kx при определенном x имеет смысл начальной фазы. Поэтому вдоль оси Ol начальная фаза колебаний изменяется по закону:
.
По отношению к нормали к этой поверхности направление излучения происходит, как видно из рисунка, под углом . Этот же результат дает и полученное ранее выражение:
.
В данном случае мы не получили нового результата, просто убедились, что полученная нами выражение действительно “работает”. А теперь применим его в задаче об определении фокусного расстояния линзы.
x
r F
X
0 R
d
Для простоты рассмотрим плоско-выпуклую линзу с показателем преломления материала n. Проведем некоторые расчеты. Пусть в плоскости с x=0 начальная фаза колебаний равна нулю. Тогда в плоскости при x=d (на задней поверхности линзы) начальная фаза на оптической оси 0=-k'd (k'- волновое число волны в стекле). Иная фаза на задней поверхности линзы при x=d на расстоянии r от оптической оси:
,
поскольку k=2/ и k'/k=n. Кроме того в этом выражении x - координата точки пересечения параллельного оптической оси луча в передней поверхностью линзы:
.
Таким образом,
.
Таким образом, мы получаем выражение для фокусного расстояния плоско-выпуклой линзы:
;
,
что, естественно, совпадает с полученным ранее результатом при R1=R и R2=. Значит, и в этом случае выражение sin()=-(d/dy)(/2) “работает”.
7.4 Построение изображения предмета. Увеличение
Предположим, что на некотором расстоянии от линзы находится освещенный предмет, каждая тоска которого тем самым является источником света. Рассмотрим сначала лучи, исходящие из точки предмета, находящиеся на оптической оси линзы.
r
s'
s f O f'
При падении на тонкую линзу на ее задней поверхности вдоль радиуса создается некоторая зависимость фазы колебаний
.
При косом падении лучей к этой производной фазы по радиусу добавляется еще
.
В результате угол направления излучения света будет:
;
; .
Введем обозначения
и перемножим эти величины:
;
.
Мы доказали, что на расстояниях x и x' находятся изображения нижних (совпадающих с оптической осью) концов предметов. А теперь проведем такие построения.
y
x'
s'
s x f f' y'
Проведем через верхний конец предмета на высоте y горизонтальный луч. После пересечения линзы он будет направлен в правый фокус. Другой луч проведем из верхнего конца предмета через левый фокус линзы - после ее пересечения он будет параллелен оптической оси. В точке их пересечения будет находиться изображение верхнего конца предмета.
Из подобных треугольников получаем выражения:
;
.
Мы доказали, что изображения верхних концов также находятся на таком же расстоянии от линз, что и нижних. Иначе, изображение перпендикулярного оптической оси предмета также ей перпендикулярно.
Теперь нам осталось лишь получить выражения для увеличения. Оно легко получается из выписанных выражений:
.
Чтобы подсчитать увеличение нам нужно знать положение предмета относительно фокуса линзы и, конечно, величину фокусного расстояния.
Лекция 9
8. Интерференция
Этим словом обозначается, в общем-то, всего лишь сложение волн. Всего лишь сложение, но при этом возникает много вопросов и сложностей. Прежде всего дело в том, что волна является весьма непростым объектом, объектом более сложным, чем нам это представляется на данном этапе.
Кроме того многообразными и не очень простыми оказываются схемы наблюдения разных явлений, возникающих в результате сложения волн, их интерференции. Так что лучше всего заранее настроится на обсуждение многочисленных и достаточно непростых вопросов.
Подобные документы
Взаимодействие электромагнитных волн с веществом. Отражение и преломление света диэлектриками. Принцип Гюйгенса - Френеля. Рефракция света. Графическое сложение амплитуд вторичных волн. Дифракция плоской световой волны и сферической световой волны.
реферат [168,2 K], добавлен 25.11.2008Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.
презентация [9,4 M], добавлен 25.07.2015Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.
курсовая работа [2,1 M], добавлен 13.10.2012Видимое излучение и теплопередача. Естественные, искусственные люминесцирующие и тепловые источники света. Отражение и преломление света. Тень, полутень и световой луч. Лунное и солнечное затмения. Поглощение энергии телами. Изменение скорости света.
презентация [399,4 K], добавлен 27.12.2011Оптический диапазон длин волн. Скорость распространения волн в однородной нейтральной непроводящей среде. Показатель преломления. Интерференция световых волн. Амплитуда результирующего колебания. Получение интерференционной картины от источников света.
презентация [131,6 K], добавлен 18.04.2013Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.
презентация [1,3 M], добавлен 02.10.2014Свойства света, его физическая природа и взаимодействие с веществом. Получение изображений точечных источников света и протяженных предметов. Закон отражения, нахождение изображений при отражении света от различных типов зеркал. Закон преломление света.
реферат [59,4 K], добавлен 26.04.2010Понятие оптического излучения и светового луча. Оптический диапазон длин волн. Расчет и конструирование оптических приборов. Основные законы геометрической оптики. Проявление прямолинейного распространения света. Закон независимости световых пучков.
презентация [12,0 M], добавлен 02.03.2016Основные принципы геометрической оптики. Изучение законов распространения световой энергии в прозрачных средах на основе представления о световом луче. Астрономические и лабораторные методы измерения скорости света, рассмотрение законов его преломления.
презентация [1,5 M], добавлен 07.05.2012Движение электромагнитных волн в веществе. Отражение и преломление плоской однородной волны на плоской поверхности раздела двух сред и двух идеальных диэлектриков. Формулы Френеля, связь между амплитудами падающей, отраженной и преломленной волн.
курсовая работа [770,0 K], добавлен 05.01.2017